

# An Effective Theory of Neutrino

Systematic decomposition of the neutrinoless double beta decay operator

#### Toshihiko Ota



based on

Florian Bonnet, Martin Hirsch, TO, Walter Winter JHEP 1303 (2013) 055 arXiv. 1212. 3045

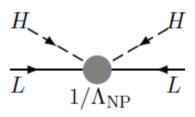
If the SM is a low-E effective model of a fundamental theory...

$$\mathscr{L}_{\mathsf{eff}} = \mathscr{L}_{\mathrm{SM}}$$

If the SM is a low-*E* effective model of a fundamental theory... Talk by Gavela, Huber

$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{SM}} + \frac{1}{\Lambda_{\text{NP}}} \mathcal{O}_{d=5} + \frac{1}{\Lambda_{\text{NP}}^2} \mathcal{O}_{d=6} + \frac{1}{\Lambda_{\text{NP}}^3} \mathcal{O}_{d=7} + \frac{1}{\Lambda_{\text{NP}}^4} \mathcal{O}_{d=8} + \frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d=9} + \cdots$$

 $\Lambda_{\rm NP}$ : A typical scale of New physics




If the SM is a low-*E* effective model of a fundamental theory...

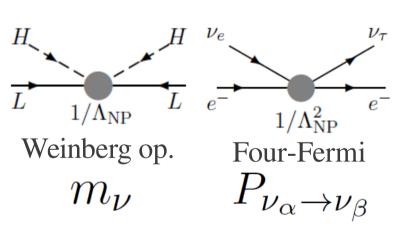
$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \boxed{\frac{1}{\Lambda_{\text{NP}}} \mathcal{O}_{d=5}} + \frac{1}{\Lambda_{\text{NP}}^2} \mathcal{O}_{d=6} + \frac{1}{\Lambda_{\text{NP}}^3} \mathcal{O}_{d=7} + \frac{1}{\Lambda_{\text{NP}}^4} \mathcal{O}_{d=8} + \frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d=9} + \cdots$$

 $\Lambda_{\rm NP}$ : A typical scale of New physics

Effective operators are a typical low-E remnant of New physics



Weinberg op.


$$m_{\nu}$$



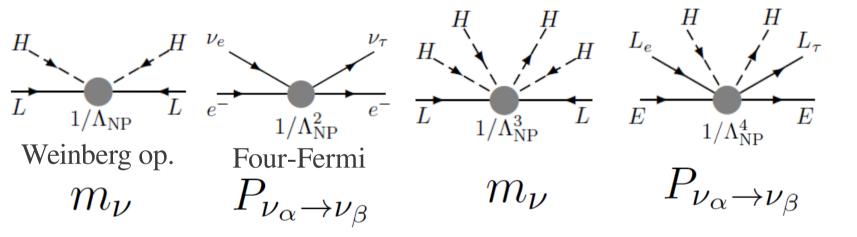
If the SM is a low-*E* effective model of a fundamental theory... Talk by Gavela, Huber

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda_{\text{NP}}} \mathcal{O}_{d=5} + \boxed{\frac{1}{\Lambda_{\text{NP}}^2} \mathcal{O}_{d=6}} + \frac{1}{\Lambda_{\text{NP}}^3} \mathcal{O}_{d=7} + \boxed{\frac{1}{\Lambda_{\text{NP}}^4} \mathcal{O}_{d=8}} + \frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d=9} + \cdots$$

 $\Lambda_{\rm NP}$ : A typical scale of New physics



$$L_e$$
 $H$ 
 $H$ 
 $L_\tau$ 
 $E$ 
 $1/\Lambda_{\rm NP}^4$ 
 $E$ 

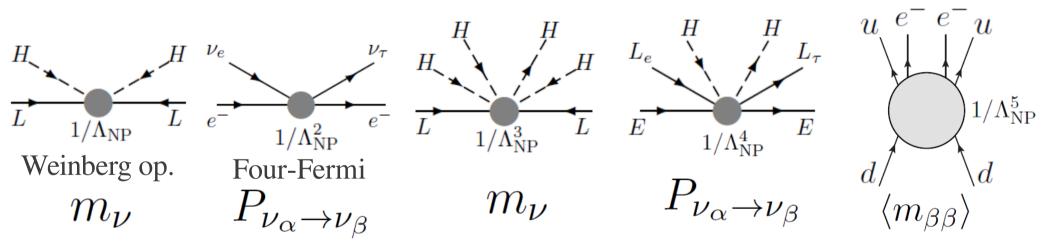

$$P_{\nu_{\alpha} \to \nu_{\beta}}$$



If the SM is a low-*E* effective model of a fundamental theory... Talk by Gavela, Huber

$$\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{SM}} + \frac{1}{\Lambda_{\text{NP}}} \mathcal{O}_{d=5} + \frac{1}{\Lambda_{\text{NP}}^2} \mathcal{O}_{d=6} + \boxed{\frac{1}{\Lambda_{\text{NP}}^3} \mathcal{O}_{d=7}} + \frac{1}{\Lambda_{\text{NP}}^4} \mathcal{O}_{d=8} + \frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d=9} + \cdots$$

 $\Lambda_{\rm NP}$ : A typical scale of New physics



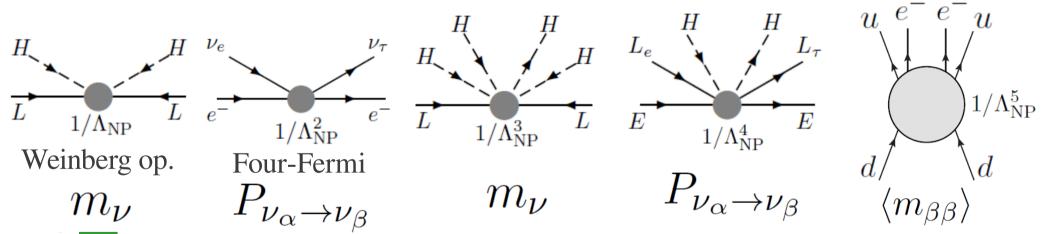



If the SM is a low-*E* effective model of a fundamental theory... Talk by Gavela, Huber

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda_{\text{NP}}} \mathcal{O}_{d=5} + \frac{1}{\Lambda_{\text{NP}}^2} \mathcal{O}_{d=6} + \frac{1}{\Lambda_{\text{NP}}^3} \mathcal{O}_{d=7} + \frac{1}{\Lambda_{\text{NP}}^4} \mathcal{O}_{d=8} + \boxed{\frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d=9}} + \cdots$$

 $\Lambda_{\rm NP}$ : A typical scale of New physics






If the SM is a low-*E* effective model of a fundamental theory... Talk by Gavela, Huber

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \underbrace{\frac{1}{\Lambda_{\text{NP}}} \mathcal{O}_{d=5}} + \frac{1}{\Lambda_{\text{NP}}^2} \mathcal{O}_{d=6} + \frac{1}{\Lambda_{\text{NP}}^3} \mathcal{O}_{d=7} + \frac{1}{\Lambda_{\text{NP}}^4} \mathcal{O}_{d=8} + \frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d=9} + \cdots$$

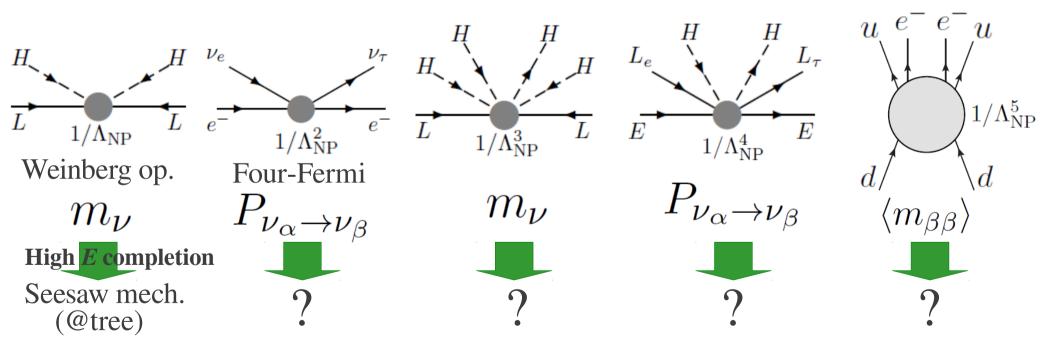
 $\Lambda_{\rm NP}$ : A typical scale of New physics

Effective operators are a typical low-E remnant of New physics



High *E* completion

Seesaw mech. (@tree)




If the SM is a low-*E* effective model of a fundamental theory... Talk by Gavela, Huber

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda_{\text{NP}}} \mathcal{O}_{d=5} + \frac{1}{\Lambda_{\text{NP}}^2} \mathcal{O}_{d=6} + \frac{1}{\Lambda_{\text{NP}}^3} \mathcal{O}_{d=7} + \frac{1}{\Lambda_{\text{NP}}^4} \mathcal{O}_{d=8} + \frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d=9} + \cdots$$

 $\Lambda_{\rm NP}$ : A typical scale of New physics

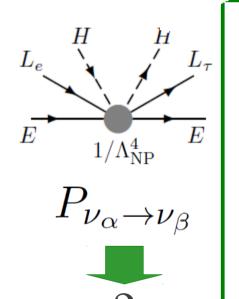
Effective operators are a typical low-E remnant of New physics

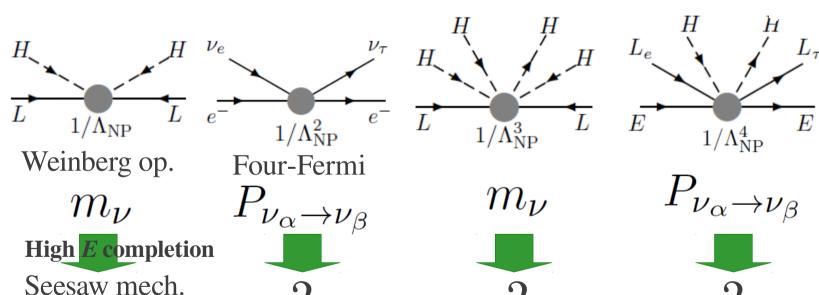


What do these eff. ops. suggest to physics at high *E* scales?

**Exhaustive bottom-up approach** 




(@tree)


### Preface

 $1/\Lambda_{\mathrm{NP}}^{5}$ 

If the SM is a low-*E* effective model of a fundamental theory... Talk by Gavela, Huber

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda_{\text{NP}}} \mathcal{O}_{d=5} + \frac{1}{\Lambda_{\text{NP}}^2} \mathcal{O}_{d=6} + \frac{1}{\Lambda_{\text{NP}}^3} \mathcal{O}_{d=7} + \frac{1}{\Lambda_{\text{NP}}^4} \mathcal{O}_{d=8} + \frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d-\frac{1}{\Lambda_{\text{NP}}^5}} \mathcal{O}_{d-\frac{1}{\Lambda_{\text{NP}}^5}} \mathcal{O}_{d-\frac{1}{\Lambda_{\text{NP}}^5}} \mathcal{O}_{d=6} + \frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d=7} + \frac{1}{\Lambda_{\text{NP}}^4} \mathcal{O}_{d=8} + \frac{1}{\Lambda_{\text{NP}}^5} \mathcal{O}_{d-\frac{1}{\Lambda_{\text{NP}}^5}} \mathcal{O}_{d-\frac{1}{\Lambda_{\text{NP}}^5}$$





What do these eff. ops. suggest to physics at high E scales?

**Exhaustive bottom-up approach** 



#### Outline

New Physics (d=9) contributions in neutrinoless double beta decay (0n2b)

- Motivation: Why On2b? Why dim=9 ops?
  - $d=9 \text{ ops} \rightarrow \text{half-life time of 0n2b processes}$ "How sensitive 0n2b experiments to the d=9 ops?"
- What do the d=9 ops suggest to TeV scale physics?

d=9 ops  $\rightarrow$  decompose them to the fundamental ints.

→ list the TeV signatures of each completion

"The list helps us to discriminate the models"

Seeking a relation to the models at the TeV scale

TeV scale models with LNV  $\rightarrow$  *Models for radiative neutrino masses* 



#### Outline

New Physics (d=9) contributions in neutrinoless double beta decay (0n2b)

Motivation: Why On2b? Why dim=9 ops?

d=9 ops  $\rightarrow$  half-life time of 0n2b processes "How sensitive 0n2b experiments to the d=9 ops?"

What do the d=9 ops suggest to TeV scale physics?

d=9 ops  $\rightarrow$  decompose them to the fundamental ints.

→ list the TeV signatures of each completion

"The list helps us to discriminate the models"

Seeking a relation to the models at the TeV scale

TeV scale models with LNV  $\rightarrow$  *Models for radiative neutrino masses* 

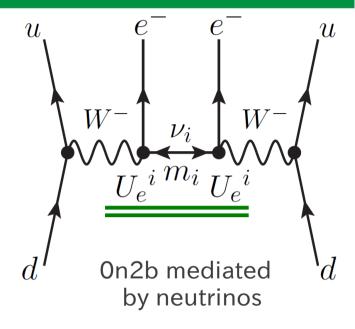




#### Why 0n2b? Why d=9 op.?

#### Effective neutrino mass

• In SM+3nu, **0n2b** exp are sensitive to


Effective nu mass 
$$\langle m_{\beta\beta}\rangle \equiv \sum_{i=1}^3 (U_e{}^i)^2 m_i \qquad U_e{}^1 = c_{12}c_{13} \\ U_e{}^2 = s_{12}c_{13}\mathrm{e}^{\mathrm{i}\alpha} \\ U_e{}^3 = s_{13}\mathrm{e}^{\mathrm{i}\beta}$$

$$U_e^{\ 1} = c_{12}c_{13}$$
 $U_e^{\ 2} = s_{12}c_{13}e^{i\alpha}$ 
 $U_e^{\ 3} = s_{13}e^{i\beta}$ 

Normal hierarchy 
$$m_1 = m_0, m_2 = \sqrt{\Delta m_{21}^2 + m_0^2}, m_3 = \sqrt{\Delta m_{31}^2 + m_0^2}$$

#### Inverted hierarchy

$$m_1 = \sqrt{|\Delta m_{31}^2| + m_0^2}, \ m_2 = \sqrt{\Delta m_{21}^2 + |\Delta m_{31}^2| + m_0^2},$$
  
 $m_3 = m_0$ 



 $m_0$  represents the lightest neutrino mass lpha and eta are Majorana phases

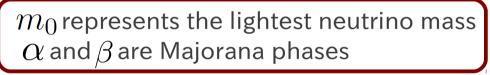


0n2b mediated

by neutrinos

• In SM+3nu, **0n2b** exp are sensitive to

Effective nu mass 
$$U_e^{\ 1}=c_{12}c_{13}$$
  $V_e^{\ 2}=s_{12}c_{13}e^{\mathrm{i}\alpha}$   $U_e^{\ 3}=s_{12}e^{\mathrm{i}\beta}$ 


$$U_e{}^1=c_{12}c_{13}$$
 Unknow  $U_e{}^2=s_{12}c_{13}\mathrm{e}^{\mathrm{i}lpha}$   $U_e{}^3=s_{13}\mathrm{e}^{\mathrm{i}eta}$ 

$$m_1 = m_0$$
,  $m_2 = \sqrt{\Delta m_{21}^2 + m_0^2}$ ,  $m_3 = \sqrt{\Delta m_{31}^2 + m_0^2}$ 

Inverted hierarchy

$$m_1 = \sqrt{|\Delta m_{31}^2| + m_0^2}, \ m_2 = \sqrt{\Delta m_{21}^2 + |\Delta m_{31}^2| + m_0^2},$$

$$m_3 = m_0$$



Oscillation exp told us... e.g., Gonzalez-Garcia Maltoni Salvado Schwetz, JHEP 1212 (2012) 123

$$s_{12}^2 = 0.3$$
,

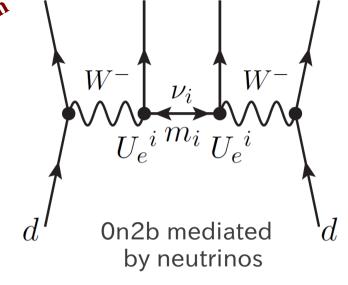
$$s_{23}^2 = 0.41(0.59),$$

$$s_{13}^2 = 0.023$$

$$\Delta m_{21}^2 = 7.5 \cdot 10^{-5} \text{ eV}^2$$

$$s_{12}^2=0.3, \qquad s_{23}^2=0.41(0.59), \qquad s_{13}^2=0.023, \ \Delta m_{21}^2=7.5\cdot 10^{-5}~{\rm eV}^2, \quad |\Delta m_{31}^2|=2.5\cdot 10^{-3}~{\rm eV}^2$$






• In SM+3nu, **0n2b** exp are sensitive to

Effective nu mass 
$$\langle m_{\beta\beta}\rangle \equiv \sum_{i=1}^3 (U_e{}^i)^2 m_i \qquad U_e{}^1 = c_{12}c_{13} \\ U_e{}^2 = s_{12}c_{13} e^{\mathrm{i}\alpha} \\ U_e{}^3 = s_{13} e^{\mathrm{i}\beta}$$

$$U_e{}^1=c_{12}c_{13}$$
 Unknown  $U_e{}^2=s_{12}c_{13}\mathrm{e}^{\mathrm{i}lpha}$   $U_e{}^3=s_{13}\mathrm{e}^{\mathrm{i}eta}$ 

Normal hierarchy 
$$m_1 = m_0$$
,  $m_2 = \sqrt{\Delta m_{21}^2 + m_0^2}$ ,  $m_3 = \sqrt{\Delta m_{31}^2 + m_0^2}$ 



$$m_1 = \sqrt{|\Delta m_{31}^2| + m_0^2}, \ m_2 = \sqrt{\Delta m_{21}^2 + |\Delta m_{31}^2| + m_0^2},$$

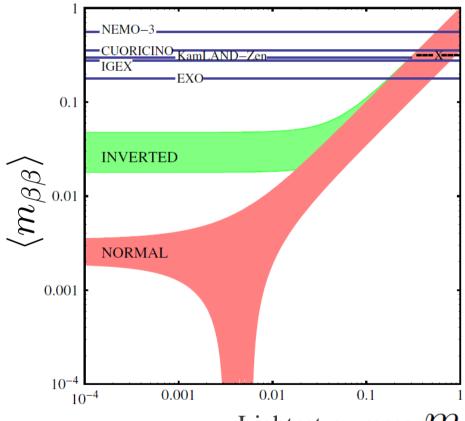
$$m_3 = m_0$$

 $m_0$  represents the lightest neutrino mass lpha and eta are Majorana phases

Oscillation exp told us... e.g., Gonzalez-Garcia Maltoni Salvado Schwetz, JHEP 1212 (2012) 123

$$s_{12}^2=0.3, \quad s_{23}^2=0.41(0.59), \quad s_{13}^2=0.023, \\ \Delta m_{21}^2=7.5\cdot 10^{-5}~\text{eV}^2, \quad |\Delta m_{31}^2|=2.5\cdot 10^{-3}~\text{eV}^2$$




Cosmological obs are sensitive to the other combination of params....

• **0n2b exp** are sensitive to Effective nu mass

$$\langle m_{\beta\beta} \rangle \equiv \sum_{i=1}^{3} (U_e{}^i)^2 m_i$$

Cosmological obs constrain Sum of nu masses

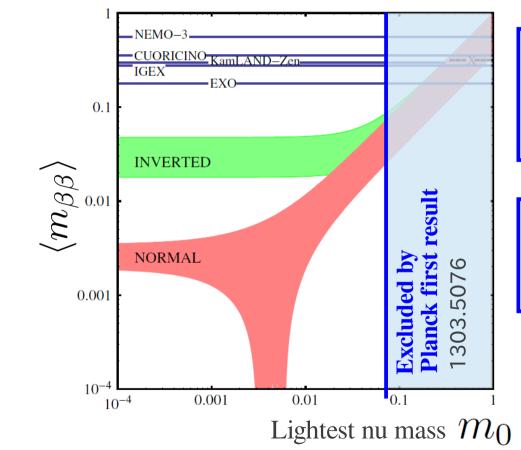
$$\sum_{i=1}^{3} m_i (\simeq 3 \underline{m_0} \text{ if } m_0 \gtrsim 0.1 \text{ eV})$$



Lightest nu mass  $m_0$ 

Standard 3nu parameter space






• **0n2b exp** are sensitive to Effective nu mass

$$\langle m_{\beta\beta} \rangle \equiv \sum_{i=1}^{s} (U_e{}^i)^2 m_i$$

Cosmological obs constrain Sum of nu masses

$$\sum_{i=1}^{3} m_i (\simeq 3m_0 \text{ if } m_0 \gtrsim 0.1 \text{ eV})$$



Planck (combined) 1303.5076  $) m_i < 0.23 \text{ eV}$ 

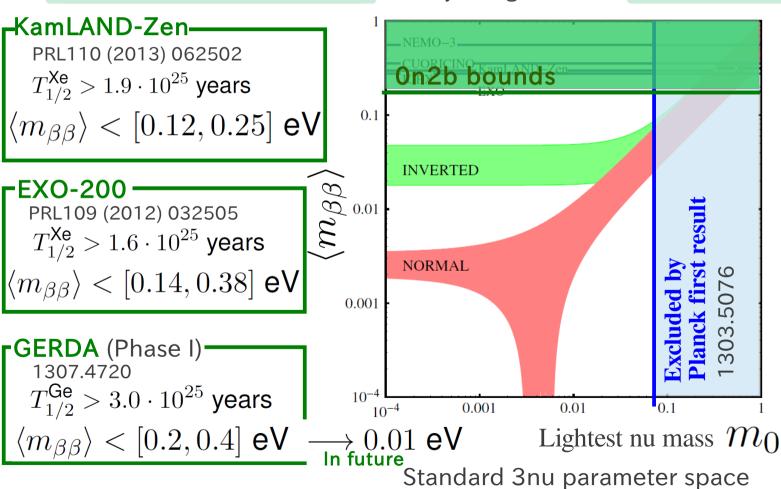
WMAP9 (combined) 1212.5226 
$$\sum_i m_i < 0.44 \; \mathsf{eV}$$

**SPT** reports non-zero mNu? 1212.6267

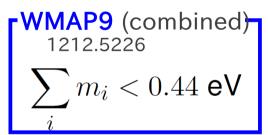
Standard 3nu parameter space






• **0n2b exp** are sensitive to Effective nu mass

$$\langle m_{\beta\beta} \rangle \equiv \sum_{i=1}^{3} (U_e{}^i)^2 m_i$$


Talk by Yang

Cosmological obs constrain Sum of nu masses

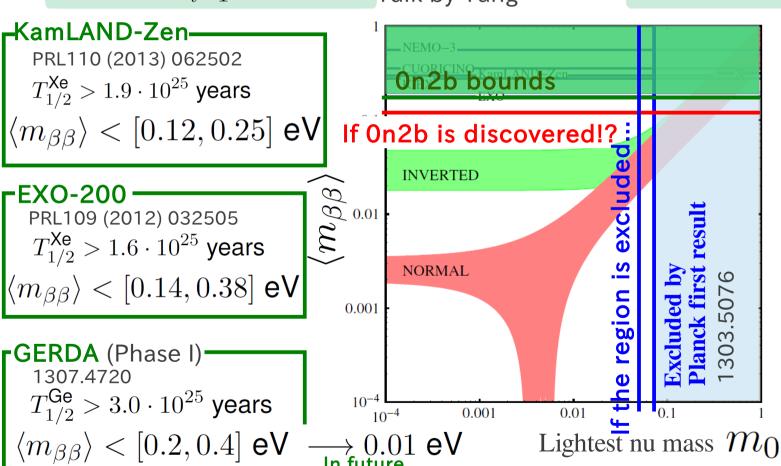
$$\sum_{i=1}^{5} m_i (\simeq 3m_0 \text{ if } m_0 \gtrsim 0.1 \text{ eV})$$



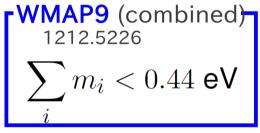
Planck (combined) 1303.5076  $\sum m_i < 0.23 \; {\sf eV}$ 



**SPT** reports non-zero mNu? 1212.6267


**0n2b exp** are sensitive to Effective nu mass

$$\langle m_{\beta\beta} \rangle \equiv \sum_{i=1}^{3} (U_e{}^i)^2 m_i$$


Talk by Yang

Cosmological obs constrain Sum of nu masses

$$\sum_{i=1}^{5} m_i (\simeq 3m_0 \text{ if } m_0 \gtrsim 0.1 \text{ eV})$$



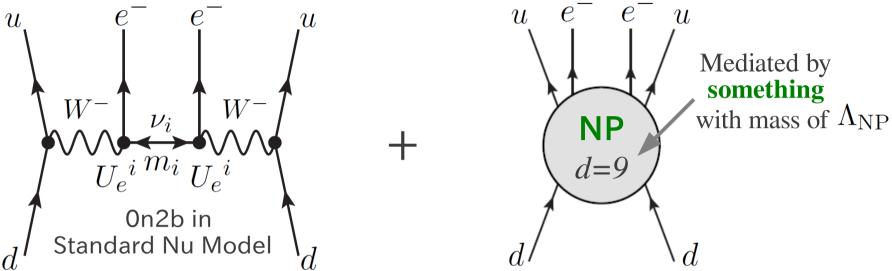
Planck (combined) 1303.5076  $\sum m_i < 0.23 \text{ eV}$ 



**SPT** reports non-zero mNu? 1212.6267

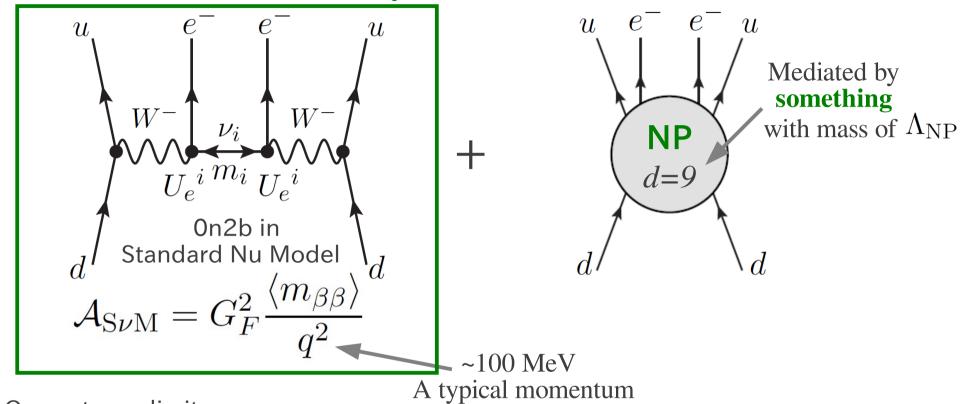
Q: If, in future, they will conflict with each other, what can we learn from them?






0n2b in

Standard Nu Model

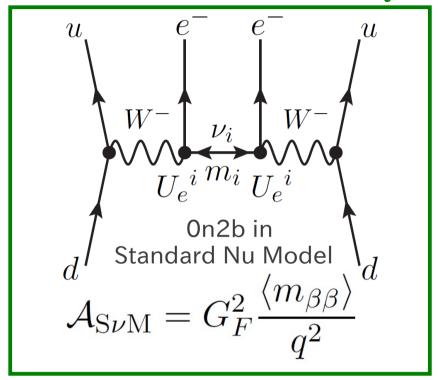


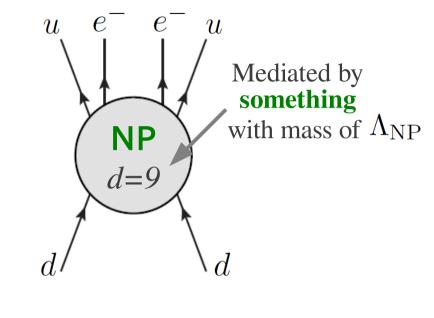








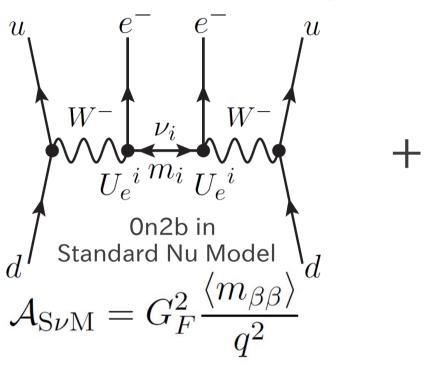


Current exp. limit

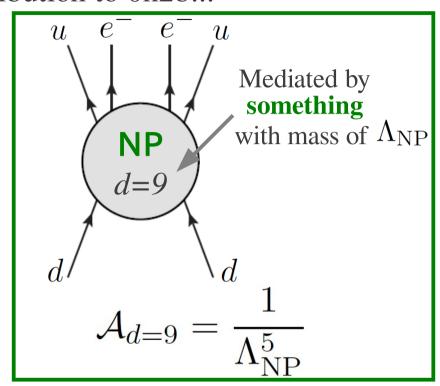
of neutrino in atom 
$$10^{25}~{
m [yr]} < T_{1/2}^{0
u2eta} \propto 1/\left|{\cal A}_{
m S\nu M}\right|^2$$









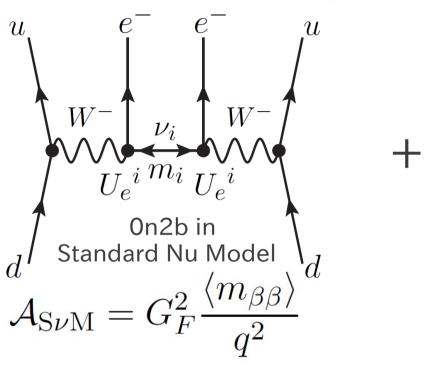


Current exp. limit

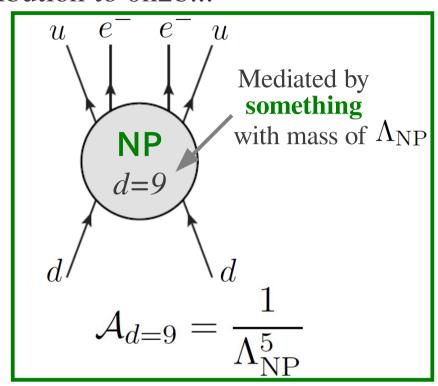
Sensitive to 
$$10^{25}~{
m [yr]} < T_{1/2}^{0\nu2\beta} \propto 1/\left|{\cal A}_{
m S\nu M}\right|^2 ~~\langle m_{\beta\beta} \rangle < 0.3~{
m [eV]}$$





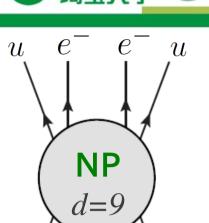






Current exp. limit

Sensitive to 
$$10^{25}~{
m [yr]} < T_{1/2}^{0\nu2\beta} \propto 1/\left|{\cal A}_{
m S\nu M}\right|^2 ~~ \langle m_{\beta\beta}\rangle < 0.3~{
m [eV]}$$
  $\propto 1/\left|{\cal A}_{d=9}\right|^2$ 



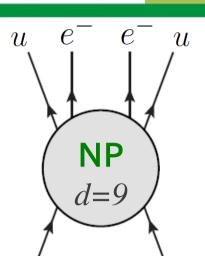







Current exp. limit Sensitive to 
$$10^{25} \ [\mathrm{yr}] < T_{1/2}^{0\nu2\beta} \propto 1/\left|\mathcal{A}_{\mathrm{S}\nu\mathrm{M}}\right|^2 \qquad \langle m_{\beta\beta}\rangle < 0.3 \ [\mathrm{eV}]$$
 
$$\propto 1/\left|\mathcal{A}_{d=9}\right|^2 \qquad \Lambda_{\mathrm{NP}} > \mathcal{O}(1) \ [\mathrm{TeV}]$$

On2b exps are sensitive to not only Majorana neutrino mass but also NP at TeV.




... Talls into the following 3 types of effective ops. 
$$\mathcal{L}_{d=9} = \frac{G_F^2}{2m_P} \left[ \sum_{i=1}^3 \epsilon_i^{\{XY\}Z} (\mathcal{O}_i)_{\{XY\}Z} + \sum_{i=5}^4 \epsilon_i^{XY} (\mathcal{O}_i)_{XY} \right],$$

$$(\mathcal{O}_1) \equiv J_X J_Y j_Z, \quad (\mathcal{O}_4) \equiv (J_X)^{\mu\nu} (J_Y)_{\mu} (j)_{\nu}, \quad J_X = \overline{u} \Gamma P_X d$$

$$(\mathcal{O}_2) \equiv (J_X)^{\mu\nu} (J_Y)_{\mu\nu} j_Z, (\mathcal{O}_5) \equiv J_X (J_Y)_{\mu} (j)_{\mu} \quad j_X = \overline{e} \Gamma P_X e^c$$

$$(\mathcal{O}_3) \equiv (J_X)^{\mu} (J_Y)_{\mu} j_Z,$$



$$\mathcal{L}_{d=9} = \frac{G_F^2}{2m_P} \left[ \sum_{i=1}^3 \epsilon_i^{\{XY\}Z} (\mathcal{O}_i)_{\{XY\}Z} + \sum_{i=5}^4 \epsilon_i^{XY} (\mathcal{O}_i)_{XY} \right],$$

$$(\mathcal{O}_1) \equiv J_X J_Y j_Z, \qquad (\mathcal{O}_4) \equiv (J_X)^{\mu\nu} (J_Y)_{\mu} (j)_{\nu}, \quad J_X = \overline{u} \Gamma P_X d$$

$$(\mathcal{O}_2) \equiv (J_X)^{\mu\nu} (J_Y)_{\mu\nu} j_Z, (\mathcal{O}_5) \equiv J_X (J_Y)_{\mu} (j)_{\mu} \quad j_X = \overline{e} \Gamma P_X e^c$$

$$(\mathcal{O}_3) \equiv (J_X)^{\mu} (J_Y)_{\mu} j_Z,$$

Nice (&compact) Formula to calculate the half-life time: Paes et al. PLB498 (2001) 35

$$\left(T_{1/2}^{0\nu2\beta}\right)_{\underline{d=9}}^{-1} = G_1 \left| \sum_{i=1}^{3} \epsilon_i \mathcal{M}_i \right|^2 + G_2 \left| \sum_{i=4}^{5} \epsilon_i \mathcal{M}_i \right|^2 + G_3 \operatorname{Re} \left[ \left( \sum_{i=1}^{3} \epsilon_i \mathcal{M}_i \right) \left( \sum_{i=4}^{5} \epsilon_i \mathcal{M}_i \right)^* \right]$$

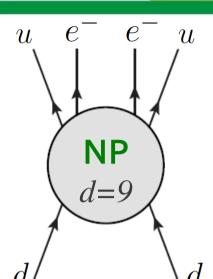
$$\left( T_{1/2}^{0\nu2\beta} \right)_{S\nu M}^{-1} = G_1 \left| \frac{\langle m_{\beta\beta} \rangle}{m_e} \left[ \mathcal{M}_{GT} - \frac{g_V^2}{g_A^2} \mathcal{M}_{F} \right] \right|^2$$

 $\mathcal{M}_i$  Nuclear matrix elements  $G_i$  Phase space factors



$$\begin{cases}
\mathcal{L}_{d=9} = \frac{G_F^2}{2m_P} \left[ \sum_{i=1}^3 \epsilon_i^{\{XY\}Z} (\mathcal{O}_i)_{\{XY\}Z} + \sum_{i=5}^4 \epsilon_i^{XY} (\mathcal{O}_i)_{XY} \right], \\
(\mathcal{O}_1) \equiv J_X J_Y j_Z, \quad (\mathcal{O}_4) \equiv (J_X)^{\mu\nu} (J_Y)_{\mu} (j)_{\nu}, \quad J_X = \overline{u} \Gamma P_X d \\
(\mathcal{O}_2) \equiv (J_X)^{\mu\nu} (J_Y)_{\mu\nu} j_Z, (\mathcal{O}_5) \equiv J_X (J_Y)_{\mu} (j)_{\mu} \quad j_X = \overline{e} \Gamma P_X e^c \\
d \quad (\mathcal{O}_3) \equiv (J_X)^{\mu} (J_Y)_{\mu} j_Z,
\end{cases}$$

Nice (&compact) Formula to calculate the half-life time: Paes et al. PLB498 (2001) 35


$$\left(T_{1/2}^{0\nu2\beta}\right)_{\underline{d=9}}^{-1} = G_1 \left| \sum_{i=1}^{3} \epsilon_i \mathcal{M}_i \right|^2 + G_2 \left| \sum_{i=4}^{5} \epsilon_i \mathcal{M}_i \right|^2 + G_3 \operatorname{Re} \left[ \left( \sum_{i=1}^{3} \epsilon_i \mathcal{M}_i \right) \left( \sum_{i=4}^{5} \epsilon_i \mathcal{M}_i \right)^* \right]$$

$$\left(T_{1/2}^{0\nu2\beta}\right)_{\text{S}\nu\text{M}}^{-1} = G_1 \left| \frac{\langle m_{\beta\beta} \rangle}{m_e} \left[ \mathcal{M}_{\text{GT}} - \frac{g_V^2}{g_A^2} \mathcal{M}_{\text{F}} \right] \right|^2$$

$$\mathcal{M}_i \text{ Nuclear matrix elements}$$

$$G_i \text{ Phase space factors}$$

Q: What is the high E (TeV) origin of these d=9 effective ops? d=9 ops.



$$\mathcal{L}_{d=9} = \frac{G_F^2}{2m_P} \left[ \sum_{i=1}^3 \epsilon_i^{\{XY\}Z} (\mathcal{O}_i)_{\{XY\}Z} + \sum_{i=5}^4 \epsilon_i^{XY} (\mathcal{O}_i)_{XY} \right],$$

$$(\mathcal{O}_1) \equiv J_X J_Y j_Z, \quad (\mathcal{O}_4) \equiv (J_X)^{\mu\nu} (J_Y)_{\mu} (j)_{\nu}, \quad J_X = \overline{u} \Gamma P_X d$$

$$(\mathcal{O}_2) \equiv (J_X)^{\mu\nu} (J_Y)_{\mu\nu} j_Z, (\mathcal{O}_5) \equiv J_X (J_Y)_{\mu} (j)_{\mu} \quad j_X = \overline{e} \Gamma P_X e^c$$

$$(\mathcal{O}_3) \equiv (J_X)^{\mu} (J_Y)_{\mu} j_Z,$$

Nice (&compact) Formula to calculate the half-life time: Paes et al. PLB498 (2001) 35

$$\left(T_{1/2}^{0\nu2\beta}\right)_{\underline{d=9}}^{-1} = G_1 \left| \sum_{i=1}^{3} \epsilon_i \mathcal{M}_i \right|^2 + G_2 \left| \sum_{i=4}^{5} \epsilon_i \mathcal{M}_i \right|^2 + G_3 \operatorname{Re} \left[ \left( \sum_{i=1}^{3} \epsilon_i \mathcal{M}_i \right) \left( \sum_{i=4}^{5} \epsilon_i \mathcal{M}_i \right)^* \right]$$

$$\left(T_{1/2}^{0\nu2\beta}\right)_{\text{S}\nu\text{M}}^{-1} = G_1 \left| \frac{\langle m_{\beta\beta} \rangle}{m_e} \left[ \mathcal{M}_{\text{GT}} - \frac{g_V^2}{g_A^2} \mathcal{M}_{\text{F}} \right] \right|^2$$

$$\mathcal{M}_i \text{ Nuclear matrix elements}$$

$$G_i \text{ Phase space factors}$$

Q: What is the high E (TeV) origin of these d=9 effective ops?

d=9 ops. bottom-up List high E (TeV) completions  $\rightarrow$  complementarity with LHC



#### Outline

New Physics (d=9) contributions in neutrinoless double beta decay (0n2b)

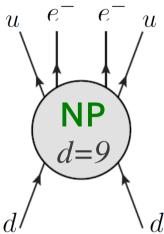
Motivation: Why On2b? Why dim=9 ops?

d=9 ops  $\rightarrow$  half-life time of 0n2b processes "How sensitive 0n2b experiments to the d=9 ops?"

What do the d=9 ops suggest to TeV scale physics?

d=9 ops  $\rightarrow$  decompose them to the fundamental ints.

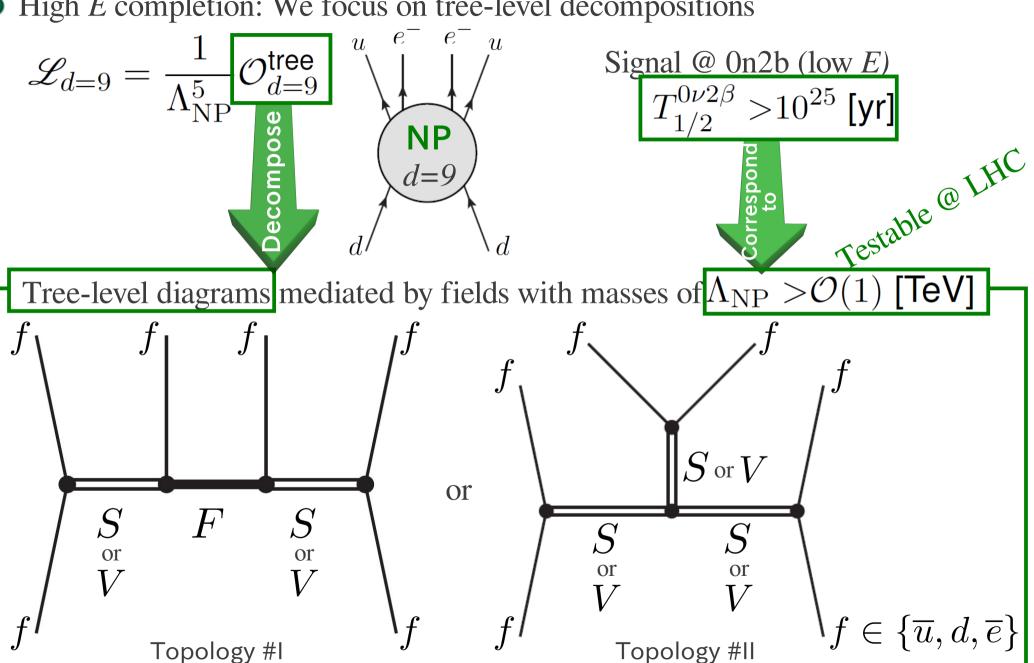
→ list the TeV signatures of each completion


"The list helps us to discriminate the models"

3 Seeking a relation to the models at the TeV scale

TeV scale models with LNV  $\rightarrow$  *Models for radiative neutrino masses* 

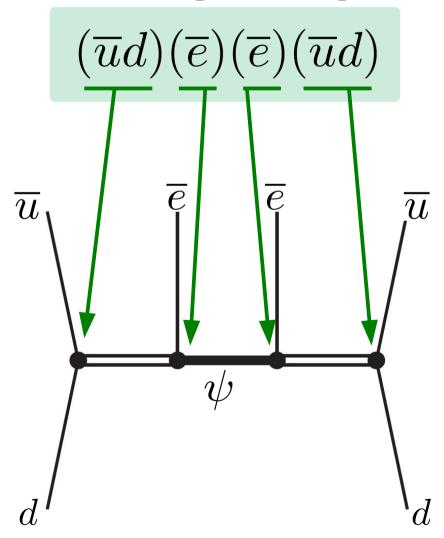
• High *E* completion: We focus on tree-level decompositions


$$\mathscr{L}_{d=9} = rac{1}{\Lambda_{\mathrm{NP}}^{5}} \mathcal{O}_{d=9}^{\mathsf{tree}}$$



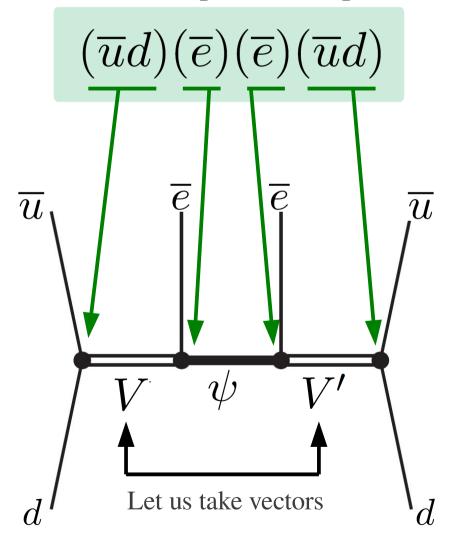
Signal @ 0n2b (low 
$$E$$
)  $T_{1/2}^{0\nu2\beta} > 10^{25} \text{ [yr]}$ 




High E completion: We focus on tree-level decompositions





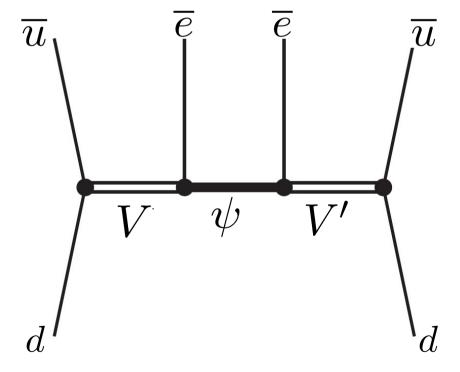



Taking Topology #I let us decompose d=9 op as





Taking Topology #I let us decompose d=9 op as








Taking Topology #I let us decompose d=9 op as

$$(\overline{u}d)(\overline{e})(\overline{e})(\overline{u}d)$$



Necessary mediators

$$V(+1,\mathbf{1}) \ V'(-1,\mathbf{1}) \ \psi(0,\mathbf{1})$$


where  $(U(1)_{em}, SU(3)_{c})$ 





Taking Topology #I let us decompose d=9 op as

$$(\overline{u}d)(\overline{e})(\overline{e})(\overline{u}d)$$



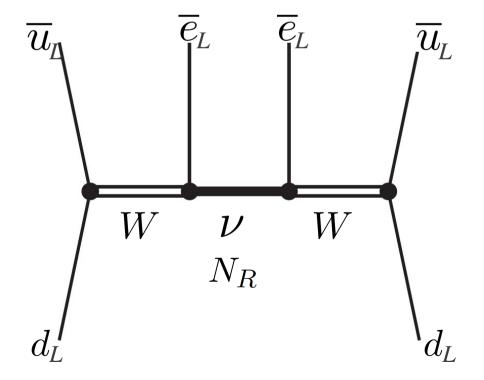
Necessary mediators

$$V(+1,\mathbf{1}) \hspace{0.5cm} W^+ \ V'(-1,\mathbf{1}) \hspace{0.5cm} W^- \ \psi(0,\mathbf{1}) \hspace{0.5cm} \mathcal{V}$$

where  $(U(1)_{em}, SU(3)_{c})$ 

# Rediscovery of the standard neutrino mass contribution

All the outer fermions must be left-handed






An example,

Taking Topology #I let us decompose d=9 op as

$$(\overline{u}d)(\overline{e})(\overline{e})(\overline{u}d)$$



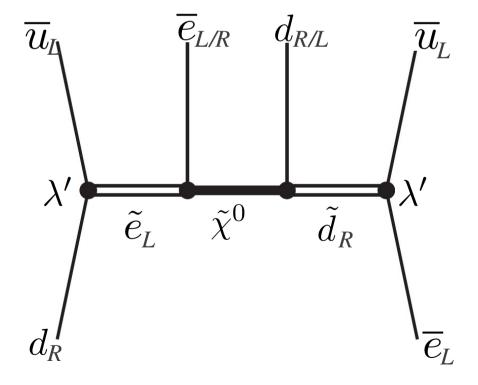
Necessary mediators

$$V(+1,{f 1}) \hspace{0.5cm} W^+ \ V'(-1,{f 1}) \hspace{0.5cm} W^- \ \psi(0,{f 1}) \hspace{0.5cm} {m 
u} \hspace{0.5cm} N_R$$

where  $(U(1)_{em}, SU(3)_c)$ 

#### Rediscovery of the standard neutrino mass contribution

All the outer fermions must be left-handed


In Seesaw model, right handed neutrinos can also mediate this diagram. Talk by Lopez-Pavon



Another example,

Decomposition

$$(\overline{u}d)(\overline{e})(d)(\overline{u}\overline{e})$$



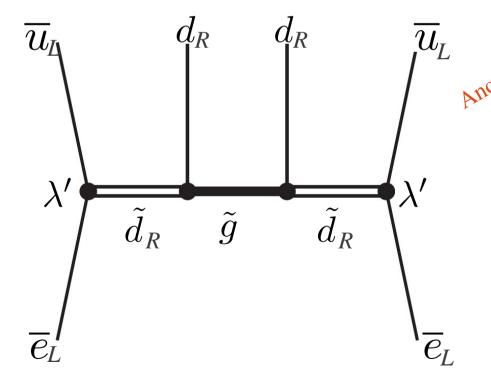
Necessary mediators

$$S(1, \mathbf{1})$$
  $\tilde{e}^*$   $S'(+1/3, \overline{\mathbf{3}})$   $\tilde{d}^*$   $\psi(0, \mathbf{1})$   $\tilde{\chi}^0$ 

where  $(U(1)_{em}, SU(3)_{c})$ 

R-parity violating SUSY models  $\mathscr{W}_{\cancel{R}}\ni \lambda'\hat{L}\hat{Q}\hat{D}^c$ 

Hirsch Klapdor-Kleingrothaus Kovalenko, PLB378 (1996) 17, PRD54 (1996) 4207


SUSY (Rp-conserved) search at LHC 1<sup>st</sup> generation squarks and gluino should be heavier than 1TeV



Another example,

#### Decomposition

$$(\overline{ue})(d)(d)(\overline{ue})$$



Necessary mediators

$$S(-1/3, \mathbf{3})$$
  $\tilde{d}$   
 $S'(+1/3, \overline{\mathbf{3}})$   $\tilde{d}^*$   
 $\psi(0, \mathbf{8})$   $\tilde{g}$ 

where  $(U(1)_{em}, SU(3)_{c})$ 

R-parity violating SUSY models  $\mathscr{W}_{\cancel{R}}\ni \lambda'\hat{L}\hat{Q}\hat{D}^c$ 

Hirsch Klapdor-Kleingrothaus Kovalenko, PLB378 (1996) 17, PRD54 (1996) 4207

SUSY (Rp-conserved) search at LHC 1<sup>st</sup> generation squarks and gluino should be heavier than 1TeV





#### List of high *E* completions

| _       |                                             | $SU(3)_c$ )            | or $(U(1)_{em}, I$               | Mediate                           | Long |                                          |         |
|---------|---------------------------------------------|------------------------|----------------------------------|-----------------------------------|------|------------------------------------------|---------|
| _       | Models/Refs./Comments                       | S' or $V'$             | 1/2                              | S or $V$                          |      | Decomposition                            | #       |
| Sn      | Mass mechan., RPV [58-60],                  | (-1,1)                 | (0, 1)                           | (+1,1)                            | (a)  | $(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$ | 1-i     |
| J       | LR-symmetric models [39],                   |                        |                                  |                                   |      |                                          |         |
| Se      | Mass mechanism with $\nu_S$ [61             |                        |                                  |                                   |      |                                          |         |
|         | TeV scale seesaw, e.g., [62, 63             |                        |                                  |                                   |      |                                          |         |
| 4       | [04]                                        | (-1,8)                 | (0, 8)                           | (+1,8)                            |      |                                          |         |
|         |                                             | (+2, 1)                | (+5/3, 3)                        | (+1, 1)                           |      | $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$ | 1-ii-a  |
|         |                                             | (+2, 1)                | (+5/3, 3)                        | (+1, 8)                           |      |                                          |         |
|         |                                             | (+2, 1)                | (+4/3, 3)                        | (+1, 1)                           |      | $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$ | 1-ii-b  |
| _       |                                             | (+2,1)                 | (+4/3, 3)                        | (+1,8)                            |      | (- P/ P/-)/                              |         |
|         |                                             | (+1/3, 3)              | (+4/3, 3)                        | (+1, 1)                           |      | $(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$ | 2-i-a   |
|         | DD11 (80, 00), 10, (08, 00)                 | (+1/3, 3)              | (+4/3, 3)                        | (+1,8)                            | 0.5  | (= D (=) ( D (==)                        | 0.11    |
| RP      | RPV [58–60], LQ [65, 66]                    | $(+1/3, \overline{3})$ | (0, 1)                           | (+1,1)                            | (b)  | $(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$ | 2-i-b   |
| ILL     |                                             | (+1/3, 3)              | (0, 8)                           | (+1,8)                            |      | (=4)(=)(=)(4=)                           | 0.00    |
|         |                                             | (+2/3, <b>3</b> )      | (+5/3, <b>3</b> )                | (+1,1)                            |      | $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$ | 2-ii-a  |
|         | DDV [ES e0] LO [et ee]                      | (+2/3, 3)              | (+5/3, <b>3</b> )                | (+1,8)                            | (1.) | (=J\(=\(-\)/J=\                          | 9 :: 1- |
|         | RPV [58–60], LQ [65, 66]                    | (+2/3, 3)              | (0, 1)                           | (+1, <b>1</b> )                   | (b)  | $(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$ | 2-ii-b  |
|         | RPV [58-60]                                 | (+2/3, 3)<br>(+1/3, 3) | (0, <b>8</b> )<br>(0, <b>1</b> ) | (+1, 8)<br>$(-2/3, \overline{3})$ | (c)  | $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$ | 2-iii-a |
|         | RPV [58–60]                                 | (+1/3, 3)<br>(+1/3, 3) | (0, 1)                           | (-2/3, 3)<br>(-2/3, 3)            | (c)  | (ae)(u)(u)(ue)                           | 2-111-a |
|         | KI V [38-00]                                | (+1/3, 3)<br>(+1/3, 3) | (0, 3) $(-1/3, 3)$               | (-2/3, 3)<br>(-2/3, 3)            |      | $(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$ | 2-iii-b |
|         |                                             | $(+1/3, \overline{3})$ | $(-1/3, \overline{\bf 6})$       | $(-2/3, \overline{3})$            |      | (ac)(a)(a)(ac)                           | 2-111-0 |
| _       | only with $V_{\rho}$ and $V'_{\rho}$        | (-2/3, 3)              | $(+1/3, \overline{3})$           | $(+4/3, \overline{3})$            |      | $(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$ | 3-i     |
|         | only with v <sub>p</sub> and v <sub>p</sub> | (-2/3, 6)              | (+1/3, 6)                        | (+4/3, 6)                         |      | (44)(0)(0)(44)                           | 3-1     |
|         | only with $V_{\rho}$                        | (+2,1)                 | (+5/3, 3)                        | $(+4/3, \overline{3})$            |      | $(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$ | 3-ii    |
|         | οιι, ποι τρ                                 | (+2,1)                 | (+5/3, 3)                        | (+4/3, 6)                         |      | (44)(4)(4)                               | 0 11    |
|         | only with $V_{\rho}$                        | (+2, 1)                | (+4/3, 3)                        | (+2/3, 3)                         |      | $(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$ | 3-iii   |
|         | y                                           | (+2, 1)                | (+4/3, 3)                        | $(+2/3, \overline{6})$            |      | (/(-/(-/                                 |         |
| _       | RPV [58-60]                                 | (+2/3, <b>3</b> )      | (0, 1)                           | (-2/3, 3)                         | (c)  | $(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$ | 4-i     |
|         | RPV [58–60]                                 | (+2/3, 3)              | (0, 8)                           | (-2/3, 3)                         | (-)  | (/(-/(-/                                 |         |
|         | only with $V_{\rho}$                        | (+2/3, 3)              | (+5/3, 3)                        | (+4/3, 3)                         |      | $(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$ | 4-ii-a  |
|         | see Sec. 4 (this work)                      | (+2/3, 3)              | (+5/3, 3)                        | (+4/3, 6)                         |      |                                          |         |
|         | only with $V_{\rho}$                        | (+2/3, 3)              | $(+1/3, \overline{3})$           | (+4/3, 3)                         |      | $(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$ | 4-ii-b  |
| _       |                                             | (+2/3, 3)              | (+1/3, 6)                        | (+4/3, 6)                         |      | . ,,,,,,,                                |         |
| $L_{D}$ | RPV [58–60]                                 | (+1/3, 3)              | (0, 1)                           | (-1/3, 3)                         | (c)  | $(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$ | 5-i     |
| JRP     | RPV [58-60]                                 | (+1/3, 3)              | (0, 8)                           | (-1/3, 3)                         |      |                                          |         |
| _       | only with $V'_{\rho}$                       | (-2/3, 3)              | $(+1/3, \overline{3})$           | (-1/3, 3)                         |      | $(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$ | 5-ii-a  |
|         | -                                           | (-2/3, 6)              | (+1/3, 6)                        | (-1/3, 3)                         |      |                                          |         |
|         | only with $V'_{\rho}$                       | (-2/3, 3)              | (-4/3, 3)                        | (-1/3, 3)                         |      | $(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$ | 5-ii-b  |
|         | •                                           | (-2/3, 6)              | (-4/3, 3)                        | (-1/3, 3)                         |      |                                          |         |

Possible decompositions and eesaw Necessary mediators

(only Topology #I)

4 possibilities for each decom.

S-F-S, V-F-V, S-F-V, and V-F-S

- Mediators are specified with
   U(1) EM charge
   SU(3) colour charge
- Here, we do not specify the chiralities of outer fermions  $(SU(2)_I)$  and  $U(1)_Y$ 
  - → Decom of chirality-specified ops
    Bonnet Hirsch O Winter 1212.3045

**L**ong Range?

Decomposition which can contain neutrino propagation





#### List of high *E* completions

|          |                                          | Long   | Mediat                            | or $(U(1)_{em})$                 | $SU(3)_c$              |                                      |
|----------|------------------------------------------|--------|-----------------------------------|----------------------------------|------------------------|--------------------------------------|
| #        | Decomposition                            | Range? | S or $V_{\rho}$                   | $\psi$                           | $S'$ or $V'_{\rho}$    | Models/Refs./Comments                |
| 1-i      | $(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$ | (a)    | (+1, 1)                           | (0, 1)                           | (-1, 1)                | Mass mechan., RPV [58–60],           |
|          |                                          |        |                                   |                                  |                        | LR-symmetric models [39],            |
|          |                                          |        |                                   |                                  |                        | Mass mechanism with $\nu_S$ [61],    |
|          |                                          |        |                                   |                                  |                        | TeV scale seesaw, e.g., [62, 63]     |
|          |                                          |        | (+1, 8)                           | (0, 8)                           | (-1, 8)                | [64]                                 |
| 1-ii-a   | $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$ |        | (+1, 1)                           | (+5/3, 3)                        | (+2, 1)                |                                      |
|          |                                          |        | (+1, 8)                           | (+5/3, 3)                        | (+2, 1)                |                                      |
| 1-ii-b   | $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$ |        | (+1, 1)                           | (+4/3, 3)                        | (+2, 1)                |                                      |
|          |                                          |        | (+1, 8)                           | (+4/3, 3)                        | (+2, 1)                |                                      |
| 2-i-a    | $(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$ |        | (+1, 1)                           | (+4/3, 3)                        | (+1/3, 3)              |                                      |
|          | (                                        |        | (+1, 8)                           | (+4/3, 3)                        | (+1/3, 3)              |                                      |
| 2-i-b    | $(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$ | (b)    | (+1, 1)                           | (0, 1)                           | (+1/3, 3)              | RPV [58–60], LQ [65,66]              |
| 0."      | /= 1\/=\/-\/ !=\                         |        | (+1, 8)                           | (0,8)                            | $(+1/3, \overline{3})$ |                                      |
| 2-ii-a   | $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$ |        | (+1, <b>1</b> )                   | (+5/3, 3)                        | (+2/3, 3)              |                                      |
| 0 :: 1   | /=J\/=\/=\/J=\                           | (1-)   | (+1,8)                            | (+5/3, <b>3</b> )                | (+2/3, 3)              | DDV (to eo) LO (et ee)               |
| 2-ii-b   | $(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$ | (b)    | (+1, <b>1</b> )                   | (0, 1)                           | (+2/3, 3)              | RPV [58–60], LQ [65, 66]             |
| 2-iii-a  | (da)(a)(d)(aa)                           | (a)    | (+1, 8)<br>$(-2/3, \overline{3})$ | (0, <b>8</b> )<br>(0, <b>1</b> ) | (+2/3, 3)<br>(+1/3, 3) | RPV [58-60]                          |
| 2-111-a  | $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$ | (c)    | (-2/3, 3)<br>(-2/3, 3)            | (0, 1)                           | (+1/3, 3)<br>(+1/3, 3) | RPV [58–60]<br>RPV [58–60]           |
| 2-iii-b  | $(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$ |        | (-2/3, 3)<br>(-2/3, 3)            | (-1/3, 3)                        | (+1/3, 3) $(+1/3, 3)$  | III V [56-00]                        |
| 2-111-17 | (ac)(a)(a)(ac)                           |        | $(-2/3, \overline{3})$            | $(-1/3, \overline{6})$           | $(+1/3, \overline{3})$ |                                      |
| 3-i      | $(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$ |        | $(+4/3, \overline{3})$            | $(+1/3, \overline{3})$           | (-2/3, 3)              | only with $V_{\rho}$ and $V'_{\rho}$ |
|          | (44)(5)(5)(44)                           |        | (+4/3, 6)                         | (+1/3, 6)                        | (-2/3, 6)              | οιι, · ρ αιια · ρ                    |
| 3-ii     | $(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$ |        | (+4/3, 3)                         | (+5/3, 3)                        | (+2, 1)                | only with $V_{\rho}$                 |
|          | ()(-)(-)                                 |        | (+4/3, 6)                         | (+5/3, 3)                        | (+2, 1)                | ,                                    |
| 3-iii    | $(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$ |        | (+2/3, 3)                         | (+4/3, 3)                        | (+2, 1)                | only with $V_{\rho}$                 |
|          |                                          |        | $(+2/3, \overline{6})$            | $(+4/3, \overline{3})$           | (+2, 1)                | •                                    |
| 4-i      | $(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$ | (c)    | (-2/3, 3)                         | (0, 1)                           | (+2/3, 3)              | RPV [58–60]                          |
|          |                                          |        | (-2/3, 3)                         | (0, 8)                           | (+2/3, 3)              | RPV [58–60]                          |
| 4-ii-a   | $(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$ |        | (+4/3, 3)                         | (+5/3, 3)                        | (+2/3, 3)              | only with $V_{\rho}$                 |
|          |                                          |        | (+4/3, 6)                         | (+5/3, 3)                        | (+2/3, 3)              | see Sec. 4 (this work)               |
| 4-ii-b   | $(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$ |        | (+4/3, 3)                         | $(+1/3, \overline{3})$           | (+2/3, 3)              | only with $V_{\rho}$                 |
|          |                                          |        | (+4/3, 6)                         | (+1/3, 6)                        | (+2/3, 3)              |                                      |
| 5-i      | $(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$ | (c)    | (-1/3, 3)                         | (0, 1)                           | (+1/3, 3)              | RPV [58–60]                          |
|          | () (-) (-) (-)                           |        | (-1/3, 3)                         | (0,8)                            | (+1/3, 3)              | RPV [58–60]                          |
| 5-ii-a   | $(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$ |        | (-1/3, 3)                         | $(+1/3, \overline{3})$           | (-2/3, 3)              | only with $V'_{\rho}$                |
|          | /> /-> /-> / - ·                         |        | (-1/3, 3)                         | (+1/3, 6)                        | (-2/3, 6)              |                                      |
| 5-ii-b   | $(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$ |        | (-1/3, 3)                         | (-4/3, 3)                        | (-2/3, 3)              | only with $V'_{\rho}$                |
|          |                                          |        | (-1/3, 3)                         | (-4/3, 3)                        | (-2/3, 6)              |                                      |

# Possible decompositions and Necessary mediators

(only Topology #I)

- 4 possibilities for each decom. S-F-S, V-F-V, S-F-V, and V-F-S
- Mediators are specified with
   U(1) EM charge
   SU(3) colour charge
- Here, we do not specify the chiralities of outer fermions  $(SU(2)_I)$  and  $U(1)_Y$ 
  - → Decom of chirality-specified ops Bonnet Hirsch O Winter 1212.3045
- Long Range?
   Decomposition which can contain neutrino propagation





#### List of high *E* completions

|         | T.                                       |        |                                     |                        |                                     |                                                |
|---------|------------------------------------------|--------|-------------------------------------|------------------------|-------------------------------------|------------------------------------------------|
|         |                                          | Long   | Mediat                              | or $(U(1)_{em})$       | $SU(3)_c$                           |                                                |
| #       | Decomposition                            | Range? | S or $V_{\rho}$                     | $\psi$                 | $S'$ or $V'_{\rho}$                 | Models/Refs./Comments                          |
| 1-i     | $(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$ | (a)    | (+1, 1)                             | (0, 1)                 | (-1, 1)                             | Mass mechan., RPV [58–60],                     |
|         |                                          |        |                                     |                        |                                     | LR-symmetric models [39],                      |
|         |                                          |        |                                     |                        |                                     | Mass mechanism with $\nu_S$ [61],              |
|         |                                          |        |                                     |                        |                                     | TeV scale seesaw, e.g., [62,63]                |
|         |                                          |        | (+1, 8)                             | (0, 8)                 | (-1, 8)                             | [64]                                           |
| 1-ii-a  | $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$ |        | (+1, 1)                             | (+5/3, 3)              | (+2, 1)                             |                                                |
|         |                                          |        | (+1, 8)                             | (+5/3, 3)              | (+2, 1)                             |                                                |
| 1-ii-b  | $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$ |        | (+1, 1)                             | (+4/3, 3)              | (+2, 1)                             |                                                |
|         |                                          |        | (+1,8)                              | $(+4/3, \overline{3})$ | (+2,1)                              |                                                |
| 2-i-a   | $(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$ |        | (+1,1)                              | (+4/3, 3)              | (+1/3, 3)                           |                                                |
| 0:1     | (=J\/=\/J\/==\                           | (1.)   | (+1,8)                              | (+4/3, 3)              | $(+1/3, \overline{3})$              | DDV (to eo) LO (er ee)                         |
| 2-i-b   | $(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$ | (b)    | (+1,1)                              | (0, 1)                 | $(+1/3, \overline{3})$              | RPV [58–60], LQ [65, 66]                       |
| 2-ii-a  | $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$ |        | (+1,8)                              | (0,8)                  | $(+1/3, \overline{3})$<br>(+2/3, 3) |                                                |
| 2-11-a  | $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$ |        | (+1, 1)<br>(+1, 8)                  | (+5/3, 3)<br>(+5/3, 3) | (+2/3, 3)<br>(+2/3, 3)              |                                                |
| 2-ii-b  | $(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$ | (b)    | (+1, <b>1</b> )                     | (0, 1)                 | (+2/3, 3) $(+2/3, 3)$               | RPV [58–60], LQ [65, 66]                       |
| 2-11-13 | (44)(c)(4)(4c)                           | (D)    | (+1, 1)                             | (0, 1)                 | (+2/3, 3)                           | 11 7 [55 55], 152 [55,55]                      |
| 2-iii-a | $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$ | (c)    | $(-2/3, \overline{3})$              | (0, 0)                 | $(+1/3, \overline{3})$              | RPV [58–60]                                    |
|         | (/(-/(-/                                 | (-)    | $(-2/3, \overline{3})$              | (0, 8)                 | $(+1/3, \overline{3})$              | RPV [58–60]                                    |
| 2-iii-b | $(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$ |        | (-2/3, 3)                           | (-1/3, 3)              | (+1/3, 3)                           |                                                |
|         |                                          |        | $(-2/3, \overline{3})$              | $(-1/3, \overline{6})$ | $(+1/3, \overline{3})$              |                                                |
| 3-i     | $(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$ |        | (+4/3, 3)                           | (+1/3, 3)              | (-2/3, 3)                           | only with $V_{\rho}$ and $V'_{\rho}$           |
|         |                                          |        | (+4/3, 6)                           | (+1/3, 6)              | (-2/3, 6)                           |                                                |
| 3-ii    | $(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$ |        | (+4/3, 3)                           | (+5/3, 3)              | (+2, 1)                             | only with $V_{\rho}$                           |
|         |                                          |        | (+4/3, 6)                           | (+5/3, 3)              | (+2, 1)                             |                                                |
| 3-iii   | $(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$ |        | (+2/3, 3)                           | (+4/3, 3)              | (+2, 1)                             | only with $V_{\rho}$                           |
|         |                                          |        | $(+2/3, \overline{\bf 6})$          | $(+4/3, \overline{3})$ | (+2,1)                              |                                                |
| 4-i     | $(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$ | (c)    | (-2/3, 3)                           | (0, 1)                 | (+2/3, 3)                           | RPV [58–60]                                    |
| 4-ii-a  | (==\/J\/=\/J=\                           |        | $(-2/3, \overline{3})$              | (0,8)                  | (+2/3, 3)                           | RPV [58–60]                                    |
| 4-11-a  | $(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$ |        | $(+4/3, \overline{3})$<br>(+4/3, 6) | (+5/3, 3)<br>(+5/3, 3) | (+2/3, 3)<br>(+2/3, 3)              | only with $V_{\rho}$<br>see Sec. 4 (this work) |
| 4-ii-b  | $(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$ |        | $(+4/3, \overline{3})$              | $(+1/3, \overline{3})$ | (+2/3, 3)<br>(+2/3, 3)              | only with $V_{\rho}$                           |
| 4-11-1) | (aa)(c)(a)(ac)                           |        | (+4/3, 6)                           | (+1/3, 6)              | (+2/3, 3) $(+2/3, 3)$               | only with Vp                                   |
| 5-i     | $(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$ | (c)    | (-1/3, 3)                           | (0,1)                  | (+1/3, 3)                           | RPV [58–60]                                    |
|         | (/(-/(-/(/                               | (-)    | (-1/3, 3)                           | (0, 8)                 | $(+1/3, \overline{3})$              | RPV [58–60]                                    |
| 5-ii-a  | $(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$ |        | (-1/3, 3)                           | $(+1/3, \overline{3})$ | (-2/3, 3)                           | only with $V'_{\rho}$                          |
|         |                                          |        | (-1/3, 3)                           | (+1/3, 6)              | (-2/3, 6)                           | - <b>"</b>                                     |
| 5-ii-b  | $(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$ |        | (-1/3, 3)                           | (-4/3, 3)              | (-2/3, 3)                           | only with $V'_{\rho}$                          |
|         |                                          |        | (-1/3, 3)                           | (-4/3, 3)              | (-2/3, 6)                           | - "                                            |
|         |                                          |        |                                     |                        |                                     |                                                |

# Possible decompositions and Necessary mediators

(only Topology #I)

- 4 possibilities for each decom. S-F-S, V-F-V, S-F-V, and V-F-S
- Mediators are specified with
   U(1) EM charge
   SU(3) colour charge
- Here, we do not specify the chiralities of outer fermions  $(SU(2)_I)$  and  $U(1)_Y$ 
  - → Decom of chirality-specified ops Bonnet Hirsch O Winter 1212.3045
- Long Range?
   Decomposition which can contain neutrino propagation





#### List of high E completions

|         |                                          | Long   | Mediat                                      | or $(U(1)_{em})$                                 | $SU(3)_c$ )                                      |                                       |
|---------|------------------------------------------|--------|---------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------|
| #       | Decomposition                            | Range? | S or $V_{\rho}$                             | 7/2                                              | $S'$ or $V'_{\rho}$                              | Models/Refs./Comments                 |
| 1-i     | $(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$ | (a)    | (+1, 1)                                     | (0, 1)                                           | (-1, 1)                                          | Mass mechan., RPV [58–60],            |
|         |                                          |        |                                             |                                                  |                                                  | LR-symmetric models [39],             |
|         |                                          |        |                                             |                                                  |                                                  | Mass mechanism with $\nu_S$ [61],     |
|         |                                          |        |                                             |                                                  |                                                  | TeV scale seesaw, e.g., [62, 63]      |
|         |                                          |        | (+1, 8)                                     | (0, 8)                                           | (-1, 8)                                          | [64]                                  |
| 1-ii-a  | $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$ |        | (+1, 1)                                     | (+5/3, 3)                                        | (+2, 1)                                          |                                       |
|         |                                          |        | (+1, 8)                                     | (+5/3, 3)                                        | (+2, 1)                                          |                                       |
| 1-ii-b  | $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$ |        | (+1, 1)                                     | (+4/3, 3)                                        | (+2, 1)                                          |                                       |
|         |                                          |        | (+1, 8)                                     | $(+4/3, \overline{3})$                           | (+2, 1)                                          |                                       |
| 2-i-a   | $(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$ |        | (+1, 1)                                     | (+4/3, 3)                                        | (+1/3, 3)                                        |                                       |
|         |                                          |        | (+1, 8)                                     | $(\pm 4/3, 3)$                                   | (+1/3, 3)                                        |                                       |
| 2-i-b   | $(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$ | (b)    | (+1, 1)                                     | (0, 1)                                           | $(+1/3, \overline{3})$                           | RPV [58–60], LQ [65, 66]              |
|         |                                          |        | (+1, 8)                                     | (0, 8)                                           | (+1/3, 3)                                        |                                       |
| 2-ii-a  | $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$ |        | (+1, 1)                                     | (+5/3, 3)                                        | (+2/3, 3)                                        |                                       |
|         | (- P.(-)(-)(-)                           | (1)    | (+1, 8)                                     | $(\pm 5/3, 3)$                                   | (+2/3, 3)                                        | DDITES OF TO SEE OF                   |
| 2-ii-b  | $(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$ | (b)    | (+1, 1)                                     | (0, 1)                                           | (+2/3, 3)                                        | RPV [58–60], LQ [65, 66]              |
| 0       | ( T-) (-) ( T) ()                        |        | (+1,8)                                      | (0.8)                                            | (+2/3, 3)                                        | DD1 (80, 00)                          |
| 2-iii-a | $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$ | (c)    | $(-2/3, \overline{3})$                      | (0, 1)                                           | $(+1/3, \overline{3})$                           | RPV [58–60]                           |
| 0 ::: 1 | (J=\/J\/=\/==\                           |        | $(-2/3, \overline{3})$                      | (0, 8)                                           | $(+1/3, \overline{3})$                           | RPV [58–60]                           |
| 2-iii-b | $(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$ |        | $(-2/3, \overline{3})$                      | (-1/3, 3)                                        | $(+1/3, \overline{3})$<br>$(+1/3, \overline{3})$ |                                       |
| 3-i     | /::::\/::\/::\/.J.J\                     |        | $(-2/3, \overline{3})$                      | $(-1/3, \overline{6})$<br>$(+1/3, \overline{3})$ | (-2/3, 3)                                        | only with $V_{\rho}$ and $V'_{\rho}$  |
| 9-1     | $(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$ |        | $(+4/3, \overline{3})$<br>(+4/3, <b>6</b> ) | (+1/3, 6)                                        | (-2/3, 6)<br>(-2/3, 6)                           | only with $v_{\rho}$ and $v_{\rho}$   |
| 3-ii    | $(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$ |        | $(+4/3, \frac{6}{3})$                       | (+5/3, 3)                                        | (-2/3, <b>6</b> ) $(+2, 1)$                      | only with $V_{\rho}$                  |
| 0-11    | (uu)(u)(u)(ee)                           |        | (+4/3, 6)                                   | (+5/3, 3) $(+5/3, 3)$                            | (+2, 1)<br>(+2, 1)                               | only with Vp                          |
| 3-iii   | $(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$ |        | (+2/3, 3)                                   | $(+4/3, \overline{3})$                           | (+2, 1) $(+2, 1)$                                | only with $V_{\rho}$                  |
| o-m     | (44)(4)(4)(44)                           |        | $(+2/3, \overline{6})$                      | $(+4/3, \overline{3})$                           | (+2, 1)                                          | only with v <sub>p</sub>              |
| 4-i     | $(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$ | (c)    | (-2/3, 3)                                   | (0, 1)                                           | (+2/3, 3)                                        | RPV [58-60]                           |
|         | (30)(0)(0)                               | (0)    | $(-2/3, \overline{3})$                      | (0, 1)                                           | (+2/3, 3)                                        | RPV [58–60]                           |
| 4-ii-a  | $(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$ |        | $(+4/3, \overline{3})$                      | (+5/3, 3)                                        | (+2/3, 3)                                        | only with $V_{\rho}$                  |
|         | (/(-/(-/                                 |        | (+4/3, 6)                                   | (+5/3, 3)                                        | (+2/3, 3)                                        | see Sec. 4 (this work)                |
| 4-ii-b  | $(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$ |        | $(+4/3, \overline{3})$                      | $(+1/3, \overline{3})$                           | (+2/3, 3)                                        | only with $V_{\rho}$                  |
|         |                                          |        | (+4/3, 6)                                   | (+1/3.6)                                         | (+2/3, 3)                                        | , , , , , , , , , , , , , , , , , , , |
| 5-i     | $(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$ | (c)    | (-1/3, 3)                                   | (0, 1)                                           | (+1/3, 3)                                        | RPV [58–60]                           |
|         |                                          |        | (-1/3, 3)                                   | (0, 8)                                           | $(+1/3, \overline{3})$                           | RPV [58–60]                           |
| 5-ii-a  | $(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$ |        | (-1/3, 3)                                   | (+1/3, 3)                                        | (-2/3, 3)                                        | only with $V'_{\rho}$                 |
|         |                                          |        | (-1/3, 3)                                   | (+1/3, 6)                                        | (-2/3, 6)                                        | •                                     |
| 5-ii-b  | $(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$ |        | (-1/3, 3)                                   | (-4/3, 3)                                        | $(-2/3, \overline{3})$                           | only with $V'_{\rho}$                 |
|         |                                          |        | (-1/3, 3)                                   | (-4/3, 3)                                        | (-2/3, 6)                                        |                                       |
|         |                                          |        |                                             |                                                  |                                                  |                                       |

Possible decompositions and Necessary mediators

(only Topology #I)

- 4 possibilities for each decom. S-F-S, V-F-V, S-F-V, and V-F-S
- Mediators are specified with
   U(1) EM charge
   SU(3) colour charge
- Here, we do not specify the chiralities of outer fermions  $(SU(2)_L \text{ and } U(1)_Y)$ 
  - → Decom of chirality-specified ops Bonnet Hirsch O Winter 1212.3045

• Long Range?

Decomposition which can contain neutrino propagation

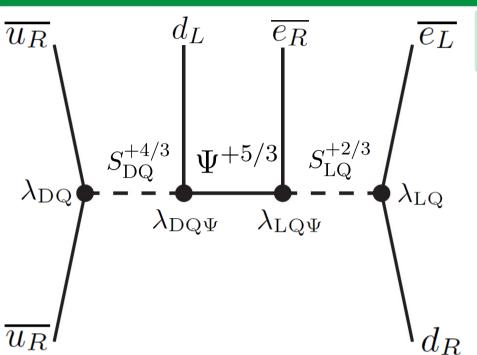




#### List of high *E* completions

| Long Mediator $(U(1)_{em}, SU(3)_c)$<br># Decomposition Range? $S$ or $V_\rho$ $\psi$ $S'$ or $V'_\rho$ Models/Refs./C<br>1-i $(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$ (a) $(+1, 1)$ $(0, 1)$ $(-1, 1)$ Mass mechan.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Comments             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commonto             |
| 1; (\(\bar{u}\)\(\bar{c}\)\(\bar{c}\)\(\bar{u}\)\(\dot\) (a) (b) (11) (01) (11) Mass mechan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Johnneins            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RPV [58–60],         |
| LR-symmetric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
| Mass mechanism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| TeV scale seesa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | w, e.g., [62, 63]    |
| (+1,8) $(0,8)$ $(-1,8)$ $[64]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |
| 1-ii-a $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$ $(+1, 1)$ $(+5/3, 3)$ $(+2, 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
| (+1,8) $(+5/3,3)$ $(+2,1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| 1-ii-b $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$ $(+1, 1)$ $(+4/3, 3)$ $(+2, 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
| $(+1,8)$ $(+4/3,\overline{3})$ $(+2,1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| 2-i-a $(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$ $(+1,1)$ $(+4/3,3)$ $(+1/3,3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| $(+1,8)$ $(+4/3,\overline{3})$ $(+1/3,\overline{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C. [0x 00]           |
| 2-i-b $(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$ (b) $(+1,1)$ $(0,1)$ $(+1/3,\overline{3})$ RPV [58–60], I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q [65, 66]           |
| $(+1,8)$ $(0,8)$ $(+1/3,\overline{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |
| 2-ii-a $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$ (+1,1) (+5/3,3) (+2/3,3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| (+1, 8) $(+5/3, 3)$ $(+2/3, 3)2-ii-b (\bar{u}d)(\bar{e})(\bar{u})(d\bar{e}) (b) (+1, 1) (0, 1) (+2/3, 3) RPV [58–60], L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O [0= 00]            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Q [00,00]            |
| 2-iii-a $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$ (c) $(+1,8)$ $(0,8)$ $(+2/3,3)$ $(0,1)$ $(+1/3,3)$ RPV [58–60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
| 2-III-a $(de)(u)(d)(ue)$ (c) $(-2/3, \overline{3})$ $(0, 1)$ $(+1/3, \overline{3})$ RPV [58-60] $(-2/3, \overline{3})$ $(0, 8)$ $(+1/3, \overline{3})$ RPV [58-60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
| 2-iii-b $(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$ $(-2/3, \overline{3})$ $(0, 8)$ $(+1/3, \overline{3})$ $(1/3, \overline{3})$ $(-1/3, \overline{3})$ $(-1/3, \overline{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| $(-2/3, \overline{3})$ $(-1/3, \overline{6})$ $(+1/3, \overline{3})$ $(-1/3, \overline{6})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd V'                |
| $(+4/3, 6)$ $(+1/3, 6)$ $(-2/3, 6)$ saily with $7_{\rho}$ and $(+4/3, 6)$ $(-2/3, 6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ak a                 |
| 3-ii $(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$ $(+4/3, \overline{3})$ $(+5/3, 3)$ $(+2, 1)$ only with $V_{\rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100 my               |
| (+4/3, <b>6</b> ) $(+5/3, 3)$ $(+2, 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a Rexam              |
| 3-iii $(dd)(\bar{u})(\bar{e}\bar{e})$ $(+2/3,3)$ $(+4/3,3)$ $(+2,1)$ only with $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | this                 |
| $(+2/3, \overline{6})$ $(+4/3, \overline{3})$ $(+2, 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a look<br>this examp |
| 3-i $(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$ $(+4/3, \overline{3})$ $(+1/3, \overline{3})$ $(-2/3, \overline{3})$ only with $V_{\rho}$ and $(+4/3, \overline{6})$ $(+1/3, \overline{6})$ $(-2/3, \overline{6})$ 3-ii $(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$ $(+4/3, \overline{3})$ $(+5/3, \overline{3})$ $(+2, 1)$ only with $V_{\rho}$ $(+4/3, \overline{6})$ $(+5/3, \overline{3})$ $(+2, 1)$ 3-iii $(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$ $(+2/3, \overline{3})$ $(+4/3, \overline{3})$ $(+2, 1)$ only with $V_{\rho}$ $(+2/3, \overline{6})$ $(+4/3, \overline{3})$ $(+2, 1)$ only with $V_{\rho}$ $(+2/3, \overline{6})$ $(+4/3, \overline{3})$ $(+2, 1)$ only with $V_{\rho}$ 4-i $(d\bar{e})(\bar{u})(d\bar{e})$ (c) $(-2/3, \overline{3})$ $(0, 1)$ $(+2/3, 3)$ $(-2/3, \overline{3})$ $(-2/3,$ |                      |
| $(-2/3, \overline{3})$ $(0, 8)$ $(+2/3, 3)$ RPV [58–60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| 4-ii-a $(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$ $(+4/3, 3)$ $(+5/3, 3)$ $(+2/3, 3)$ only with $V_{\rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| (+4/3, 6) $(+5/3, 3)$ $(+2/3, 3)$ see Sec. 4 (this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | work)                |
| 4-II-D $(uu)(e)(a)(ae)$ $(+4/3, 3)$ $(+1/3, 3)$ $(+2/3, 3)$ only with $V_{\rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
| (+4/3, 6) $(+1/3, 6)$ $(+2/3, 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |
| 5-i $(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$ (c) $(-1/3,3)$ $(0,1)$ $(+1/3,3)$ RPV [58–60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| $(-1/3, 3)$ $(0, 8)$ $(+1/3, \overline{3})$ RPV [58–60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |
| 5-ii-a $(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$ $(-1/3, 3)$ $(+1/3, \overline{3})$ $(-2/3, \overline{3})$ only with $V'_{\rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |
| (-1/3, <b>3</b> ) $(+1/3, 6)$ $(-2/3, 6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |
| 5-ii-b $(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$ $(-1/3, 3)$ $(-4/3, 3)$ $(-2/3, \overline{3})$ only with $V'_{\rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
| (-1/3, <b>3</b> ) $(-4/3, 3)$ $(-2/3, 6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |

# Possible decompositions and Necessary mediators


(only Topology #I)

- 4 possibilities for each decom. S-F-S, V-F-V, S-F-V, and V-F-S
- Mediators are specified with
   U(1) EM charge
   SU(3) colour charge
- Here, we do not specify the chiralities of outer fermions  $(SU(2)_L \text{ and } U(1)_Y)$ 
  - → Decom of chirality-specified ops Bonnet Hirsch O Winter 1212.3045

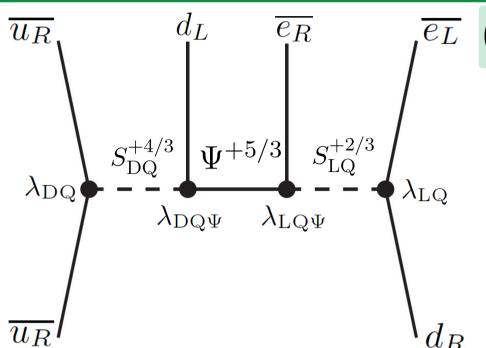
contain neutrino propagation

Long Range?Decomposition which can





$$(\overline{u_R u_R})(Q)(\overline{e_R})(\overline{L}d_R)$$


$$(S_{\mathrm{DQ}}^{+4/3})_{X}$$

$$(S_{\mathrm{LQ}})_{Ii} = \left( (S_{\mathrm{LQ}}^{+2/3})_{I}, (S_{\mathrm{LQ}}^{-1/3})_{I} \right)^{\mathsf{T}}$$

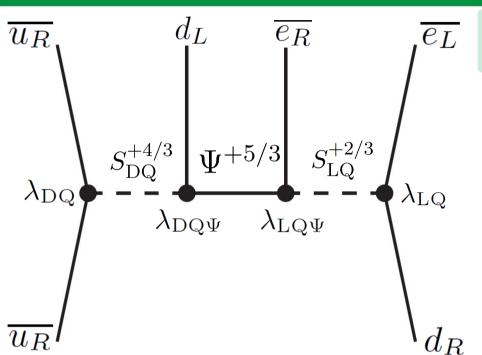
$$(\Psi_{L})_{Iia} = \left( (\Psi_{L}^{+5/3})_{Ia}, (\Psi_{L}^{+2/3})_{Ia}, \right)^{\mathsf{T}}$$
and  $(\Psi_{R})_{Ii}^{\dot{a}}$ 







$$(\overline{u_R u_R})(Q)(\overline{e_R})(\overline{L}d_R)$$


$$(S_{\mathrm{DQ}}^{+4/3})_{X}$$

$$(S_{\mathrm{LQ}})_{Ii} = ((S_{\mathrm{LQ}}^{+2/3})_{I}, (S_{\mathrm{LQ}}^{-1/3})_{I})^{\mathsf{T}}$$

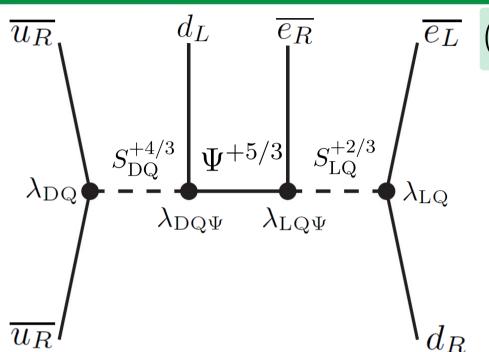
$$(\Psi_{L})_{Iia} = ((\Psi_{L}^{+5/3})_{Ia}, (\Psi_{L}^{+2/3})_{Ia},)^{\mathsf{T}}$$
and  $(\Psi_{R})_{Ii}^{\dot{a}}$ 

$$= \frac{\lambda_{\mathrm{DQ}}\lambda_{\mathrm{DQ}\Psi}\lambda_{\mathrm{LQ}\Psi}\lambda_{\mathrm{LQ}}}{m_{\mathrm{DQ}}^{2}m_{\mathrm{LQ}}^{2}m_{\Psi}} \left[ (\overline{u_{R}})^{I'a} (T_{\overline{\mathbf{6}}})_{I'J'}^{X} (u_{R}^{c})_{a}^{J'} \right] \left[ (\overline{d_{L}^{c}})_{I}^{b} (T_{\mathbf{6}})_{X}^{IJ} (e_{R}^{c})_{b} \right] \left[ (\overline{e_{L}})_{\dot{c}} (d_{R})_{J}^{\dot{c}} \right]$$





$$(\overline{u_R u_R})(Q)(\overline{e_R})(\overline{L}d_R)$$


$$(S_{\mathrm{DQ}}^{+4/3})_{X}$$

$$(S_{\mathrm{LQ}})_{Ii} = \left( (S_{\mathrm{LQ}}^{+2/3})_{I}, (S_{\mathrm{LQ}}^{-1/3})_{I} \right)^{\mathsf{T}}$$

$$(\Psi_{L})_{Iia} = \left( (\Psi_{L}^{+5/3})_{Ia}, (\Psi_{L}^{+2/3})_{Ia}, \right)^{\mathsf{T}}$$
and  $(\Psi_{R})_{Ii}^{\dot{a}}$ 

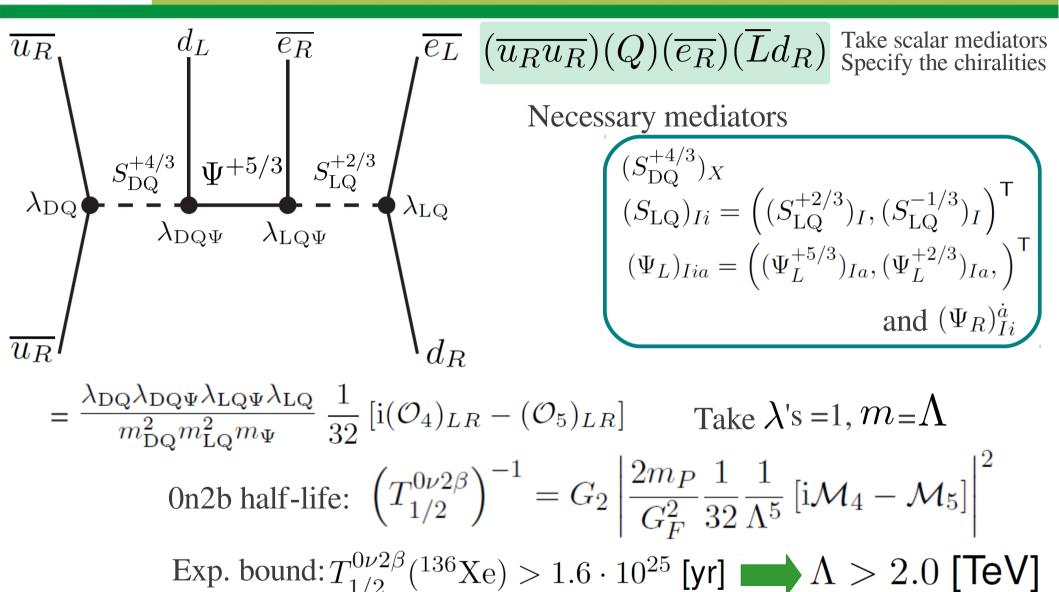
$$= \frac{\lambda_{\mathrm{DQ}}\lambda_{\mathrm{DQ}\Psi}\lambda_{\mathrm{LQ}\Psi}\lambda_{\mathrm{LQ}}}{m_{\mathrm{DQ}}^2 m_{\mathrm{LQ}}^2 m_{\Psi}} \frac{1}{32} \left[ \mathrm{i}(\mathcal{O}_4)_{LR} - (\mathcal{O}_5)_{LR} \right]$$





$$(\overline{u_R u_R})(Q)(\overline{e_R})(\overline{L}d_R)$$

$$(S_{\mathrm{DQ}}^{+4/3})_{X}$$

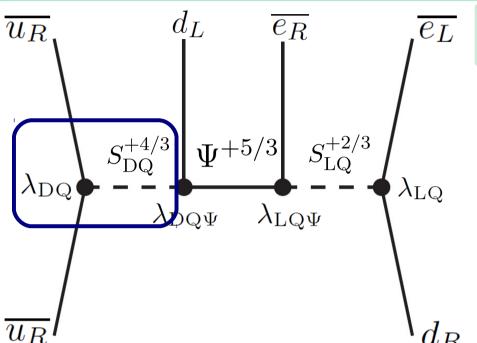

$$(S_{\mathrm{LQ}})_{Ii} = ((S_{\mathrm{LQ}}^{+2/3})_{I}, (S_{\mathrm{LQ}}^{-1/3})_{I})^{\mathsf{T}}$$

$$(\Psi_{L})_{Iia} = ((\Psi_{L}^{+5/3})_{Ia}, (\Psi_{L}^{+2/3})_{Ia},)^{\mathsf{T}}$$
and  $(\Psi_{R})_{Ii}^{\dot{a}}$ 

$$= \frac{\lambda_{\mathrm{DQ}}\lambda_{\mathrm{DQ}\Psi}\lambda_{\mathrm{LQ}\Psi}\lambda_{\mathrm{LQ}}}{m_{\mathrm{DQ}}^{2}m_{\mathrm{LQ}}^{2}m_{\Psi}} \frac{1}{32} \left[ \mathrm{i}(\mathcal{O}_{4})_{LR} - (\mathcal{O}_{5})_{LR} \right] \qquad \text{Take } \lambda \text{'s = 1, } m = \Lambda$$

$$0 \text{n2b half-life: } \left( T_{1/2}^{0\nu2\beta} \right)^{-1} = G_{2} \left| \frac{2m_{P}}{G_{F}^{2}} \frac{1}{32} \frac{1}{\Lambda^{5}} \left[ \mathrm{i}\mathcal{M}_{4} - \mathcal{M}_{5} \right] \right|^{2}$$






Q: What does this model suggest to LHC observables?



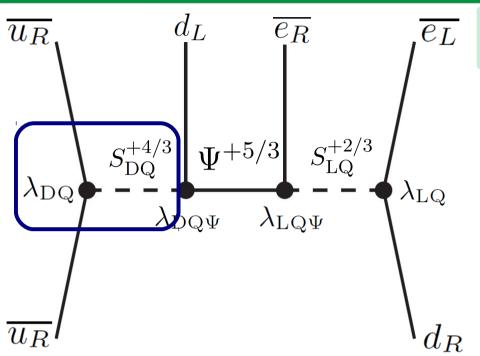






$$(\overline{u_R u_R})(Q)(\overline{e_R})(\overline{L}d_R)$$

Necessary mediators


$$(S_{\mathrm{DQ}}^{+4/3})_{X}$$

$$(S_{\mathrm{LQ}})_{Ii} = ((S_{\mathrm{LQ}}^{+2/3})_{I}, (S_{\mathrm{LQ}}^{-1/3})_{I})^{\mathsf{T}}$$

$$(\Psi_{L})_{Iia} = ((\Psi_{L}^{+5/3})_{Ia}, (\Psi_{L}^{+2/3})_{Ia},)^{\mathsf{T}}$$
and  $(\Psi_{R})_{Ii}^{\dot{a}}$ 

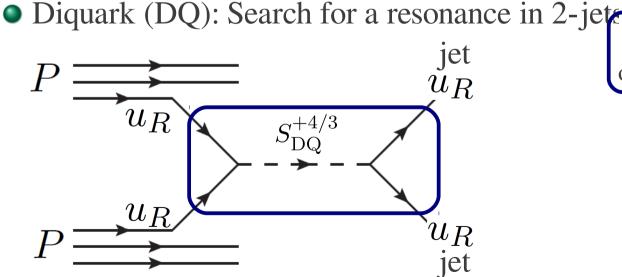
• Diquark (DQ):

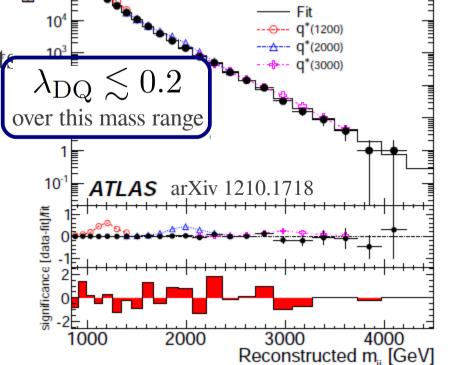




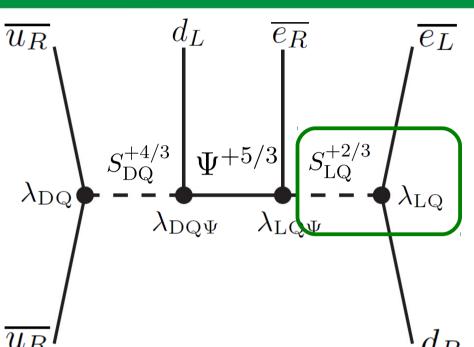
### $(\overline{u_R u_R})(Q)(\overline{e_R})(\overline{L}d_R)$

Take scalar mediators Specify the chiralities


Data


$$(S_{\mathrm{DQ}}^{+4/3})_{X}$$

$$(S_{\mathrm{LQ}})_{Ii} = \left( (S_{\mathrm{LQ}}^{+2/3})_{I}, (S_{\mathrm{LQ}}^{-1/3})_{I} \right)^{\mathsf{T}}$$


$$(\Psi_{L})_{Iia} = \left( (\Psi_{L}^{+5/3})_{Ia}, (\Psi_{L}^{+2/3})_{Ia}, \right)^{\mathsf{T}}$$

$$\sqrt{s} = 7 \text{ TeV, } \left[ L \, dt = 4.8 \text{ fb}^{-1} \right]$$



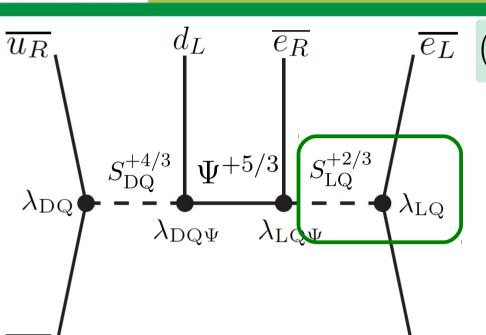






$$(\overline{u_R u_R})(Q)(\overline{e_R})(\overline{L}d_R)$$

Necessary mediators


$$(S_{\mathrm{DQ}}^{+4/3})_{X}$$

$$(S_{\mathrm{LQ}})_{Ii} = ((S_{\mathrm{LQ}}^{+2/3})_{I}, (S_{\mathrm{LQ}}^{-1/3})_{I})^{\mathsf{T}}$$

$$(\Psi_{L})_{Iia} = ((\Psi_{L}^{+5/3})_{Ia}, (\Psi_{L}^{+2/3})_{Ia},)^{\mathsf{T}}$$
and  $(\Psi_{R})_{Ii}^{\dot{a}}$ 

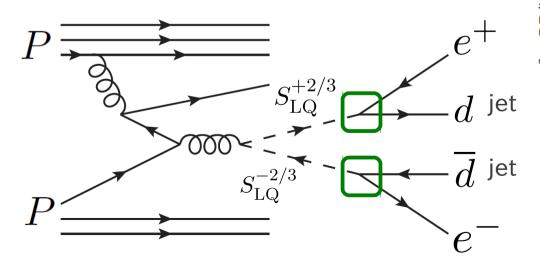
• Leptoquark (LQ):

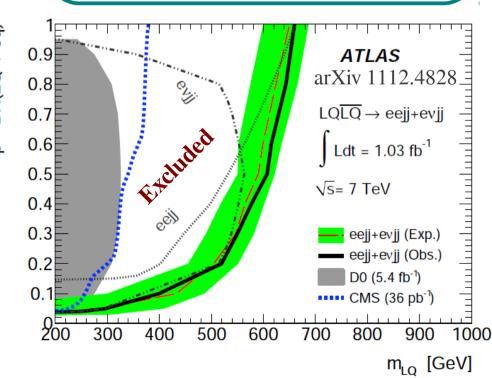




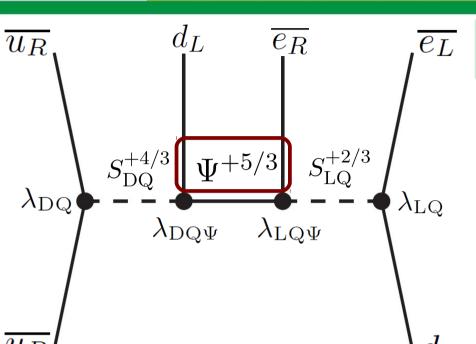
### $(\overline{u_R u_R})(Q)(\overline{e_R})(\overline{L}d_R)$

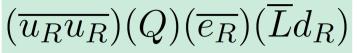
Take scalar mediators Specify the chiralities


Necessary mediators


$$(S_{\mathrm{DQ}}^{+4/3})_{X}$$

$$(S_{\mathrm{LQ}})_{Ii} = ((S_{\mathrm{LQ}}^{+2/3})_{I}, (S_{\mathrm{LQ}}^{-1/3})_{I})^{\mathsf{T}}$$


$$(\Psi_{L})_{Iia} = ((\Psi_{L}^{+5/3})_{Ia}, (\Psi_{L}^{+2/3})_{Ia},)^{\mathsf{T}}$$
and  $(\Psi_{R})_{Ii}^{\dot{a}}$ 


• Leptoquark (LQ): Search for a (eq)-pair



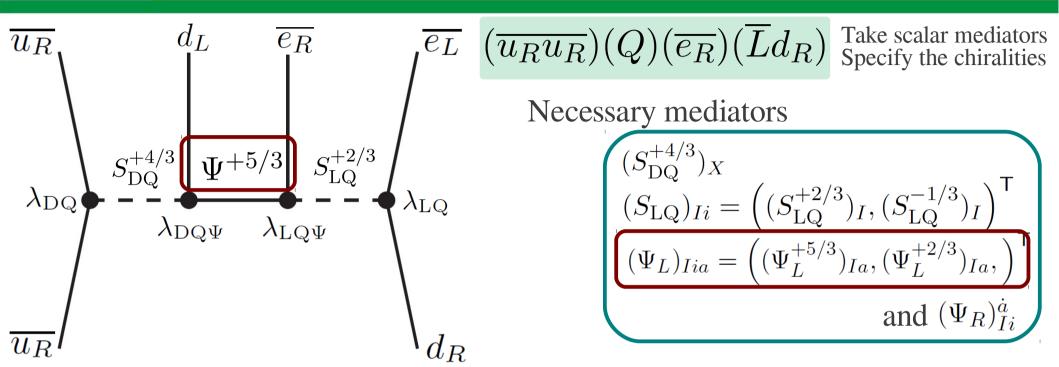




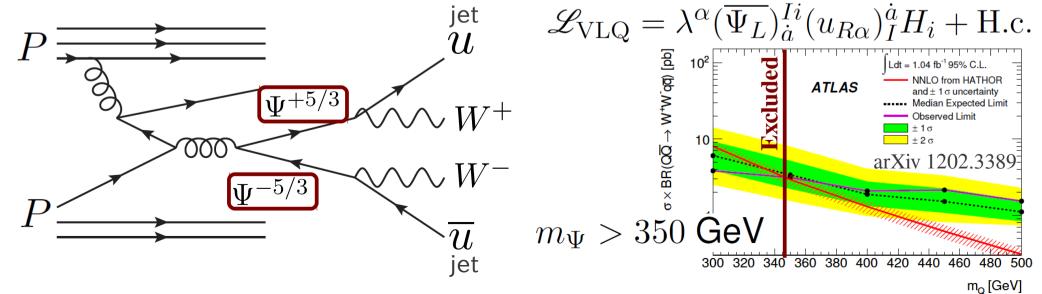




Necessary mediators


$$(S_{\mathrm{DQ}}^{+4/3})_{X}$$

$$(S_{\mathrm{LQ}})_{Ii} = \left( (S_{\mathrm{LQ}}^{+2/3})_{I}, (S_{\mathrm{LQ}}^{-1/3})_{I} \right)^{\mathsf{T}}$$


$$(\Psi_{L})_{Iia} = \left( (\Psi_{L}^{+5/3})_{Ia}, (\Psi_{L}^{+2/3})_{Ia}, \right)$$
and  $(\Psi_{R})_{Ii}^{\dot{a}}$ 

Vector-like Quark (VLQ):





• Vector-like Quark (VLQ): Search for a (qW)-pair





#### Outline

New Physics (d=9) contributions in neutrinoless double beta decay (0n2b)

Motivation: Why On2b? Why dim=9 ops?

d=9 ops  $\rightarrow$  half-life time of 0n2b processes "How sensitive 0n2b experiments to the d=9 ops?"

What do the d=9 ops suggest to TeV scale physics?

d=9 ops  $\rightarrow$  decompose them to the fundamental ints.

- → list the TeV signatures of each completion
- → The list helps us to discriminate the models

Seeking a relation to the models at the TeV scale

TeV scale models with LNV → Models for radiative neutrino masses

Maybe, we have already known the mediators appear in the big table...

• They have masses of the TeV scale • #L must be violated in somewhere





Maybe, we have already known the mediators appear in the big table...

• They have masses of the TeV scale • #L must be violated in somewhere



## Radiative neutrino mass models with TeV ingredients



Size of two contributions to 0n2b can be comparable!

Standard one  $m_{\nu} \sim 0.1 \mathrm{eV}$ 

dim=9 
$$\Lambda_{\rm NP}$$
 ~1 TeV



Maybe, we have already known the mediators appear in the big table...

• They have masses of the TeV scale • #L must be violated in somewhere

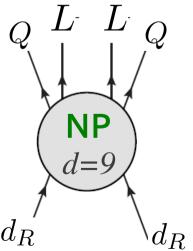


## Radiative neutrino mass models with TeV ingredients



Size of two contributions to 0n2b can be comparable!

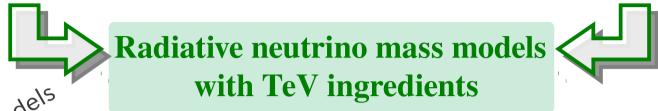
Standard one  $m_{\nu} \sim 0.1 \mathrm{eV}$ 


dim=9  $\Lambda_{\rm NP} \sim 1 \text{ TeV}$ 

Examples introduced in recent papers, based on Decomposition of  $LLQQd_Rd_R$ 

Coloured Babu-Zee model with LQ(3, 1, -1/3), DQ(6, 1, -2/3)

Kohda Sugiyama Tsumura PLB718 (2013) 1436


$$\mathcal{O}_{\mathsf{eff}}^{0
u2eta} =$$



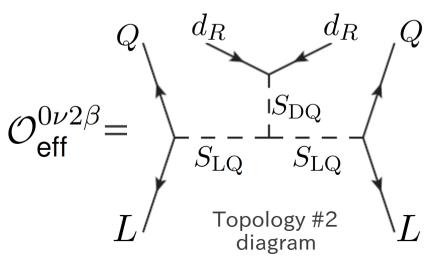


Maybe, we have already known the mediators appear in the big table...

• They have masses of the TeV scale • #L must be violated in somewhere



In such most Size of two contributions to 0n2b can be comparable!


Standard one  $m_{\nu} \sim 0.1 \mathrm{eV}$ 

dim=9  $\Lambda_{\rm NP} \sim 1 {\rm TeV}$ 

Examples introduced in recent papers, based on Decomposition of  $LLQQd_Rd_R$ 

Coloured Babu-Zee model with LQ(3, 1, -1/3), DQ(6, 1, -2/3)

Kohda Sugiyama Tsumura PLB718 (2013) 1436





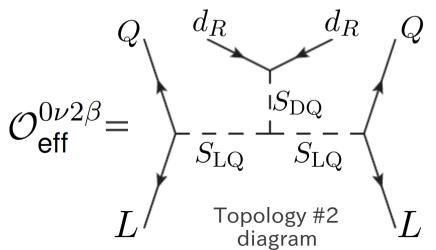
Maybe, we have already known the mediators appear in the big table...

• They have masses of the TeV scale • #L must be violated in somewhere



In such models Size of **two contributions** to 0n2b can be comparable!

Standard one


dim=9  $m_{\nu}$  ~ 0.1eV  $\Lambda_{\rm NP}$  ~1 TeV

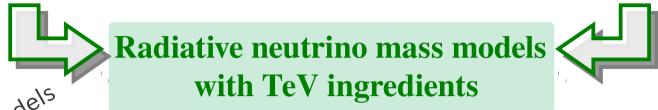
Examples introduced in recent papers, based on Decomposition of  $LLQQd_Rd_R$ 

#### Coloured Babu-Zee model with LQ(3, 1, -1/3), DQ(6, 1, -2/3)

Kohda Sugiyama Tsumura PLB718 (2013) 1436

$$m_{
u} = L$$
 $Q \mid d_R \mid d_R \mid Q$ 
 $H_d \mid H_d$ 






#### 3

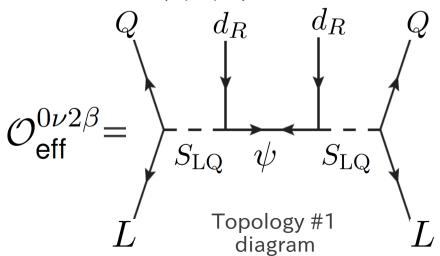
#### **Seeking the relation to the models**

Maybe, we have already known the mediators appear in the big table...

• They have masses of the TeV scale • #L must be violated in somewhere



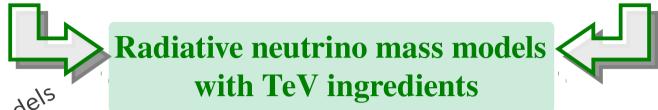
In such most Size of two contributions to 0n2b can be comparable!


Standard one  $m_{\nu} \sim 0.1 \mathrm{eV}$ 

dim=9  $\Lambda_{\rm NP} \sim 1 \text{ TeV}$ 

Examples introduced in recent papers, based on Decomposition of  $LLQQd_Rd_R$ 

Two-loop mNu model with LQ(3, 1, -1/3), Majorana fermion (8, 1, 0)

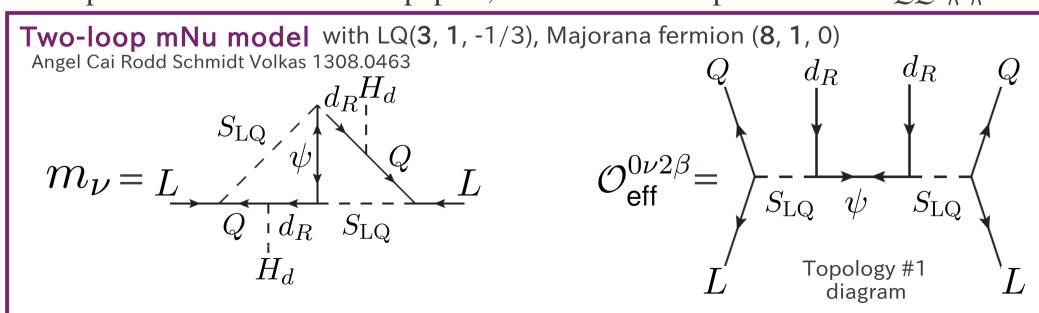

Angel Cai Rodd Schmidt Volkas 1308.0463





Maybe, we have already known the mediators appear in the big table...

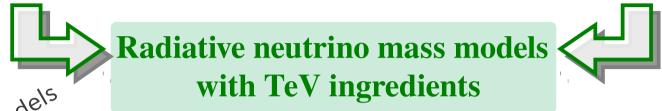
• They have masses of the TeV scale • #L must be violated in somewhere




In such mo Size of two contributions to 0n2b can be comparable!

Standard one  $m_{\nu} \sim 0.1 \mathrm{eV}$ 

dim=9  $\Lambda_{\rm NP} \sim 1 {\rm TeV}$ 


Examples introduced in recent papers, based on Decomposition of  $LLQQd_Rd_R$ 

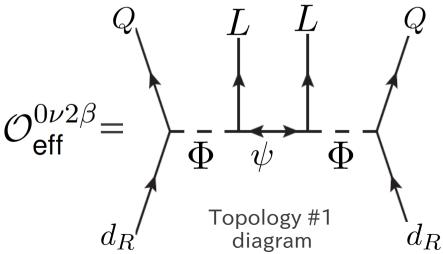




Maybe, we have already known the mediators appear in the big table...

• They have masses of the TeV scale • #L must be violated in somewhere



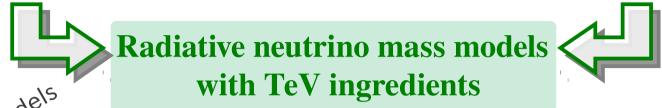

In such models Size of **two contributions** to 0n2b can be comparable!

Standard one  $m_{\nu} \sim 0.1 \text{eV}$  dim=9  $\Lambda_{\rm NP}$  ~1 TeV

Examples introduced in recent papers, based on Decomposition of  $LLQQd_Rd_R$ 

Colour-8 mNu model with Scalar (8, 2, 1/2), Majorana fermion (8, 1, 0)

Choubey Duerr Mitra Rodejohann JHEP 1205 (2012) 017

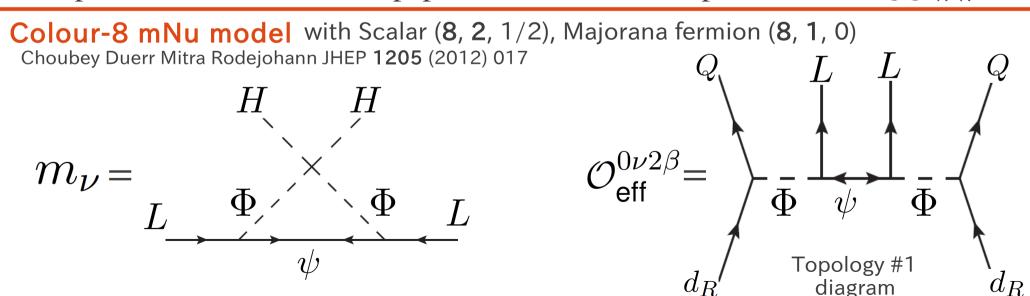



In this case, dim=9 op is not directly proportional to  $m_{
u}$ 



Maybe, we have already known the mediators appear in the big table...

• They have masses of the TeV scale • #L must be violated in somewhere



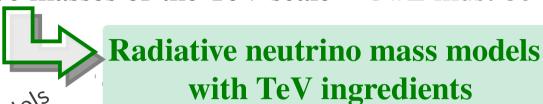

In such "Size of two contributions to 0n2b can be comparable!

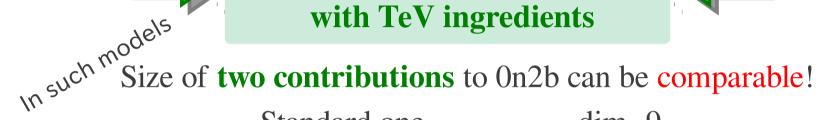
Standard one  $m_{\nu} \sim 0.1 \mathrm{eV}$ 

dim=9  $\Lambda_{\rm NP} \sim 1 {\rm TeV}$ 

Examples introduced in recent papers, based on Decomposition of  $LLQQd_Rd_R$ 




In this case, dim=9 op is not directly proportional to  $m_
u$ 






Maybe, we have already known the mediators appear in the big table...

• They have masses of the TeV scale • #L must be violated in somewhere





Standard one  $m_{\nu} \sim 0.1 \text{eV}$  dim=9  $\Lambda_{\rm NP}$  ~1 TeV

Neutrino mass models based on the effective operator approach

Schechter Valle Phys. Rev. D25 (1982) 2951

Babu Leung Nucl Phys **B619** (2001) 667

de Gouvea Jenkins Phys. Rev. **D77** (2008) 013008

del Aguila Aparici Bhattacharya Santamaria Wudka JHEP 1206 (2012) 146, JHEP **1205** (2012) 133

Angel Rodd Volkas Phys. Rev. **D87** (2013) 073007

Farzan Pascoli Schmidt JHEP 1303 (2013) 107

and more



#### **Summary**

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -60],<br>39],<br><sub>S</sub> [61] |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 1-i $(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$ (a) $(+1,1)$ (0,1) $(-1,1)$ Mass mechan., RPV [58-LR-symmetric models [3] Mass mechanism with $\nu_{S}$ TeV scale seesaw, e.g., [6] 1-ii-a $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$ (+1,1) (+5/3,3) (+2,1) (+1,8) (+5/3,3) (+2,1) (+1,8) (+4/3,3) (+2,1) (+1,8) (+4/3,3) (+2,1) (+1,8) (+4/3,3) (+2,1) (+1,8) (+4/3,3) (+2,1) (+1,8) (+4/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) (+1/3,3) | -60],<br>39],<br><sub>S</sub> [61] |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s [61]                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 62,63                              |
| 1-ii-a $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$ $(+1,1)$ $(+5/3,3)$ $(+2,1)$ $(+1,8)$ $(+5/3,3)$ $(+2,1)$ $(+1,8)$ $(+4/3,3)$ $(+2,1)$ $(+1,8)$ $(+4/3,3)$ $(+2,1)$ $(+1,8)$ $(+4/3,3)$ $(+2,1)$ $(+1,8)$ $(+4/3,3)$ $(+2,1)$ $(+1,8)$ $(+4/3,3)$ $(+2,1)$ $(+1,8)$ $(+4/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1/3,3)$ $(+1$             | ]                                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ]                                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ]                                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |
| 2-i-a $(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$ $(+1,1)$ $(+4/3,\overline{3})$ $(+1/3,\overline{3})$ $(+1/3,\overline{3})$ $(+1/3,\overline{3})$ $(+1/3,\overline{3})$ $(+1/3,\overline{3})$ $(+1/3,\overline{3})$ $(+1/3,\overline{3})$ $(+1/3,\overline{3})$ RPV [58–60], LQ [65, 66] $(+1,1)$ $(0,1)$ $(+1/3,\overline{3})$ RPV [58–60], LQ [65, 66] $(+1,8)$ $(0,8)$ $(+1/3,\overline{3})$ RPV [58–60], LQ [65, 66] $(+1/3,\overline{3})$ $(-1/3,\overline{3})$ $(-1/3,\overline{3})$ $(-1/3,\overline{3})$ RPV [58–60] $(-1/3,\overline{3})$ $(-1/3,\overline{3})$ RPV [58–60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |
| 2-i-b $(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$ (b) $(+1,8)$ $(+4/3,\overline{3})$ $(+1/3,\overline{3})$ RPV [58–60], LQ [65, 66] $(+1,8)$ $(0,8)$ $(+1/3,\overline{3})$ RPV [58–60], LQ [65, 66] $(+1,8)$ $(0,8)$ $(+1/3,\overline{3})$ RPV [58–60], LQ [65, 66] $(+1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ RPV [58–60] $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ $(-1,8)$ RPV [58–60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |
| 2-i-b $(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$ (b) $(+1,1)$ $(0,1)$ $(+1/3,\overline{3})$ RPV [58–60], LQ [65,66] $(+1,8)$ $(0,8)$ $(+1/3,\overline{3})$ $(+1/3,\overline{3})$ 2-ii-a $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$ $(+1,1)$ $(+5/3,3)$ $(+2/3,3)$ $(+1,8)$ $(+5/3,3)$ $(+2/3,3)$ $(+1,8)$ $(+1,1)$ $(-1/3,3)$ RPV [58–60], LQ [65,66] $(+1,1)$ $(-1/3,3)$ RPV [58–60], LQ [65,66] $(+1,8)$ $(-1/3,3)$ $(-1/3,3)$ RPV [58–60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |
| 2-ii-a $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$ (+1,8) (0,8) (+1/3, $\overline{3}$ ) (+2/3,3) (+1,1) (+5/3,3) (+2/3,3) (+1,8) (+5/3,3) (+2/3,3) (+1,8) (0,1) (+2/3,3) RPV [58–60], LQ [65,66] (+1,8) (0,8) (+2/3,3) (+1/3) (0,8) (+2/3,3) (-2/3, $\overline{3}$ ) (0,1) (+1/3, $\overline{3}$ ) RPV [58–60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9]                                 |
| 2-ii-a $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$ $(+1,1)$ $(+5/3,3)$ $(+2/3,3)$ $(+1,8)$ $(+5/3,3)$ $(+2/3,3)$ $(+1,8)$ $(+5/3,3)$ $(+2/3,3)$ 2-ii-b $(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$ (b) $(+1,1)$ $(0,1)$ $(+2/3,3)$ RPV [58–60], LQ [65,66 $(+1,8)$ $(0,8)$ $(+2/3,3)$ 2-iii-a $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$ (c) $(-2/3,3)$ $(0,1)$ $(+1/3,3)$ RPV [58–60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )]                                 |
| 2-ii-b $(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$ (b) $(+1,8)$ $(+5/3,3)$ $(+2/3,3)$ RPV [58–60], LQ [65, 66] $(+1,1)$ $(0,1)$ $(+2/3,3)$ RPV [58–60], LQ [65, 66] 2-iii-a $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$ (c) $(-2/3,\overline{3})$ $(0,1)$ $(+1/3,\overline{3})$ RPV [58–60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |
| 2-ii-b $(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$ (b) $(+1,1)$ $(0,1)$ $(+2/3,3)$ RPV [58–60], LQ [65,66] $(+1,8)$ $(0,8)$ $(+2/3,3)$ 2-iii-a $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$ (c) $(-2/3,\overline{3})$ $(0,1)$ $(+1/3,\overline{3})$ RPV [58–60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |
| 2-iii-a $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$ (c) $(-2/3, \overline{\bf 3})$ $(0, \bf 8)$ $(+2/3, \bf 3)$ $(0, \bf 1)$ $(+1/3, \overline{\bf 3})$ RPV [58–60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3]                                 |
| 2-iii-a $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$ (c) $(-2/3, \overline{3})$ $(0, 1)$ $(+1/3, \overline{3})$ RPV [58–60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |
| 2-iii-b $(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$ $(-2/3, 3)$ $(-1/3, 3)$ $(+1/3, 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |
| $(-2/3, \overline{\bf 3})$ $(-1/3, \overline{\bf 6})$ $(+1/3, \overline{\bf 3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |
| 3-i $(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$ $(+4/3, 3)$ $(+1/3, 3)$ $(-2/3, 3)$ only with $V_{\rho}$ and $V'_{\rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |
| (+4/3, 6) $(+1/3, 6)$ $(-2/3, 6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |
| 3-ii $(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$ $(+4/3, \overline{\bf 3})$ $(+5/3, \bf 3)$ $(+2, \bf 1)$ only with $V_{\rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |
| (+4/3, 6) $(+5/3, 3)$ $(+2, 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |
| 3-iii $(dd)(\bar{u})(\bar{e}\bar{e})$ $(+2/3, 3)$ $(+4/3, 3)$ $(+2, 1)$ only with $V_{\rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |
| $(+2/3, \overline{6})$ $(+4/3, \overline{3})$ $(+2, 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| 4-i $(d\bar{e})(\bar{u})(d\bar{e})$ (c) $(-2/3, \overline{3})$ $(0, 1)$ $(+2/3, 3)$ RPV [58–60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |
| $(-2/3, \overline{3})$ $(0, 8)$ $(+2/3, 3)$ RPV [58–60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| 4-ii-a $(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$ $(+4/3, \overline{3})$ $(+5/3, 3)$ $(+2/3, 3)$ only with $V_{\rho}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |
| (+4/3,6) $(+5/3,3)$ $(+2/3,3)$ see Sec. 4 (this work)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |
| 4-ii-b $(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$ $(+4/3, \overline{3})$ $(+1/3, \overline{3})$ $(+2/3, 3)$ only with $V_{\rho}$ $(+4/3, 6)$ $(+1/3, 6)$ $(+2/3, 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |
| 5-i $(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$ (c) $(-1/3,3)$ $(0,1)$ $(+1/3,3)$ RPV [58–60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |
| (-1/3, 3) $(0, 1)$ $(+1/3, 3)$ RPV [58–60] $(-1/3, 3)$ $(0, 8)$ $(+1/3, 3)$ RPV [58–60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| 5-ii-a $(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$ $(-1/3, 3)$ $(0, 8)$ $(+1/3, 3)$ RFV [38-60] $(-1/3, 3)$ $(-1/3, 3)$ $(-1/3, 3)$ only with $V_o$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |
| $(-1/3, 3)$ $(+1/3, 6)$ $(-2/3, 6)$ only with $\mathbf{v}_{\rho}$ $(-1/3, 3)$ $(+1/3, 6)$ $(-2/3, 6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |
| 5-ii-b $(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$ $(-1/3, 3)$ $(-4/3, 3)$ $(-2/3, \overline{3})$ only with $V_o'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |
| $(-1/3, 3)$ $(-4/3, 3)$ $(-2/3, 6)$ only with $\mathbf{v}_{\rho}$ $(-1/3, 3)$ $(-4/3, 3)$ $(-2/3, 6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |

What can we learn from this table?

If 0n2b conflicts with cosmological obs.,

It could be a large d=9 contribution



#### Summary

|         |                                                                                      | Long   | Mediat                 | tor $(U(1)_{em},$                                | SU(3) )                |                                      |   |
|---------|--------------------------------------------------------------------------------------|--------|------------------------|--------------------------------------------------|------------------------|--------------------------------------|---|
| #       | Decomposition                                                                        | Range? | S or $V_{\rho}$        | $\psi$                                           | $S'$ or $V'_{a}$       | Models/Refs./Comments                | V |
| 1-i     | $(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$                                             | (a)    | (+1, <b>1</b> )        | (0, 1)                                           | (-1, 1)                | Mass mechan., RPV [58–60],           | • |
|         |                                                                                      |        |                        | ,                                                | ,                      | LR-symmetric models [39],            |   |
|         |                                                                                      | (      |                        |                                                  |                        | Mass mechanism with $\nu_S$ [61]     |   |
|         |                                                                                      | 7      | <u> </u>               |                                                  |                        | TeV scale seesaw, e.g., [62, 63]     |   |
|         |                                                                                      |        | (+1.8)                 | (0.8)                                            | (-1.8)                 | [64]                                 |   |
| 1-ii-a  | $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$                                             |        | (+1, 1)                | (+5/3,3)                                         | (+2, 1)                |                                      |   |
| 4 1     | (= D ( D (=) (==)                                                                    |        | (+1.8)                 | (+5/3, 3)                                        | (+2, 1)                |                                      | _ |
| 1-ii-b  | $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$                                             |        | (+1,1)<br>(+1,8)       | $(+4/3. \overline{3})$<br>$(+4/3. \overline{3})$ | (+2, 1)                | 2                                    | 1 |
| 2-i-a   | $(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$                                             |        | (+1, 1)                | (+4/3, 3)                                        | (+2, 1)<br>(+1/3, 3)   | <u> </u>                             | _ |
| 2-1-4   | (uu)(u)(e)(ue)                                                                       |        | (+1, 1)                | (+4/3, 3)                                        | (+1/3, 3)              |                                      |   |
| 2-i-b   | $(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$                                             | (b)    | (+1, 1)                | (0, 1)                                           | $(\pm 1/3.3)$          | RPV [58–60], LQ [65, 66]             |   |
|         | (/(-/(-/                                                                             | (-)    | (+1, 8)                | (0, 8)                                           | (±1/3 3)               | []                                   |   |
| 2-ii-a  | $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$                                             | •      | (+1, 1)                | (+5/3, 3)                                        | (±2/2, <b>2</b> )      |                                      |   |
|         |                                                                                      |        | (+1.8)                 | $(\pm 5/3, 3)$                                   | (+2/3.3)               |                                      |   |
| 2-ii-b  | $(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$                                             | (b)    | (+1, 1)                | (0, 1)                                           | +2/3, 3)               | RPV [58–60], LQ [65,66]              |   |
|         |                                                                                      |        | (+1, 8)                | (0, 8)                                           | (+2/3, 3)              |                                      |   |
| 2-iii-a | $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$                                             | (c)    | (-2/3, 3)              | (0, 1)                                           | (+1/3, 3)              |                                      |   |
| 0 1     | ( I=\                                                                                |        | (-2/3.3)               | (0.8)                                            | $(\pm 1/3.3)$          | RPV [58–60]                          |   |
| 2-iii-b | $(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$                                             |        | (-2/3.3)               | (-1/3,3)                                         | $(\pm 1/3.3)$          |                                      |   |
| 3-i     | (āā)(ā)(ā)(dd)                                                                       |        | (-2/3,3)               | (-1/3, 6)                                        | (+1/3, 3)              | only with $V_{\rho}$ and $V'_{\rho}$ | _ |
| 9-1     | $(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$                                             |        | $(\pm 4/3, 3)$         | (+1/3, 3)<br>(+1/3, 6)                           | (-2/3, 3)<br>(-2/3, 6) | only with $v_{\rho}$ and $v_{\rho}$  |   |
| 3-ii    | $(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$                                             |        | (+4/3, 6)<br>(+4/3, 3) | (+5/3, 3)                                        | (+2,1)                 | only with $V_{\rho}$                 |   |
| 0.11    | (44)(4)(4)(66)                                                                       |        | (+4/3, 6)              | (+5/3, 3)                                        | (+2,1)                 | υπή πτα τ <sub>ρ</sub>               |   |
| 3-iii   | $(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$                                             |        | $(\pm 2/3.3)$          | (+4/3, 3)                                        | (+2, 1)                | only with $V_{\rho}$                 |   |
|         |                                                                                      |        | (±2/3 <b>6</b>         | (±4/3 3)                                         | (+2, 1)                | ,                                    |   |
| 4-i     | $(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$                                             | (c)    | (-2/3, 3)              | (0, 1)                                           | $(\pm 2/3, 3)$         | RPV [58–60]                          | _ |
|         |                                                                                      |        | $(-2/3, \overline{3})$ | (0.8)                                            | (+2/3, 3)              | RPV [58–60]                          |   |
| 4-ii-a  | $(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$                                             |        | (+4/3 3)               | (±5/3 3)                                         | (±2/3 3)               | only with $V_{\rho}$                 |   |
|         |                                                                                      |        | (+4/3,6)               | (+5/3,3)                                         | (+2/3,3)               | see Sec. 4 (this work)               |   |
| 4-ii-b  | $(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$                                             |        | (+4/3, 3)              | (+1/3, 3)                                        | (+2/3, 3)              | only with $V_{\rho}$                 |   |
| F :     | /==\/J\/J\/==\                                                                       | (-)    | (+4/3.6)               | (+1/3.6)                                         | (+2/3.3)               | DDV (50.00)                          | _ |
| 5-i     | $(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$                                             | (c)    | (-1/3,3)               | (0, 1)                                           | $(\pm 1/3, 3)$         | RPV [58–60]                          |   |
| 5-ii-a  | (\$\bar{a}\)(\$\bar{a}\)(\$\bar{a}\)(\$\bar{a}\)(\$\bar{a}\)(\$\bar{a}\)(\$\bar{a}\) |        | (-1/3,3)<br>(-1/3,3)   | (0, 8)<br>(+1/3, 3)                              | (+1/3, 3)<br>(-2/3, 3) | RPV [58–60]<br>only with $V'_{\rho}$ |   |
| 9-II-8  | $(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$                                             |        | (-1/3.3)               | $(\pm 1/3.3)$                                    | (-2/3, 3)              | omy with v <sub>p</sub>              |   |
| 5-ii-b  | $(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$                                             |        | (_1/9_9                | (-4/3, 3)                                        | (-2/3, 3)              | only with $V'_{\rho}$                |   |
| 0-11-17 | (ac)(c)(a)(aa)                                                                       |        | (-1/3, 3)              | (-4/3, 3)                                        | (-2/3, 6)              | omy with v <sub>p</sub>              |   |
|         |                                                                                      |        |                        |                                                  |                        |                                      | _ |

What can we learn from this table?

If 0n2b conflicts with cosmological obs.,

It could be a large d=9 contribution

Such a large d=9 contribution should leave the trace in LHC except for T-I-1-i (and T-II-1) that does not contain a coloured mediator





|          | T.                                       |        |                        |                        |                                |                                      |    |
|----------|------------------------------------------|--------|------------------------|------------------------|--------------------------------|--------------------------------------|----|
|          |                                          | Long   | Mediat                 | or $(U(1)_{em})$       | $SU(3)_c$ )                    |                                      |    |
| #        | Decomposition                            | Range? | S or $V_{\rho}$        | $\psi$                 | $S'$ or $V'_{o}$               | Models/Refs./Comments                | И  |
| 1-i      | $(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$ | (a)    | (+1, 1)                | (0, 1)                 | (-1, <b>1</b> )                | Mass mechan., RPV [58-60],           | ,  |
|          |                                          |        |                        |                        |                                | LR-symmetric models [39],            |    |
|          |                                          |        |                        |                        |                                | Mass mechanism with $\nu_S$ [61]     |    |
|          |                                          |        |                        |                        |                                | TeV scale seesaw, e.g., [62, 63      |    |
|          |                                          |        | (+1.8)                 | (0.8)                  | (-1.8)                         | [64]                                 |    |
| 1-ii-a   | $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$ |        | (+1, 1)                | (+5/3,3)               | (+2, 1)                        |                                      |    |
|          |                                          |        | (+1.8)                 | $(\pm 5/3, 3)$         | (+2, 1)                        |                                      |    |
| 1-ii-b   | $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$ |        | (+1, 1)                | $(\pm 4/3, 3)$         | (+2, 1)                        |                                      | It |
|          |                                          |        | (+1.8)                 | (+4/3, 3)              | (+2, 1)                        |                                      |    |
| 2-i-a    | $(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$ |        | (+1, 1)                | (+4/3, 3)              | (+1/3, 3)                      |                                      |    |
|          |                                          | -      | (+1.8)                 | (+4/3, 3)              | (+1/3, 3)                      |                                      |    |
| 2-i-b    | $(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$ | (b)    | (+1, 1)                | (0, 1)                 | (+1/3.3)                       | RPV [58–60], LQ [65, 66]             |    |
|          | (- D(-)(-)(-)                            |        | (+1, 8)                | (0, 8)                 | (±1/3 3)                       |                                      |    |
| 2-ii-a   | $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$ |        | (+1, 1)                | (+5/3, 3)              | (+9/3, 9)                      |                                      |    |
| 0.11     | (= I) (=) (=) ( I=)                      | (1.)   | (+1.8)                 | (+5/3,3)               | $(\pm 2/3, 3)$                 | DD1 (50 00) 10 (05 00)               |    |
| 2-ii-b   | $(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$ | (b)    | (+1, 1)                | (0, 1)                 | (+2/3, 3)                      | RPV [58–60], LQ [65, 66]             |    |
| 0        | (J=\/=\/J\/==\                           | (-)    | (+1,8)                 | (0, 8)                 | (+2/3, 3)                      | DDV [50 60]                          |    |
| 2-iii-a  | $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$ | (c)    | (-2/3,3)<br>(-2/3,3)   | (0, 1)<br>(0, 8)       | (+1/3, 3)                      | RPV [58–60]<br>RPV [58–60]           |    |
| 2-iii-b  | $(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$ |        | (-2/3.3)               | (-1/3, 3)              | $(\pm 1/3.3)$<br>$(\pm 1/3.3)$ | KP v [58-60]                         |    |
| 2-111-13 | (ae)(a)(a)(ae)                           |        | (-2/3, 3)              | (-1/3, 6)              | +1/3, 3)                       |                                      |    |
| 3-i      | $(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$ |        |                        |                        |                                | only with $V_{\rho}$ and $V'_{\rho}$ | _  |
| 0-1      | (uu)(e)(e)(uu)                           |        | (+4/3, 3)<br>(+4/3, 6) | (+1/3, 3)<br>(+1/3, 6) | (-2/3, 3)<br>(-2/3, 6)         | only with $v_{\rho}$ and $v_{\rho}$  |    |
| 3-ii     | $(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$ |        | (+4/3,3)               | (+5/3, 3)              | (+2,1)                         | only with $V_{\rho}$                 |    |
| 0-II     | (44)(4)(4)(44)                           |        | (+4/3, 6)              | (+5/3, 3)              | (+2, 1)                        | only with vp                         |    |
| 3-iii    | $(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$ |        | (+2/3.3)               | $(\pm 4/3, 3)$         | (+2, 1)                        | only with $V_{\rho}$                 |    |
|          | (44)(4)(4)(44)                           |        | (±2/3 6                | (±4/3 3)               | (+2, 1)                        | , , ρ                                |    |
| 4-i      | $(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$ | (c)    | (-2/3,3)               | (0, 1)                 | (+2/3, 3)                      | RPV [58-60]                          | _  |
|          | ()(-)(-)                                 | (-)    | (-2/3, 3)              | (0, 8)                 | $(\pm 2/3, 3)$                 | RPV [58–60]                          |    |
| 4-ii-a   | $(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$ |        | $(\pm 4/3.9)$          | $(\pm 5/3.3)$          | $(\pm 2/3.3)$                  | only with $V_{\rho}$                 |    |
|          | ( // // /                                |        | (±4/2 6                | (45/2 9)               | (±2/2 Q)                       | see Sec. 4 (this work)               |    |
| 4-ii-b   | $(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$ |        | $(\pm 4/3, 3)$         | (+1/3, 3)              | (+2/3, 3)                      | only with $V_{\rho}$                 |    |
|          |                                          |        | (+4/3.6)               | $(\pm 1/3.6)$          | $(\pm 2/3.3)$                  |                                      |    |
| 5-i      | $(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$ | (c)    | (-1/3, 3)              | (0, 1)                 | (+1/3, 3)                      | RPV [58–60]                          | _  |
|          |                                          |        | (-1/3, 3)              | (0, 8)                 | (+1/3, 3)                      | RPV [58-60]                          |    |
| 5-ii-a   | $(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$ |        | (-1/3.3)               | (+1/3, 3)              | $(-2/3, \overline{3})$         | only with $V'_{\rho}$                |    |
|          |                                          |        | (_1/3_9                | $(\pm 1/3, 6)$         | (-2/3, 6)                      | •                                    |    |
| 5-ii-b   | $(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$ |        | (-1/2, 9)              | (-4/3, 3)              | (-2/3, 3)                      | only with $V'_{\rho}$                |    |
|          |                                          |        | (-1/3,3)               | (-4/3, 3)              | (-2/3, 6)                      |                                      |    |
|          |                                          |        |                        |                        |                                |                                      |    |

# What can we learn from this table? If 0n2b conflicts with

It could be a large d=9 contribution

cosmological obs.,

Such a large d=9 contribution should leave the trace in LHC except for T-I-1-i (and T-II-1) that does not contain a coloured mediator

T-I-1-i can be examined at ILC! exotic interactions with electron!





|         | The state of the s |        |                        |                        |                        |                                      |            |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------|------------------------|------------------------|--------------------------------------|------------|
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Long   | Mediat                 | or $(U(1)_{em})$       | $SU(3)_c$ )            |                                      |            |
| #       | Decomposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Range? | S or $V_{\rho}$        | $\psi$                 | $S'$ or $V'_{\rho}$    | Models/Refs./Comments                | W          |
| 1-i     | $(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (a)    | (+1, <b>1</b> )        | (0, 1)                 | (-1,1)                 | Mass mechan., RPV [58–60],           | * *        |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                        |                        |                        | LR-symmetric models [39],            |            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                        |                        |                        | Mass mechanism with $\nu_S$ [61]     |            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                        |                        |                        | TeV scale seesaw, e.g., [62, 63      |            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | (+1.8)                 | (0.8)                  | (-1.8)                 | [64]                                 |            |
| 1-ii-a  | $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | (+1, 1)                | (+5/3,3)               | (+2, 1)                |                                      |            |
|         | (- D( D(-) ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | (+1.8)                 | (+5/3, 3)              | (+2, 1)                |                                      | <b>T</b> . |
| 1-ii-b  | $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | (+1,1)<br>(+1,8)       | $(+4/3.\overline{3})$  | (+2, 1)                |                                      | It         |
| 9: -    | /::J\/J\/:\/::\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                        | (+4/3.3)               | (+2,1)                 |                                      |            |
| 2-i-a   | $(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | (+1, 1)<br>(+1, 8)     | (+4/3, 3)<br>(+4/3, 3) | (+1/3,3)<br>(+1/3,3)   |                                      |            |
| 2-i-b   | $(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b)    | (+1, 1)                | (0, 1)                 | $(\pm 1/3, 3)$         | RPV [58-60], LQ [65, 66]             |            |
| 2-1-0   | (44)(c)(4)(4c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1)    | (+1, 1) $(+1, 8)$      | (0, 1)                 | (±1/3 3)               | 11 1 [55-55], 110 [55,55]            |            |
| 2-ii-a  | $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | '      | (+1, 1)                | (+5/3,3)               | (19/9 9)               |                                      |            |
|         | (/(-/(-/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | (+1.8)                 | (+5/3.3)               | (+2/3, 3)              |                                      |            |
| 2-ii-b  | $(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b)    | (+1, 1)                | (0, 1)                 | (+2/3, 3)              | RPV [58-60], LQ [65, 66]             |            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | (+1, 8)                | (0, 8)                 | (+2/3, 3)              |                                      |            |
| 2-iii-a | $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (c)    | (-2/3, 3)              | (0, 1)                 | (+1/3, 3)              | RPV [58–60]                          |            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | (-2/3.3)               | (0.8)                  | $(\pm 1/3.3)$          | RPV [58–60]                          |            |
| 2-iii-b | $(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | (-2/3.3)               | (-1/3,3)               | $(\pm 1/3.3)$          |                                      |            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | (-2/3,3)               | (-1/3, 6)              | (+1/3, 3)              |                                      | _          |
| 3-i     | $(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | (+4/3, 3)              | (+1/3, 3)              | [-2/3, 3)              | only with $V_{\rho}$ and $V_{\rho}'$ |            |
| 0 "     | ()(n(n()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | (+4/3, 6)              | (+1/3, 6)              | (-2/3, 6)              | 1141. 17                             |            |
| 3-ii    | $(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | (+4/3, 3)              | (+5/3, 3)              | (+2,1)                 | only with $V_{\rho}$                 |            |
| 3-iii   | $(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | (+4/3, 6)<br>(+2/3, 3) | (+5/3, 3)<br>(+4/3, 3) | (+2, 1)<br>(+2, 1)     | only with $V_{\rho}$                 |            |
| 3-III   | (aa)(a)(a)(ee)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | (±2/3 6                | $(\pm 4/3, 3)$         | (+2, 1)<br>(+2, 1)     | only with Vp                         |            |
| 4-i     | $(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (c)    | (-2/3,3)               | (0, 1)                 | (+2,1)                 | RPV [58-60]                          | _          |
|         | (ac)(a)(a)(ac)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0)    | (-2/3, 3)              | (0, 8)                 | (+2/3, 3)              |                                      |            |
| 4-ii-a  | $(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | $(\pm 4/3.9)$          | $(\pm 5/3.3)$          | (±2/3 3)               | only with $V_{\rho}$                 |            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | (+4/3, <b>6</b>        | (+5/2,2)               | (±2/2, <b>2</b> )      | see Sec. 4 (this work)               |            |
| 4-ii-b  | $(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | (+4/3, 3)              | $(+1/3, \overline{3})$ | (+2/3, 3)              |                                      |            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | (+4/3.6)               | (+1/3.6)               | (+2/3,3)               | -                                    | _          |
| 5-i     | $(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (c)    | (-1/3, 3)              | (0, 1)                 | (+1/3, 3)              |                                      | _          |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | (-1/3,3)               | (0, 8)                 | (+1/3, 3)              | RPV [58–60]                          |            |
| 5-ii-a  | $(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | (-1/3,3)               | $(+1/3, \overline{3})$ | $(-2/3, \overline{3})$ | only with $V'_{\rho}$                |            |
|         | /> /> /> /> />                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | (-1/3.9)               | $(\pm 1/3, 6)$         | (-2/3, 6)              |                                      |            |
| 5-ii-b  | $(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | (-1/2, 9)              | (-4/3, 3)              | (-2/3, 3)              | only with $V'_{\rho}$                |            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | (-1/3, 3)              | (-4/3, 3)              | (-2/3, 6)              |                                      | =          |

#### What can we learn from this table?

If 0n2b conflicts with cosmological obs.,

It could be a large d=9 contribution

Such a large d=9 contribution should leave the trace in LHC except for T-I-1-i (and T-II-1) that does not contain a coloured mediator

T-I-1-i can be examined at ILC! exotic interactions with electron!

#### My last message:

On2b exps, cosmological obs, LHC and ILC are complementary!



#### Back up slides

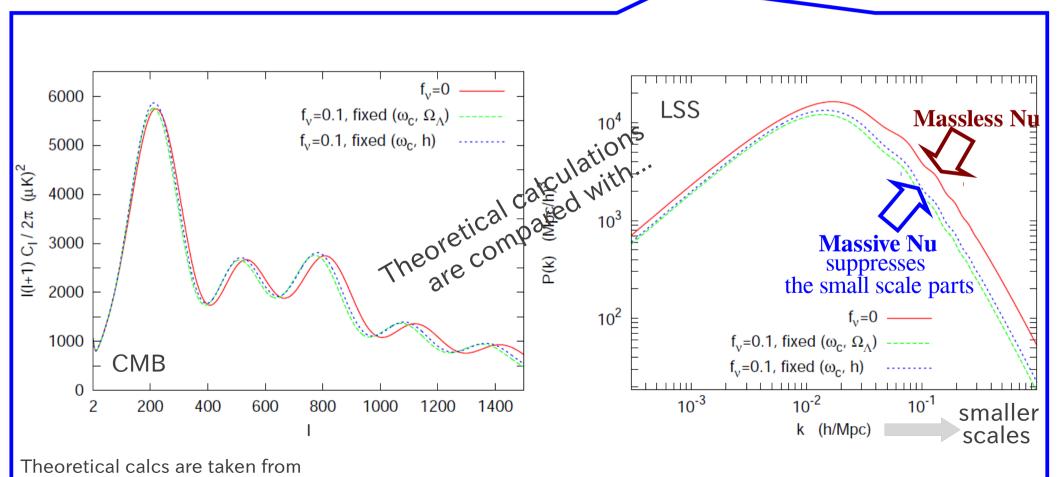
Neutrino mass bound from cosmological observations

2 LR symmetric model as a Decomposition of dim=9 op



#### Why 0n2b? Why d=9 op.?

#### Effective neutrino mass


On2b exp are sensitive to
 Effective nu mass

Phys.Rep **429** (2006) 307 Lesgourgues and Pastor

$$\langle m_{\beta\beta} \rangle \equiv \sum_{i=1}^{3} (U_e{}^i)^2 m_i$$

Cosmological obs constrain Sum of nu masses

$$\sum_{i=1}^{3} m_i (\simeq 3m_0 \text{ if } m_0 \gtrsim 0.1 \text{ eV})$$

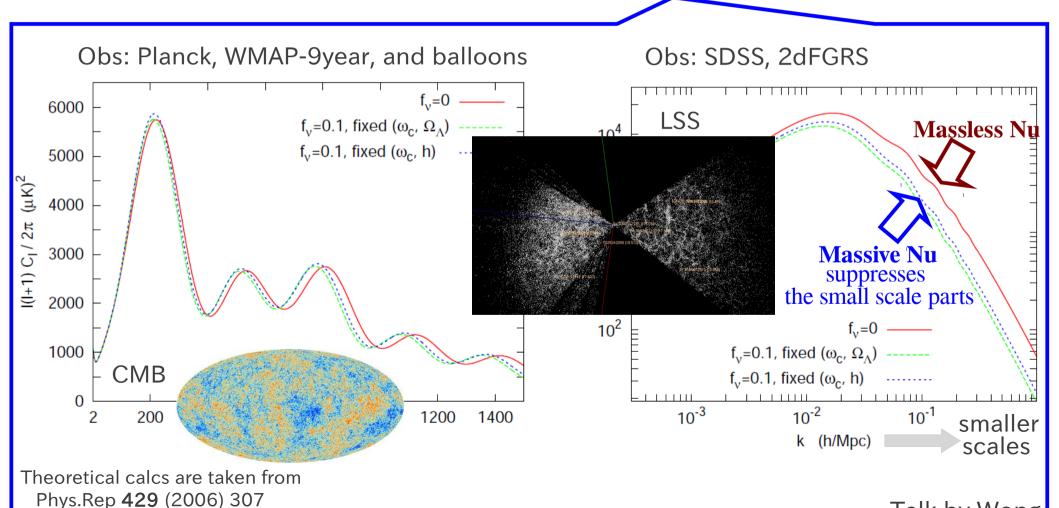






#### Why 0n2b? Why d=9 op.? Effective neutrino mass

• **0n2b exp** are sensitive to Effective nu mass

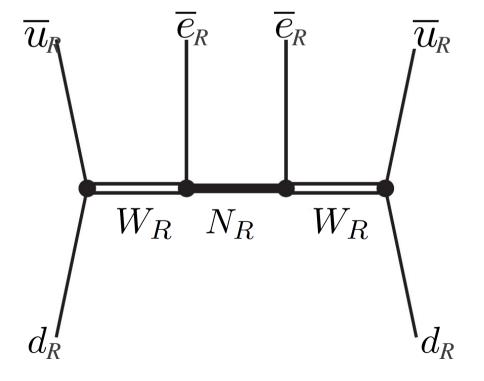

Lesgourgues and Pastor

$$\langle m_{\beta\beta} \rangle \equiv \sum_{i=1}^{3} (U_e{}^i)^2 m_i$$

Cosmological obs constrain Sum of nu masses

 $\sum m_i (\simeq 3m_0 \text{ if } m_0 \gtrsim 0.1 \text{ eV})$ 

Talk by Wong






An example,

Taking Topology #I let us decompose d=9 op as

$$(\overline{u}d)(\overline{e})(\overline{e})(\overline{u}d)$$



Necessary mediators

$$egin{array}{lll} V(+1,\mathbf{1}) & W_R \ V'(-1,\mathbf{1}) & W_R \ \psi(0,\mathbf{1}) & N_R \end{array}$$

where  $(U(1)_{em}, SU(3)_{c})$ 

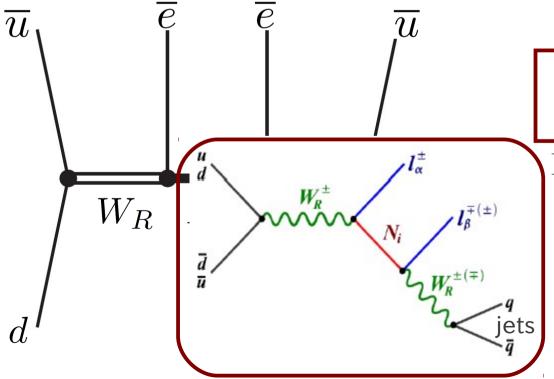
#### Left-right symmetric model

All the outer fermions are right-handed

#### Bound from 0n2b

Riazuddin Marshak Mohapatra PRD24 (1981) 1310

$$M_{N_R} = M_{W_R} > 1.3 \text{ TeV } (g_L = g_R)$$






An example,

Taking Topology #I let us decompose d=9 op as

$$(\overline{u}d)(\overline{e})(\overline{e})(\overline{u}d)$$



Necessary mediators

$$V(+1,\mathbf{1})$$
  $W_R$   $V'(-1,\mathbf{1})$   $W_R$   $\psi(0,\mathbf{1})$   $N_R$ 

where  $(U(1)_{em}, SU(3)_{c})$ 

#### Left-right symmetric model

All the outer fermions are right-handed

#### Bound from 0n2b

Riazuddin Marshak Mohapatra PR**D24** (1981) 1310

$$M_{N_R} = M_{W_R} > 1.3 \text{ TeV } (g_L = g_R)$$

#### $N_R$ and $W_R$ collider search

Rizzo, Phys. Lett. **B116** (1982) 23 Keung Senjanovic, Phys. Rev. Lett **50** (1983) 1427 ATLAS search for 2 leptons+jets: arXiv.1203.5420