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Coherent Processes

• Neutrino scatters coherently off a target nucleus.

• No quantum numbers (charge, spin, isospin) exchange.

• Small momentum transfer.

• π/ρ mesons are emitted at small angles with respect to the incident neutrino.

Coherent Processes: 

 !"#$%$&' π0   !    !"#$%$&'  ρ0   !

 !"#$%$&'  π +  !    !"#$%$&'  ρ+   !

 !"#$%$&' π -                    !"#$%$&'  ρ- 

(! " Different Analyses  )

 Structure of  Weak-Current and its Hadronic-Content

        !"#π#Partially conserved axial current (PCAC) & Adler’s theorem

        !"#ρ#Conserved vector current (CVC) &  Vector meson dominance (VMD) 

 !"#! -/!"#! + :  Identical signatures ((π) # Constraint on the  )*/ )  Flux 

     !"#ρ0 : If/Since CVC and  VMD are at work,  then using γ-induced Cohρ0  #
                                      Get an independent measure of the  Absolute Nu & NuBar Flux; 
                         Cohρ+ and Cohρ-  provide additional redundancies. 

A matrix of measurements leading to a much better modeling of Low-Q**2  processes  
and  provide  constraints on Flux that are independent of the usual methods  

_

A  (p’)

!"#*A    !   "#π/ρ*A 

A  (p’)
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Fig. 1. Diagram of the Cohπ0 process, ν + A → ν + A + π0.

itself as a forward electromagnetic shower posing a background for the νe-
induced signal. This is relevant to the long baseline experiments searching for
νe appearance with the purpose of measuring the mixing angle Θ13. A precise
measurement of Cohπ0 , although conducted at energies higher than those
of the long baseline projects at Fermilab (MINOS/NOνA), will constrain the
error on a model-prediction of this background to the νe appearance. Finally,
the study of coherent pion production provides an insight into the structure
of the weak hadronic current [1,8], and offers a test of the partially conserved
axial-vector current hypothesis (PCAC) [9]. Ref. [10] presents an excellent
review of these topics.

A coherent interaction, Figure 1, where no charge or isospin is exchanged be-
tween the ν and the target nucleus (A) which recoils without breakup, leads
to an enhancement in the cross-section. In the Cohπ0 process the interaction
is mediated by a pomeron-like particle bearing the quantum number of the
vacuum. The cross section is dominated by the axial vector current. The contri-
bution of the isovector current to the Cohπ0 process is minimal where Z0 can
be viewed as a ρ meson which produces a π0 exchanging an isoscalar ω with
A. This minimal contribution of the isovector current to the Cohπ0 arises
from two reasons: (a) the cross section of the isovector ρ-A interaction is zero
in the forward direction, a direction preferred by the nuclear form factor; and
(b) the vector component has a contribution proportional to (1−2 sin2 θW)2

reducing the isovector contribution further, the net reduction with respect to
the axial part being a factor of 3.5. The PCAC hypothesis stipulates that for
zero-momentum transfer (Q2 = 0, where Q2 is the negative of the square
of the four-momentum transfer from the incident neutrino to the target), the
ν-A cross section can be related to the π-A cross section. The ν-A cross
section in the forward direction is related to the strong π-A interaction as
follows:
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Charged Current: π+, π-, ρ+, ρ-. • Neutral Current: π0, ρ0
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Motivation

• Measure Lorentz structure of weak current: 

• Coherent π:
Partially Conserved Axial Current (PCAC) & Adler’s theorem

• Coherent ρ:
Conserved vector current (CVC) & Vector meson dominance(VMD)

• Coh π+/π-, Coh ρ+/ρ-: identical signature => Constraint on Nu/NuBar flux.

• γ-induced coh ρ0 => ν induced coh ρ0 => Constraint on the neutrino flux.

• Useful channels for relative flux measurement & Eν-Scale.

• Coh-π+: Constraint on neutrino beam divergence. 

• Coh-π0 like events are background to νe appearance.

• The ideas/tools of this analysis was developed while working on the high-resolution 
LBNE-ND
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A  (p’)

Neutrino-Induced Coherent Rho  Production:   !"#!A    !   "#ρ!A 

Hadron Dominance: 
Piketty-Stodolsky Model  CVC

!$Induced ρ γ-production ρ 

A  (p’)
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Meson-Nucleus  Absorption: 

 Coherence Condition:  √(|t|)  !  1/R_Nucleus
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Neglib simulation of Coherent π+ and Coherent ρ+ cross-section.

Rein-Segal Model

Coherent Cross-Section

Coherent ρ+ Cross-Section:
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 Coherent-ρ0     -vs-    Coherent-ρ+  : 

 Coherent  ρ+/-  observed by E546,  E632,  SKAT, and  BEBC 
  Precision of ± 25--30% 

 Measurement of Coherent-ρ0  has never been reported. 

  Inclusive-ρ0 has been measured:
  the most precise measurement is by NOMAD 
  ( Nucl. Phys. B601, 3[2001] ) 

 Simple relation between Coherentρ+/-     &  Coherentρ+/-  !

         

!(Coherent-ρ0 )   ≅  0.15 x !(Coherent-ρ+)   

5

• σ(Coh ρ0) ≈ 0.15*σ(coh ρ+)

• Coherent ρ+ observed by E546, E632, SKAT, and BEBC 
Precision of ± 25--30%

• Coherent ρ0 has never been reported. 

Simple relation between Coherent ρ+ and Coherent ρ0

Coherent Cross-Section
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Introduction to NOMAD

• The Neutrino Oscillation MAgnetic Detector (NOMAD, WA-96) was 
designed to search for NuMu to NuTau appearing from oscillations in 
the CERN SPS wide band neutrino beam.

• NOMAD accumulated ~2 million neutrino interactions.

• In addition to oscillation search at high ∆m^2, NOMAD offers the 
unprecedented opportunity of studying a large number of neutrino 
interactions with high resolution on all of the particles in the event.
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Nomad Detector

• 2.7 ton, low average density (0.1 g/cm^3).

• 44 Drift Chambers (3X3 m^2). 

• TRD (Transition Radiation Detector), Preshower, ECal => Electron PID.

• Dipole magnetic field B = 0.4 T 
=> High precision momentum measurement of charged particles. 



Signal and Background

• Signal：
ρ0  ⇒ π+π-

• Background：

• NC-DIS: 2-Track (+,-). The largest contribution.

• CC-DIS: 2-Track (+,-) where “-” is µ- w/o µ ID. Small contribution.

• Outside-Background (OBG): K0s from outside-interactions. Still 
smaller contribution.

• Control Sample：CC Data Simulator Correction

νµ-CC events where the µ- are identified and then `removed’; the 
remaining hadronic (+,-) tracks subjected to the analysis.
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Candidate Events

Coherent-ρ0  Candidate Event
Pπ+ = 3.1;  Pπ- = 2.3 (GeV)
Mππ= 0.74 GeV 
ζππ =0.008 

π-

π+

What we are looking for.

11

π+ π- with nothing else

ζ = E*(1-cosθ)
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Candidate Events

Coherent-ρ0  Candidate Event
Pπ+ = 5.9;  Pπ- = 1.8 (GeV)
Mππ= 0.61 GeV 
ζππ =0.024 π+

π-

What we are looking for.
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π+ π- with nothing else

ζ = E*(1-cosθ)
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Φ!!

CC-DIS

NC-DIS
Cohρ0
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E!!

CC-DIS

NC-DIS

Cohρ0
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• Shape comparison of 2-track (+-) MC events in FV with no muon ID. 

• Pre-selection cuts: 
Eππ > 2 GeV, 20 ≤ Φππ ≤ 160

Pre-Selection Cuts (Shape Comparison)
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Pre-Selection Cuts

• MC:
NC-DIS (~x4 Data) ➳ 0.44M 
CC-DIS (~x4 Data) ➳ 1.44M 
Cohπ+               ➳ 10k 
Cohρ0               ➳ 1500

• Fiducial cut, Muon-veto, 2-tracks, Eππ ≥ 2 GeV.

• Veto/UpHanger, Photon Veto, 20≤Φ≤160.

NC-DIS CC-DIS OBG OTHER Coh ρ0 MC DATA

5377 833 245 88 296 6841 6852
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AnalysisAnalysis  of  Coherentρ0: Kinematic Shape Comparison 

OBG
K0S 

85% of ρ0

!!! M!! 

CC-DIS

NC-DIS

Cohρ0

CC-DIS

Cohρ0

(0.6 < M!! < 1.0)
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Analysis  of  Coherentρ0: Kinematic Shape Comparison 

OBG
K0S 

85% of ρ0

!!! M!! 

CC-DIS

NC-DIS

Cohρ0

CC-DIS

Cohρ0

(0.6 < M!! < 1.0)

16• Plot Mππ  and ζ distribution after pre-selection cuts.

• ζ  is the critical variable which distinguishes Coh ρ0  from background. 
Need to know the shape and normalization of NC-DIS; CC-DIS very small.
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Calibration of the Background

• Calibrate and normalize OBG (Outside Background):

• Calibrate by 2-track events with primary vertex outside of detector.

• Normalize it to the thin K0 peak in Mππ plot (498 ± 12 MeV).

• Calibrate the shape of NC background using control sample (CC-DS).

• Normalize NC background using control sample.

• Measure Coherent ρ0 using ζππ shape.
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NC Background Calibration

• We need to understand NC-DIS. The most important is the shape of ζππ.

• CC Data Simulator (CC-DS): 

• Select νµCC events with 3, 3-&-4 Tracks, including the muon. 

• Remove the muon, put the π+π- subjected through the standard       
selection. 

• Obtain a MC Re-Weight based on Data/MC [Eππ, Mππ, ζππ]

• Apply the Re-Weight to calibrate the shape of ζππ.

• Tried 3 track sample and 3 -&-4 track sample, 1D/2D/3D re-weighting 
matrix. The difference is within 10%.
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Shape of NC-DIS used in Coherentρ0  Analysis: CC Data-Simulator

  !!"CC with !-π+π- 
 DIS weight based upon: [Eππ, Mππ, ςππ]

                                        

 E!!

Weighted MC
Un-weighted MC

21

 M!!

Weighted MC
Un-weighted MC

22

NC Background Calibration
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!!! 

 Signal ! 
0.6≤M!!≤1.0

Weighted MC
Un-weighted MC

23

ζππ
NC Background Calibration
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NC Background Normalization

• NC-DIS Shapes re-weighted using 
CC Data-Simulator

• Look at background region:ζ>0.075

• Using Φππ distribution (20 ~ 160), 
normalize NC-DIS mc to fit data.
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Coherent ρ0  Measurement

ζππ              0.6<Mππ<1.0
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0.6≤Mππ≤1.0
! 

CC-Data

!Cohρ0 MC (634 ± 111 evts)

!NC-MC Bkg(DS-Weighted)
!CC-MC Bkg 
!OBG-K0 Bkg 

Normalization (Cohρ0)

CC-MC

NC-MC

Cohρ0

Total Bkg

OBG-K0

  0.423   ± 0.074
     (17.5%)

χ2 
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• Impose 0.6≤ Mππ ≤1.0 GeV cut.

• Using ζππ, fit for Coh ρ0 in ≤0.1 region.
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Mππ in Coherent -vs- non-Coherent Regions
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2
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Systematic Error

• Data-Simulator: ± 0.045 (10.6%)

• NC-DIS: ± 0.040 (9.5%)

• CC-DIS: ± 0.020 (4.5%)

• OBG: ± 0.004 (1%) (negligible)

• Total systematic: ± 0.063 (15.0%)

• Total error: 0.423 ± 0.074 ± 0.063 (22.9%)
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Conclusion

• We have conducted a measurement of 
Coherent-ρ0 production.

• The analysis is data-driven; the backgrounds 
are constrained using control samples.

• We observed 
634.5 ± 111.0 (Stat.) ± 95.2 (Syst.) 
fully corrected Coherent-ρ0 events. The rate 
with respect to CC events (1.44*10e6) is: 
(4.41 ±1.0)*10e-4.

• This is the first observation of Coherent-ρ0.
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! A  beautiful  distribution  in  !-measurement!

    but ... useless!  
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(! " Different Analyses  )

 Structure of  Weak-Current and its Hadronic-Content

        !"#π#Partially conserved axial current (PCAC) & Adler’s theorem

        !"#ρ#Conserved vector current (CVC) &  Vector meson dominance (VMD) 

 !"#! -/!"#! + :  Identical signatures ((π) # Constraint on the  )*/ )  Flux 

     !"#ρ0 : If/Since CVC and  VMD are at work,  then using γ-induced Cohρ0  #
                                      Get an independent measure of the  Absolute Nu & NuBar Flux; 
                         Cohρ+ and Cohρ-  provide additional redundancies. 

A matrix of measurements leading to a much better modeling of Low-Q**2  processes  
and  provide  constraints on Flux that are independent of the usual methods  
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A  (p’)

!"#*A    !   "#π/ρ*A 

A  (p’)
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• Coherent π+,  Coherent π-,  Coherent π0, 
Coherent ρ+,  Coherent ρ-,   Coherent ρ0.

• Measure Lorentz structure of weak current: 

• Coherent π:
Partially Conserved Axial Current (PCAC) & Adler’s theorem

• Coherent ρ:
Conserved vector current (CVC) & Vector meson dominance(VMD)

• Coh π+/π-, Coh ρ+/ρ-: identical signature => Constraint on Nu/NuBar flux.

• γ-induced coh ρ0 => ν induced coh ρ0 => Constrained on the neutrino flux.

• Useful channels for (relative flux)  measurement & Eν-Scale.

• Coh-π+: Constraint on neutrino beam divergence. 

• Coh-π0 like events are background to νe appearance.

• The ideas/tools of this analysis was developed while working on the high-resolution 
LBNE-ND



Coherent Production
A  (p’)

Neutrino-Induced Coherent Rho  Production:   !"#!A    !   "#ρ!A 

Hadron Dominance: 
Piketty-Stodolsky Model  CVC

!$Induced ρ γ-production ρ 

A  (p’)

3

Meson-Nucleus  Absorption: 

 Coherence Condition:  √(|t|)  !  1/R_Nucleus
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• With NC-DIS ζ-shape fixed, return to the Non-Muon 2-Track sample.

• Next we are going to obtain the NC-DIS normalization.
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NC Background Calibration



Candidate Events

π+

π-

Coherent-ρ0  Candidate Event
Pπ+ = 1.6;  Pπ- = 2.6 (GeV)
Mππ= 0.69 GeV 
ζππ =0.028 

What we are looking for.
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Selection Cuts

Selection NC-DIS CC-DIS OBG Other
  
 Cohρ0 Total Data

Veto/UpHanger 10,341 2,379 1,467 512 386 15,086 15,850

Photon Veto 6,918 1,440 347 235 359 9,300 9,490

20≤Φ≤160 5,377 833 245 88 296 6,841 6,852

 Selection 

! `Other‘ include  QE, Res, CohPi+, CohPi0  

! Vetos: DC-Veto/tube, Upstream-hanger, V0-from-vertex   
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Signal Normalization
Signal Normalization
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