Probing Neutrino-Nucleus Interactions: New Results from ArgoNeuT

NUFACT 2013, Beijing, China

Tingjun Yang For the ArgoNeuT Collaboration Fermilab

Liquid Argon TPC - LArTPC

- Liquid argon offers abundant ionization electrons and scintillation light for particle detection.
 - Suitable for studies of neutrino physics, search for proton decays, etc.
 - Relative cheap and scalable.
- mm-scale position resolution, three dimensional imaging, and calorimetry.
- Jim Strait: "LBNE"
- Paola Sala: "ICARUS status and results"
- Jason St. John: "MicroBooNE: prospects for making the first neutrino interaction measurements on argon at low energy" Low charge High charge

ArgoNeuT - Argon Neutrino Teststand

- First TPC in a neutrino beam in the US
- Sitting in NuMI beam Neutrinos at the Main Injector
- Located in front of MINOS near detector
- Use MINOS ND as muon spectrometer
- 47×40×90 cm³ (170 L), wire spacing 4 mm

ArgoNeuT's Physics Run

- ArgoNeuT completed taking data. (9/14/2009-2/22/2010)
- Collected events in the 0.1 to ~20 GeV range.
 - First low energy neutrino interactions in LArTPC
 - Physics goals:
 - \circ Measure v-Ar CC cross sections
 - Study Nuclear effects (FSI, SRC, etc.)
 - Examine dE/dx particle ID, especially e/γ separation
 - Develop automated reconstruction techniques

Track Reconstruction

https://cdcvs.fnal.gov/redmine/projects/larsoftsvn

- The presence of the MINOS ND allows for energy reconstruction and charge identification of escaping muons.
- We gratefully acknowledge the help of the MINOS collaboration for providing simulated NuMI flux, ND data, simulation and reconstruction code.

Muon Neutrino Inclusive Charged Current Cross Sections

First results based on 8.5e18 POT (2 weeks) neutrino data published in PRL 108 (2012) 161802.

NuFact 13 T. Yang

Previous Results in v Mode (8.5e18 POT)

"First Measurements of Inclusive Muon Neutrino Charged Current Differential Cross Sections on Argon " PRL 108 (2012) 161802

- Track matched to muon in MINOS ND
- Negatively charged muon in MINOS NuFact 13 T. Yang

20

P. (GeV/c)

10

Reconstruction Checks

Reconstructed quantities consistent with true quantities.

NuFact 13 T. Yang

- Area normalized
- Need to improve flux prediction
- Paper in preparation

Examine the Hadronic System

- LArTPC provides a 3D imaging of charged particle interacions with fine **spatial and energy resolution**.
- It is an excellent tool to study the **hadron production** in ν -Ar interactions.
 - $\circ~$ Good for studies of nuclear effects.
- Proton/pion separation through the energy deposition vs range measurements.
 - Understanding the detector calorimetric response.

Detector Calibration with Through-going Muons

- A large sample of neutrino induced through-going muons are useful for detector calibration
- Test geometric and calorimetric reconstruction in the ArgoNeuT detector
- JINST 7 (2012) P10020; arXiv: 1205.6702

<dE/dx>=2.3 \pm 0.2 MeV/cm, in good agreement with theoretical expectations for <E_u>=7.0 GeV

NuFact 13 T. Yang

Recombination Studies

- Study the recombination of electron-ion pairs produced by ionizing tracks using stopping protons and deuterons
- Results in agreement with ICARUS with extended dE/dx range and smaller uncertainties
- Also study the dependence of recombination on the track angle
- arXiv: 1306.1712, accepted by JINST

Calorimetric ParticleID

- Measurement of:
 - dE/dx vs. residual range along the track
 - kinetic energy vs.
 track length

NuFact 13 T. Yang

v-Ar Interactions: Nuclear Effects

- Conventional measurement of exclusive channels: quasielastic (QE), resonance pion production (RES) etc.
- **Nuclear effects** play a key role in neutrino-nucleus interactions in nuclear targets.
- Due to *intra-nuclear re-scattering (FSI)* and possible effects of *correlation between target nucleons*, <u>a genuine QE</u> interaction can often be accompanied by additional particles (nucleons, de-excitation γ's and soft pions) in the Final State.

Hints for Nuclear Effects

Topological Analysis 1µ+Np

- A first Topological analysis is currently developed by the ArgoNeuT experiment: 1μ+Np (0π)
 - Sensitive to nuclear effects
- Analysis steps
 - automated reconstruction (muon angle and momentum)
 - \circ visual scanning
 - \circ calorimetric reconstruction
 - Background (pion) removed

Proton angle and momentum

- GENIE MC:
 - Estimate efficiency of the automated reconstruction, detector acceptance and proton containment (for Pid)
 - \circ estimate backgrounds
 - ➢ NC background
 - Wrong-sign (WS) background
 - $ightarrow \pi^0$ with both γ not converting

Event Topology

DATA-MC Comparison

- GENIE- Generates Events for Neutrino Interaction Experiments*
 - FSI: Intranuclear Cascade model (INC)
 - Preliminary meson exchange (MEC) model
- GIBUU The Giessen Boltzmann-Uehling-Uhlenbeck Project**
 - o FSI: Transport model
 - 2p2h-NN channel with 2 nucleons produced

 *ArgoNeuT Coll. is grateful to GENIE authors, in particular S. Dytman and H. Gallagher, for many useful discussions
 **ArgoNeuT Coll. is grateful to Olga Lalakulich and Ulrich Mosel for providing the GiBUU predictions and for many useful discussions

Proton Multiplicity

NuFact 13 T. Yang

Proton Kinematics & Nuclear Effects

- If nucleon in a correlated pair is knocked out of a nucleus, the "paired" nucleon is also emitted.
- Based on e-scattering data, correlated nucleon pairs are emitted preferentially back-to-back.
- Search of back-back protons in the ArgoNeuT muon+2p event samples
 o indication for nucleon-nucleon correlation in neutrino scattering.

back-to-back protons (angle between 2 p \sim 180⁰)

Back-to-back Proton Pair

- *p*₁: θ₁⁼53° L₁=7.5 cm, *p*₁=443±26 MeV/c
- p₂: θ₂=128° L₂=8.9 cm, p₂=466±28 MeV/c
- Angle between two protons γ=181°
- Find 5 such events in antineutrino sample
- Need to estimate FSI background and signal expectation

Search for Neutral Hyperon Production

 $\Lambda^0 \rightarrow p\pi^-$

64%

 $\rightarrow n\pi^0$ 36%

 $\nu_{\mu} + p \rightarrow \mu^{+} + \Lambda^{0}$

- Antineutrino only. ($u \rightarrow s$ transition), E_v>325 MeV threshold.
- In SU(3)_F symmetric quark model, this process is very closely related to QE neutron production.
- Relatively long lifetime \circ For Λ^0 , $c\tau = 7.89$ cm
- Looking for displaced vertex

dE/dx e/y ID

- Separating electrons from γ s is important in precision measurements
- e.g. understanding whether the MiniBooNE anomaly is an effect of oscillation or background
- LongBaseline measurements e.g. CP violation etc.
- The dE/dx of a shower can be a powerful discrimination tool

NuFact 13 T. Yang

On Going Analyses

- NC π^0 cross sections
- Nuclear de-excitation γs
- Coherent pion production
- μ + nprotons + npions
- Electron neutrino event id
- Electron neutrino and antineutrino beam fractions.

Conclusions

- Data from LAr are extremely helpful and can provide important hints to tune MC generators and discriminate among models.
- Progressing with the development of more and more accurate reconstruction tools for data analysis, in combination with larger mass LAr-TPC detectors (MicroBooNE and future LAr detectors) is an important step for accurate topological analysis of neutrino events, on the line pioneered by ArgoNeuT.

Development in the US

Yale TPC

Location: Yale University operational: 2007

Bo

Location: Fermilab Active volume: 0.002 ton Active volume: 0.02 ton operational 2008

ArgoNeuT

Location: Fermilab Active volume:0.3 ton operational: 2008 First neutrinos: June 2009

MicroBooNE

LAr1

LBNE

Location: Fermilab Active volume: 1 kton

Location:Homestake Active volume:10 kton Construction start: 2016? Construction start 2020

Luke

Location: Fermilab Operational: since 2008

Location:Fermilab Purpose: materials test st Purpose: LAr purity demo **Operational: 2011**

Location:Fermilab Purpose:LArTPC calibration Operational:2013 (phase 1)

- Challenges
 - Good LAr purity in large vessels
 - Stable electric field over long Ο drift distance.

ArgoNeuT TPC and Cryostat

"The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab" JINST 7 (2012) P10019

The TPC, about to enter the inner cryostat

Cryostat Volume	500 Liters	
TPC Volume	170 Liters	
# Electronic Channels	480	
Wire Pitch	4 mm	
Electronics Style (Temperature)	JFET (293 K)	
Max. Drift Length	47 cm	
Light Collection	None	

- Self contained system
- Recirculate argon through a copper-based filter
- Cryocooler used to recondense boil-off gas

PID Efficiencies

	Proton	Kaon	Pion	Muon
Proton	0.97	0.15	0.05	0
Kaon	0.03	0.60	0.09	0.01
Pion	0	0.06	0.25	0.28
Muon	0	0.20	0.61	0.71

Identified as

Generated

- Good efficiency to identify protons.
- No separation between pions and muons.

