Neutrinos versus the flavour puzzle

Belén Gavela

NuFact 2013, Beijing

1) Experimental evidence for new particle physics:

- ***** Neutrino masses**
- *** Dark matter
- **** Matter-antimatter asymmetry**

2) Uneasiness with SM fine-tunings

1) Experimental evidence for new particle physics:

- ***** Neutrino masses**
- *** Dark matter
- **** Matter-antimatter asymmetry**

2) Uneasiness with SM fine-tunings i.e. strong CP

1) Experimental evidence for new particle physics:

- ***** Neutrino masses**
- *** Dark matter
- **** Matter-antimatter asymmetry**

2) Uneasiness with SM fine-tunings, i.e. electroweak:

*** Hierarchy problem *** Flavour puzzle

1) Experimental evidence for new particle physics:

- ***** Neutrino masses**
- *** Dark matter
- **** Matter-antimatter asymmetry**

2) Uneasiness with SM fine-tunings, i.e. electroweak:

*** Hierarchy problem $\rightarrow \Lambda_{\text{electroweak}} \sim 1 \text{ TeV}$? *** Flavour puzzle $\rightarrow \Lambda_{\text{f}} \sim 100$'s TeV ???

FLAVOUR is the real issue in **BSM** electroweak

- * The understanding of the physics behind is stalled since decades
- * Precious data for the puzzle e.g.: B's, neutrinos

Neutrino light on flavour ?

- 1) masses
- 2) mixing

Neutrinos lighter because Majorana?

Up to now, the only real strength in particle physics is the gauge principle

Neutrinos are special because the SM gauge symmetry allows

to write Majorana masses for them

If new physics scale M > v

$$\int = \int_{SU(3)\times SU(2)\times U(1)} + O^{d=5} + \dots$$

If Majorana masses found, this will be the

New Standard Model (vSM)

v masses beyond the SM : tree level

 $2 \ge 2 = 1 + 3$

Type I seesaw

$$-\mathcal{L}_{mass} = \overline{L} H Y_E E_R + \overline{L} \widetilde{H} \mathbf{Y} N + \mathbf{M} \overline{N} N^c + h.c.$$

Type I seesaw

$$-\mathcal{L}_{mass} = \overline{L} H Y_E E_R + \overline{L} \widetilde{H} \frac{\mathbf{Y} N}{\mathbf{Y} N} + \frac{M \overline{N} N^c}{N} + h.c.$$

In mass scale we had

Within seesaw, the size of v Yukawa couplings is alike

to that for other fermions:

Pílar Hernandez drawings

Minkowski; Gell-Mann, Ramond Slansky; Yanagida, Glashow...

Within seesaw, the size of v Yukawa couplings is allowed

in large classes of models, e.g.:

 $\Lambda \leq \text{Tev}$

for instance in type I seesaw models with approximate $U(I)_{LN}$ symmetry

inverse, direct.....

WG1 and WG2 Friday: talk by Filipe Joaquim

Wyler+Wolfenstein 83, Mohapatra+Valle 86, Branco+Grimus+Lavoura 89, Gonzalez-Garcia+Valle 89, Ilakovac+Pilaftsis 95, Barbieri+Hambye+Romanino 03, Raidal+Strumia+Turzynski 05, Kersten+Smirnov 07, Abada+Biggio+Bonnet+Gavela+Hambye 07, Shaposhnikov 07, Asaka+Blanchet 08, Gavela+Hambye+D. Hernandez+ P. Hernandez 09

Neutrino are optimal windows into the exotic -dark- sectors

* Can mix with new neutral fermions, heavy or light

* Interactions not obscured by strong and e.m. ones

.... they can be fermions

DARK FLAVOURS ?

DARK FLAVOURS ?

Neutrino oscillations --> talk by Patrick Huber

Flavour — Yukawas

- 1) Flavour violation searches with charged leptons: what will they tell us about the type I seesaw heavy neutrinos?
- 2) Theory: towards a dynamical origin of Yukawa couplings

Lepton Flavour violation (LFV) windows:

* Another fantastic experimental window being opened on lepton-flavour :

μ-e conversion in nuclei

What is Muon to Electron Conversion?

1s state in a muonic atom

$$\mu^- + (A, Z) \longrightarrow \nu_\mu + (A, Z - 1)$$

Neutrino-less muon nuclear capture

$$\mu^- + (A, Z) \rightarrow e^- + (A, Z)$$

Event Signature : a single mono-energetic electron of 100 MeV Backgrounds: (1) physics backgrounds ex. muon decay in orbit (DIO) (2) beam-related backgrounds ex. radiative pion capture, muon decay in flight, (3) cosmic rays, false tracking

courtesy of Yoshi Kuno

Consider together

μ -->e conversion

μ-->e γ

μ-->e e e

Assume that singlet fermion(s) N exists in nature

What are the limits on their mass \mathbf{m}_{N} and mixings \mathbf{U}_{IN} ? Can we observe them?

Assume that singlet fermion(s) N exists in nature

What are the limits on their mass \mathbf{m}_{N} and mixings \mathbf{U}_{IN} ? Can we observe them?

The paradigm model: Seesaw type-I N_R

$$\mathcal{L} = \mathcal{L}_{SM} + i\overline{N_R}\partial N_R - \left[\overline{N_R}Y_N\tilde{\phi}^{\dagger}\ell_L + \frac{1}{2}\overline{N_R}MN_R^c + h.c.\right]$$
$$\mathbf{U}_{\mathrm{IN}} \sim \mathbf{Y} \mathbf{v}/\mathbf{M}$$
Assume that singlet fermion(s) N exists in nature

What are the limits on their mass m_N and mixings U_{IN} ? Can we observe them?

(Alonso, Dhen, Gavela, Hambye)

μ -->e conversion

Figure 1: The five classes of diagrams contributing to μ to e conversion in the type-I seesaw model.

μ -->e conversion

Figure 1: The five classes of diagrams contributing to μ to e conversion in the type-I seesaw model.

They share just one form factor ("dipole")

μ -->e conversion

Figure 1: The five classes of diagrams contributing to μ to e conversion in the type-I seesaw model.

Share all form factors, in different combinations

Type I seesaw

μ -->e conversion

Many people before us computed it for singlet fermions:

De Gouvea Mohapatra Riazzudin+Marshak+Mohapatra 91, Chang+Ng 94, Ioannisian+Pilaftsis00, Grimus + Lavoura Pilaftsis and Underwood05, Deppish+Kosmas+Valle06, We agree for Ulakovac+Pilaftsis09 logarithmic dependence Deppish+Pilaftsis11, Dinh+Ibarra+Molinaro+Petcov12, Aristizabal Sierra+Degee+Kamenik12

Not two among those papers completely agree with each other, or they are not complete

typical applications assumed masses over 100 GeV or TeV

- * we computed all contributions (logarithmic and constant)
- * μ--> e conversion vanishes for masses in the 2-7 TeV mass regime; (degenerate or hierarchical heavy neutrinos)

* we also considered the low mass region, sweeping over eV< m_N < thousands GeV

(Alonso, Dhen, Gavela, Hambye)

* Low mass regime eV << m_N << m_W

(realistic neutrino masses <--> degenerate heavy neutrinos)

Peak decays+PS191+NuTev/CHARM+Delphi: Atre+Han+Pascoli+Zhang 09...... Richayskiy+Ivashko 12

Unitarity: Antusch+Biggio+Fdez-Martinez+Gavela+Lopez-Pavon 06; Antusch+Bauman+ Fedez-Martinez 09

* Low mass regime eV << m_N << m_W

(realistic neutrino masses <--> degenerate heavy neutrinos)

* Low mass regime eV << m_N << m_W

(realistic neutrino masses <--> degenerate heavy neutrinos)

BBN and SN: Kainulainen+Maalampi+Peltoniemi91, Kusenko+Pascoli+Semikoz 05, Mangano+Serpico 11, Ruchaysiliy +Ivashko 12, Kufflick+McDermott+Zurek 12

× /

Comparing the seesaw scales reached by

Neutrino Oscillations vs µ-e experiments vs LHC

e.g. for Seesaw type I (heavy singlet fermions):

* v-oscillations: $10^{-3}eV - M_{GUT} \sim 10^{15} \text{ GeV}$, because interferometry

* μ-e conversion: 2MeV - 6000 GeV (type I inverse seesaw class)

* **LHC:** ~ # **TeV**

Warning: all LFV searches complementary in impact, e.g.:

type III contributes μ -->e conversion tree level

μ-->e γ

µ-->eee type II contributes tree level

Dynamical Yukawas

Yukawa couplings are the source of flavour in the SM

Yukawa couplings are a source of flavour in the v-SM

May they correspond to dynamical fields (e.g. vev of fields that carry flavor) ?

In many BSM the Yukawas do not come from dynamical fields:

D.B. Kaplan-Georgi in the 80's proposed a light SM scalar because being a (quasi) goldstone boson: *composite Higgs*

(D.B. Kaplan, Georgi, Dimopoulos, Banks, Dugan, Galison......Contino, Nomura, Pomarol; Agashe, Contino, Pomarol; Giudice, Pomarol, Ratazzi, Grojean; Contino, Grojean, Moretti; Azatov, Galloway, Contino... Frigerio, Pomarol, Riva, Urbano...)

D.B. Kaplan-Georgi in the 80's proposed a light SM scalar because being a (quasi) goldstone boson: *composite Higgs*

Flavour "Partial compositeness" D.B Kaplan 91:

A sort of "seesaw for quarks"

(nowadays sometimes justified from extra-dim physics)

 $m_q = v \mathbf{Y}_{SM}$

(D.B Kaplan 91; Redi, Weiler; Contino, Kramer, Son, Sundrum; da Rold, Delauney, Grojean, G. Perez; Contino, Nomura, Pomarol, Agashe, Giudice, Perez, Panico, Redi, Wulzer...)

D.B. Kaplan-Georgi in the 80's proposed a light SM scalar because being a (quasi) goldstone boson: *composite Higgs*

Flavour "Partial compositeness" D.B Kaplan 91:

A sort of "seesaw for quarks"

(nowadays sometimes justified from extra-dim physics)

(D.B Kaplan 91; Redi, Weiler; Contino, Kramer, Son, Sundrum; da Rold, Delauney, Grojean, G. Perez; Contino, Nomura, Pomarol, Agashe, Giudice, Perez, Panico, Redi, Wulzer...)

D.B. Kaplan-Georgi in the 80's proposed a light SM scalar because being a (quasi) goldstone boson: *composite Higgs*

Flavour "Partial compositeness" D.B Kaplan 91:

A sort of "seesaw for quarks"

(nowadays sometimes justified from extra-dim physics)

(D.B Kaplan 91; Redi, Weiler; Contino, Kramer, Son, Sundrum; da Rold, Delauney, Grojean, G. Perez; Contino, Nomura, Pomarol, Agashe, Giudice, Perez, Panico, Redi, Wulzer...)

D.B. Kaplan-Georgi in the 80's proposed a light SM scalar because being a (quasi) goldstone boson: *composite Higgs*

Flavour "Partial compositeness" D.B Kaplan 91:

A sort of "seesaw for quarks"

(nowadays sometimes justified from extra-dim physics)

(D.B Kaplan 91; Redi, Weiler; Contino, Kramer, Son, Sundrum; da Rold, Delauney, Grojean, G. Perez; Contino, Nomura, Pomarol, Agashe, Giudice, Perez, Panico, Redi, Wulzer...)

D.B. Kaplan-Georgi in the 80's proposed a light SM scalar because being a (quasi) goldstone boson: *composite Higgs*

Flavour "Partial compositeness" D.B Kaplan 91:

A sort of "seesaw for quarks"

(nowadays sometimes justified from extra-dim physics)

(D.B Kaplan 91; Redi, Weiler; Contino, Kramer, Son, Sundrum; da Rold, Delauney, Grojean, G. Perez; Contino, Nomura, Pomarol, Agashe, Giudice, Perez, Panico, Redi, Wulzer...)

In other BSM Yukawas do correspond to dynamical fields:

Discrete symmetry ideas:

The Yukawas are indeed explained in terms of dynamical fields.

In spite of θ_{13} not very small, some activity. e.g. combine generalized CP (Bernabeu, Branco, Gronau 80s) with Z₂: maximal θ_{23} , strong constraints on values of CP phases (Feruglio, Hagedorn and Ziegler 2013; Holthausen, Lindner and Schmidt 2013; Girardi, Meroni, Petcov 2013)

- Discrete approaches do not relate mixing to spectrum
- Difficulties to consider both quarks and leptons

Instead of inventing an ad-hoc symmetry group,

why not use the continuous flavour group

suggested by the SM itself?

We have realized that the different pattern for

quarks versus leptons

may be a simple consequence of the

continuous flavour group of the SM (+ seesaw)

(Alonso, Gavela, D.Hernandez, Merlo, Rigolin)

(Alonso, Gavela, Isidori, Maiani)

We have realized that the different pattern for

quarks versus leptons

may be a simple consequence of the

continuous flavour group of the SM (+ seesaw)

Our guideline is to use:

- maximal symmetry
- minimal field content

(Alonso, Gavela, D.Hernandez, Merlo, Rigolin)

(Alonso, Gavela, Isidori, Maiani)

Global flavour symmetry of the SM

* QCD has a global -chiral- symmetry in the limit of massless quarks. For n generations:

$$\mathcal{L}_{QCD}^{\text{fermions}} = \bar{\Psi}(i\not{D} - m)\Psi \rightarrow \bar{\Psi}i\not{D}\Psi = \overline{\Psi_L}i\not{D}\Psi_L + \overline{\Psi_R}i\not{D}\Psi_R$$
$$SU(n)_L \times SU(n)_R \times U(1)'s$$

* In the SM, fermion masses and mixings result from Yukawa couplings. For massless quarks, the SM has a global flavour symmetry:

Quarks

This continuous symmetry of the SM

 $G_{\text{flavour}} = U(n)_{Q_L} \times U(n)_{U_R} \times U(n)_{D_R}$

is phenomenologically very successful and

at the basis of Minimal Flavour Violation 、

in which the Yukawa couplings are only spurions H^{Y} spurion

D'Ambrosio+Giudice+Isidori+Strumia; Cirigliano+Isidori+Grinstein+Wise

This continuous symmetry of the SM

 $G_{\text{flavour}} = U(n)_{Q_L} \times U(n)_{U_R} \times U(n)_{D_R}$

is phenomenologically very successful and

at the basis of Minimal Flavour Violation 、

in which the Yukawa couplings are only spurions $H^{\hat{}}$ spurion

D'Ambrosio+Giudice+Isidori+Strumia; Cirigliano+Isidori+Grinstein+Wise

One step further

(Alonso, Gavela, D.Hernandez, Merlo, Rigolin, 2012 -2013) (Alonso, Gavela, Isidori, Maiani, 2013)
Quarks

For this talk:

each Y_{SM} -- >one single field V $Y_{SM} \sim \frac{\langle y \rangle}{\Lambda_c}$ quarks: Á Ý *< Y*u > $\langle y_{\rm d} \rangle$ Ur O D_R

Anselm+Berezhiani 96; Berezhiani+Rossi 01... Alonso+Gavela+Merlo+Rigolin 11...

 $G_{flavour} = SU(3)_{QL} \times SU(3)_{UR} \times SU(3)_{DR} \dots$

For this talk:

$G_{\text{flavour}} = SU(3)_{QL} \times SU(3)_{UR} \times SU(3)_{DR} \dots$ $y_d \sim (3,1,\overline{3}) \qquad \qquad y_u \sim (3,\overline{3},1)$

 $\mathbf{z}\mathbf{V}(\mathcal{Y}_{\mathbf{d}}, \mathcal{Y}_{\mathbf{u}})$?

* Does the minimum of the scalar potential justify the observed masses and mixings?

$$\begin{array}{l} \mathcal{Y}_{d} \sim (3, \bar{3}, 1) & \mathcal{Y}_{u} \sim (3, 1, \bar{3}) \\ \hline \langle \mathcal{Y}_{d} \rangle \\ \hline \Lambda_{f} = Y_{D} = V_{CKM} \begin{pmatrix} y_{d} & 0 & 0 \\ 0 & y_{s} & 0 \\ 0 & 0 & y_{b} \end{pmatrix} \end{pmatrix}, \quad \begin{array}{l} \langle \mathcal{Y}_{u} \rangle \\ \hline \Lambda_{f} = Y_{U} = \begin{pmatrix} y_{u} & 0 & 0 \\ 0 & y_{c} & 0 \\ 0 & 0 & y_{t} \end{pmatrix} \end{pmatrix}$$

 $V(\mathcal{Y}_d, \mathcal{Y}_u)$

* Invariant under the SM gauge symmetry

* Invariant under its global flavour symmetry G_{flavour} $G_{\text{flavour}} = U(3)_{QL} \ge U(3)_{UR} \ge U(3)_{DR}$

 $V(\mathcal{Y}_d, \mathcal{Y}_u)$

* Invariant under the SM gauge symmetry

* Invariant under its global flavour symmetry G_{flavour} $G_{\text{flavour}} = U(3)_{\text{OL}} \ge U(3)_{\text{UR}} \ge U(3)_{\text{DR}}$

There are as many independent invariants I as physical variables

 $\mathbf{V}(\mathcal{Y}_{\mathbf{d}}, \mathcal{Y}_{\mathbf{u}}) = \mathbf{V}(\mathbf{I}(\mathcal{Y}_{\mathbf{d}}, \mathcal{Y}_{\mathbf{u}}))$

Minimization

a variational principle fixes the vevs of the Fields

 $\delta V=0$

$$\sum_{j} \frac{\partial I_{j}}{\partial y_{i}} \frac{\partial V}{\partial I_{j}} \equiv J_{ij} \frac{\partial V}{\partial I_{j}} = 0 \,,$$

masses, mixing angles etc.

This is an homogenous linear equation; if the rank of the Jacobian $J_{ij} = \partial I_j / \partial y_i$, is:

Maximum: then the only solution is: $\frac{\partial V}{\partial I_j} = 0$, Less than Maximum: then the number of equations reduces to a number equal to the rank

Boundaries

for a reduced rank of the Jacobian, det(J) = 0there exists (at least) a direction δy_i for which a variation of the field variables does not vary the invariants

that is a Boundary of the I-manifold

[Cabibbo, Maiani, 1969]

Boundaries Exhibit Unbroken Symmetry [Michel, Radicati, 1969] (maximal subgroups)

quark case

Bi-fundamental Flavour Fields

For quarks: 10 independent invariants (because 6 masses+ 3 angles + 1 phase) that we may choose as

$$\begin{split} I_{U} &= \operatorname{Tr} \left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right], & I_{D} &= \operatorname{Tr} \left[\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right], \\ I_{U^{2}} &= \operatorname{Tr} \left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right)^{2} \right], & I_{D^{2}} &= \operatorname{Tr} \left[\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \right], \\ I_{U^{3}} &= \operatorname{Tr} \left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right)^{3} \right], & I_{D^{3}} &= \operatorname{Tr} \left[\left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{3} \right], \\ I_{U,D} &= \operatorname{Tr} \left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right], & I_{U,D^{2}} &= \operatorname{Tr} \left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \right], \\ I_{U^{2},D} &= \operatorname{Tr} \left[\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \right], & I_{(U,D)^{2}} &= \operatorname{Tr} \left[\left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \right]. \end{split}$$

[Feldmann, Jung, Mannel; Jenkins, Manohar]

[Feldmann, Jung, Mannel; Jenkins, Manohar Alonso. Gavela. Isidori. Maiani 20131

$$\det (J_{UD}) = (y_u^2 - y_t^2) (y_t^2 - y_c^2) (y_c^2 - y_u^2)$$
$$(y_d^2 - y_b^2) (y_b^2 - y_s^2) (y_s^2 - y_d^2)$$
$$\times |V_{ud}| |V_{us}| |V_{cd}| |V_{cs}|$$

the rank is reduced the most for:

V_{CKM}= PERMUTATION

no mixing: reordering of states

(Alonso, Gavela, Isidori, Maiani 2013)

Quark Natural Flavour Pattern

Summarizing, a possible and natural breaking pattern arises:

Gflavour (quarks): $U(3)^3 \rightarrow U(2)^3 \times U(1)$

giving a hierarchical mass spectrum without mixing

$$\langle \mathcal{Y}_{\mathrm{D}} \rangle = \Lambda_f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_b \end{pmatrix}, \quad \langle \mathcal{Y}_{\mathrm{U}} \rangle = \Lambda_f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_t \end{pmatrix},$$

a good approximation to the observed Yukawas to order $(\lambda_c)^2$

And what happens for leptons ?

Any difference with Majorana neutrinos?

Global flavour symmetry of the SM + seesaw

* In the SM, for quarks the maximal global symmetry in the limit of massless quarks was:

* In SM +type I seesaw, for leptons

$$\mathcal{L} = \mathcal{L}_{SM} + i\overline{N_R}\partial N_R - \left[\overline{N_R}Y_N\tilde{\phi}^{\dagger}\ell_L + \frac{1}{2}\overline{N_R}MN_R^c + h.c.\right]$$

the maximal leptonic global symmetry in the limit of massless light leptons is $\frac{U(n)_L \times U(n)_{E_R} \times O(n)_{N_R}}{U(n)_L \times U(n)_{E_R} \times O(n)_{N_R}}$

-> degenerate heavy neutrinos

Bi-fundamental Flavour Fields Physical parameters =Independent Invariants

Very direct results using the bi-unitary parametrization:

$$\mathbf{Y}_{\mathbf{v}} = \langle \underline{y}_{\mathbf{v}} \rangle = \mathcal{U}_{L} \mathbf{y}_{\mathbf{v}} \mathcal{U}_{R}, \qquad \mathbf{Y}_{\mathbf{E}} = \langle \underline{y}_{\mathbf{E}} \rangle = \mathbf{y}_{\mathbf{E}}$$
$$\mathcal{U}_{L} \mathcal{U}_{L}^{\dagger} = 1, \quad \mathcal{U}_{R} \mathcal{U}_{R}^{\dagger} = 1,$$
$$* \mathbf{m}_{e, \mu, \tau} = \mathbf{v} \mathbf{y}_{\mathbf{E}}$$

*But the relation of \mathcal{Y}_{ν} with light neutrino masses is through:

$$m_{v} = \mathbf{Y} \underline{\mathbf{V}^{2}} \mathbf{Y}^{T} \underline{\mathbf{M}}$$

Bi-fundamental Flavour Fields Physical parameters =Independent Invariants

Very direct results using the bi-unitary parametrization:

$$\mathbf{Y}_{\mathbf{v}} = \langle \underline{y}_{v} \rangle = \mathcal{U}_{L} \mathbf{y}_{\nu} \mathcal{U}_{R}, \qquad \mathbf{Y}_{\mathbf{E}} = \langle \underline{y}_{E} \rangle = \mathbf{y}_{E}$$
$$\mathcal{U}_{L} \mathcal{U}_{L}^{\dagger} = 1, \quad \mathcal{U}_{R} \mathcal{U}_{R}^{\dagger} = 1,$$
$$* \mathbf{m}_{e, \mu, \tau} = \mathbf{v}_{E}$$

*But the relation of \mathcal{Y}_{ν} with light neutrino masses is through:

$$U_{PMNS} \mathbf{m}_{\nu} U_{PMNS}^{T} = \frac{v^{2}}{2M} \mathcal{U}_{L} \mathbf{y}_{\nu} \mathcal{U}_{R} \mathcal{U}_{R}^{T} \mathbf{y}_{\nu} \mathcal{U}_{L}^{T},$$

Bi-fundamental Flavour Fields Physical parameters =Independent Invariants

Very direct results using the bi-unitary parametrization:

$$\mathbf{Y}_{\mathbf{v}} = \langle \underline{\mathcal{Y}}_{\mathbf{v}} \rangle = \mathcal{U}_{L} \mathbf{y}_{\nu} \mathcal{U}_{R}, \qquad \mathbf{Y}_{\mathbf{E}} = \langle \underline{\mathcal{Y}}_{\mathbf{E}} \rangle = \mathbf{y}_{\mathbf{E}}$$
$$\mathcal{U}_{L} \mathcal{U}_{L}^{\dagger} = 1, \qquad \mathcal{U}_{R} \mathcal{U}_{R}^{\dagger} = 1,$$
$$* \mathbf{m}_{e, \mu, \tau} = \mathbf{v}_{\mathbf{Y}} \mathbf{y}_{\mathbf{E}}$$
*But the relation of \mathcal{Y}_{ν} with light neutrino masses is through:
$$\mathcal{U}_{R} \text{ is relevant for leptons}$$
$$\mathcal{U}_{PMNS} \mathbf{m}_{\nu} \mathcal{U}_{PMNS}^{T} = \frac{v^{2}}{2M} \mathcal{U}_{L} \mathbf{y}_{\nu} \mathcal{U}_{R}^{T} \mathbf{y}_{\nu} \mathcal{U}_{L}^{T},$$

* For instance for two generations: $O(2)_{NR}$

e.g. two families

$$\mathbf{m}_{\mathbf{v}} \sim \mathbf{Y}_{\mathbf{v}} \ \underline{\mathbf{v}^{2}}_{\mathbf{M}} \mathbf{Y}_{\mathbf{v}}^{\mathbf{T}} = \mathbf{y}_{1} \mathbf{y}_{2} \ \underline{\mathbf{v}^{2}}_{\mathbf{M}} \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{pmatrix}$$

$$\mathbf{U}_{\mathbf{PMNS}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} e^{i\pi/4} & 0 \\ 0 & e^{-i\pi/4} \end{pmatrix}$$

Degenerate neutrino masses

Generically, O(2) allows :

- one mixing angle maximal
- one relative Majorana phase of $\pi/2$
- two degenerate light neutrinos

Now for three generations and

considering all

possible independent invariants

easier using the bi-unitary parametrization as we did for quarks

Number of Physical parameters = number of Independent Invariants 15 invariants for $G_{\text{flavour (leptons)}} = U(3)_L \times U(3)_{E_R} \times O(3)_{N_R}$ Leptons $egin{aligned} I_E &= \mathrm{Tr} \left[\mathcal{Y}_E \mathcal{Y}_E^\dagger
ight] \,, & I_
u &= \mathrm{Tr} \left[\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight] \,, \ I_{E^2} &= \mathrm{Tr} \left[\left(\mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,, & I_{
u^2} &= \mathrm{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^2
ight] \,, \ I_{E^3} &= \mathrm{Tr} \left[\left(\mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^3
ight] \,, & I_
u^3 &= \mathrm{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \end{aligned}$ Quarks $egin{aligned} &I_L = ext{Tr} \left[\mathcal{Y}_
u \mathcal{Y}^\dagger_
u \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight] \,, \ &I_{L^2} = ext{Tr} \left[\mathcal{Y}_
u \mathcal{Y}^\dagger_
u \left(\mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,, \ &I_{L^3} = ext{Tr} \left[\mathcal{Y}_E \mathcal{Y}_E^\dagger \left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^2
ight] \,, \ &I_{L^4} = ext{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}^\dagger_
u \mathcal{Y}_
u \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,, \end{aligned}$ $I_R = \operatorname{Tr} \left[\mathcal{Y}_{
u}^{\dagger} \mathcal{Y}_{
u} \mathcal{Y}_{
u}^T \mathcal{Y}_{
u}^*
ight] \,,$ New Invariants wrt $I_{R^2} = {
m Tr} \left[\left({\mathcal{Y}}^{\dagger}_{
u} {\mathcal{Y}}_{
u}
ight)^2 {\mathcal{Y}}^T_{
u} {\mathcal{Y}}^*_{
u}
ight] \, ,$ $I_{R^3} = \mathrm{Tr} \left[\left(\mathcal{Y}^\dagger_
u \mathcal{Y}_
u \mathcal{Y}^T_
u \mathcal{Y}^*_
u
ight)^2
ight] \, ,$ U_R and eigenvalues U_L and eigenvalues $I_{LR} = \operatorname{Tr} \left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{\nu}^{*} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger} \right], \quad I_{RL} = \operatorname{Tr} \left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{E}^{*} \mathcal{Y}_{E}^{T} \mathcal{Y}_{\nu}^{*} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger} \right],$

Number of Physical parameters = number of Independent Invariants 15 invariants for $G_{\text{flavour (leptons)}} = U(3)_L \times U(3)_{E_R} \times O(3)_{N_R}$ Leptons $egin{aligned} I_E &= \mathrm{Tr} \left[\mathcal{Y}_E \mathcal{Y}_E^\dagger
ight] \,, & I_
u &= \mathrm{Tr} \left[\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight] \,, \ I_{E^2} &= \mathrm{Tr} \left[\left(\mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,, & I_{
u^2} &= \mathrm{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^2
ight] \,, \ I_{E^3} &= \mathrm{Tr} \left[\left(\mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^3
ight] \,, & I_
u^3 &= \mathrm{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \end{aligned}$ Quarks $egin{aligned} &I_L = ext{Tr} \left[\mathcal{Y}_
u \mathcal{Y}^\dagger_
u \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight] \,, \ &I_{L^2} = ext{Tr} \left[\mathcal{Y}_
u \mathcal{Y}^\dagger_
u \left(\mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,, \ &I_{L^3} = ext{Tr} \left[\mathcal{Y}_E \mathcal{Y}_E^\dagger \left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^2
ight] \,, \ &I_{L^4} = ext{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}^\dagger_
u \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,, \end{aligned}$ $I_R = \operatorname{Tr} \left[\mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu} (\mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{\nu})^{\mathrm{T}} \right]$ New Invariants wrt $I_{R^2} = \mathrm{Tr} \left[\left(\mathcal{Y}^{\dagger}_{
u} \mathcal{Y}_{
u}
ight)^2 \mathcal{Y}^T_{
u} \mathcal{Y}^*_{
u}
ight] \, ,$ $I_{R^3} = \mathrm{Tr} \left[\left(\mathcal{Y}^\dagger_
u \mathcal{Y}_
u \mathcal{Y}^T_
u \mathcal{Y}^*_
u
ight)^2
ight] \, ,$ U_R and eigenvalues U_L and eigenvalues $I_{LR} = \operatorname{Tr} \left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{\nu}^{*} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger} \right], \quad I_{RL} = \operatorname{Tr} \left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{E}^{*} \mathcal{Y}_{E}^{T} \mathcal{Y}_{\nu}^{*} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger} \right],$

Number of Physical parameters = number of Independent Invariants 15 invariants for $G_{\text{flavour (leptons)}} = U(3)_L \times U(3)_{E_R} \times O(3)_{N_R}$ Leptons $egin{aligned} I_E &= \mathrm{Tr} \left[\mathcal{Y}_E \mathcal{Y}_E^\dagger
ight] \,, & I_
u &= \mathrm{Tr} \left[\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight] \,, \ I_{E^2} &= \mathrm{Tr} \left[\left(\mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,, & I_{
u^2} &= \mathrm{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^2
ight] \,, \ I_{E^3} &= \mathrm{Tr} \left[\left(\mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^3
ight] \,, & I_
u^3 &= \mathrm{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^3
ight] \,, \end{aligned}$ Quarks $egin{aligned} &I_L = ext{Tr} \left[\mathcal{Y}_
u \mathcal{Y}^\dagger_
u \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight] \,, \ &I_{L^2} = ext{Tr} \left[\mathcal{Y}_
u \mathcal{Y}^\dagger_
u \left(\mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,, \ &I_{L^3} = ext{Tr} \left[\mathcal{Y}_E \mathcal{Y}_E^\dagger \left(\mathcal{Y}_
u \mathcal{Y}_
u^\dagger
ight)^2
ight] \,, \ &I_{L^4} = ext{Tr} \left[\left(\mathcal{Y}_
u \mathcal{Y}^\dagger_
u \mathcal{Y}_E \mathcal{Y}_E^\dagger
ight)^2
ight] \,, \end{aligned}$ $\operatorname{Tr}(\mathbf{y}_{\nu}^{2}\mathcal{U}_{R}\mathcal{U}_{R}^{T}\mathbf{y}_{\nu}^{2}\mathcal{U}_{R}^{*}\mathcal{U}_{R}^{\dagger})$ New Invariants wrt $I_{R^2} = \mathrm{Tr} \left[\left(\mathcal{Y}^{\dagger}_{
u} \mathcal{Y}_{
u}
ight)^2 \mathcal{Y}^T_{
u} \mathcal{Y}^*_{
u}
ight] \, ,$ $I_{R^3} = \mathrm{Tr} \left[\left(\mathcal{Y}^\dagger_
u \mathcal{Y}_
u \mathcal{Y}^T_
u \mathcal{Y}^*_
u
ight)^2
ight] \, ,$ U_R and eigenvalues U_L and eigenvalues $I_{LR} = \operatorname{Tr} \left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{\nu}^{*} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger} \right], \quad I_{RL} = \operatorname{Tr} \left[\mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{E}^{*} \mathcal{Y}_{E}^{T} \mathcal{Y}_{\nu}^{*} \mathcal{Y}_{\nu}^{\dagger} \mathcal{Y}_{E} \mathcal{Y}_{E}^{\dagger} \right],$

$$\det \left(J_{\mathcal{U}_L}
ight) = \left(y_{
u_1}^2 - y_{
u_2}^2
ight) \left(y_{
u_2}^2 - y_{
u_3}^2
ight) \left(y_{
u_3}^2 - y_{
u_1}^2
ight) \ \left(y_e^2 - y_{\mu}^2
ight) \left(y_{\mu}^2 - y_{ au}^2
ight) \left(y_{ au}^2 - y_e^2
ight) \left| \mathcal{U}_L^{e1}
ight| \left| \mathcal{U}_L^{\mu 2}
ight| \left| \mathcal{U}_L^{\mu 2}
ight|.$$

same as for V_{CKM}

$$O(3) \text{ vs } U(3)$$

$$\det J_{\mathcal{U}_R} = (y_{\nu_1}^2 - y_{\nu_2}^2)^3 (y_{\nu_2}^2 - y_{\nu_3}^2)^3 (y_{\nu_3}^2 - y_{\nu_1}^2)^3 \times |(\mathcal{U}_R \mathcal{U}_R^T)_{11}| |(\mathcal{U}_R \mathcal{U}_R^T)_{22}| |(\mathcal{U}_R \mathcal{U}_R^T)_{12}|$$

the rank is reduced the most for $\mathcal{U}_R \mathcal{U}_R^T$ being a permutation

...which is now **not** trivial mixing...

$$\frac{v^2}{M} \left(\begin{array}{ccc} y_{\nu_1}^2 & 0 & 0 \\ 0 & 0 & y_{\nu_2} y_{\nu_3} \\ 0 & y_{\nu_2} y_{\nu_3} & 0 \end{array} \right) = U_{PMNS} \left(\begin{array}{ccc} m_{\nu_1} & 0 & 0 \\ 0 & m_{\nu_2} & 0 \\ 0 & 0 & m_{\nu_2} \end{array} \right) U_{PMNS}^T,$$

... in fact it allows maximal mixing:

...which is now **not** trivial mixing...

$$\frac{v^2}{M} \left(\begin{array}{ccc} y_{\nu_1}^2 & 0 & 0 \\ 0 & 0 & y_{\nu_2} y_{\nu_3} \\ 0 & y_{\nu_2} y_{\nu_3} & 0 \end{array} \right) = U_{PMNS} \left(\begin{array}{ccc} m_{\nu_1} & 0 & 0 \\ 0 & m_{\nu_2} & 0 \\ 0 & 0 & m_{\nu_2} \end{array} \right) U_{PMNS}^T,$$

... in fact it leads to one maximal mixing angle:

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}}\\ 0 & -\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{pmatrix}, \quad m_{\nu 2} = m_{\nu 3} = \frac{v^2}{M} y_{\nu_2} y_{\nu_3}, \quad m_{\nu_1} = \frac{v^2}{M} y_{\nu_1}^2.$$

and maximal Majorana phase

...which is now **not** trivial mixing...

 $\frac{v^2}{M} \left(\begin{array}{ccc} y_{\tilde{\nu}_1}^{*} & 0 & 0 \\ 0 & 0 & y_{\nu_2} y_{\nu_3} \\ 0 & y_{\nu_2} y_{\nu_3} & 0 \end{array} \right) = U_{PMNS} \left(\begin{array}{ccc} m_{\nu_1} & 0 & 0 \\ 0 & m_{\nu_2} & 0 \\ 0 & 0 & m_{\nu_2} \end{array} \right) U_{PMNS}^T,$... in fact it leads to one maximal mixing angle: θ₂₃ =45°; Majorana Phase Pattern (1,1,i) & at this level mass degeneracy: $m_{v2} = m_{v3}$ related to the O(2) substructure [Alonso, Gavela, D. Hernández, L. Merlo; [Alonso, Gavela, D. Hernández, L. Merlo, S. Rigolin] if the three neutrinos are quasidegenerate,

$$= U_{PMNS} \begin{pmatrix} m_0 & 0 & 0 \\ 0 & m_0 & 0 \\ 0 & 0 & m_0 \end{pmatrix} U_{PMNS}^T = \frac{y_{\nu}v^2}{M} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

This very simple structure is signaled by the extrema of the potential and

has eigenvalues $(I, I, -I) \rightarrow \begin{vmatrix} 3 & \text{degenerate light neutrinos} \\ + a & \text{maximal Majorana phase} \end{vmatrix}$

and is diagonalized by a maximal $\theta = 45^{\circ}$

Generalization to any seesaw model

the effective Weinberg Operator

 $\bar{\ell}_L \tilde{H} \frac{\mathsf{C}^{\mathsf{d}=\mathsf{5}}}{M} \tilde{H}^T \ell_L^c$

shall have a flavour structure that breaks $U(3)_{L}$ to O(3)

$$\frac{\mathbf{v}^2 \ \mathbf{C}^{d=5}}{M} = \mathbf{m}_{\mathbf{v}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

then the results apply to any seesaw model

First conclusion:

* at the same order in which the minimum of the potential

does NOT allow quark mixing,

it allows:

- hierarchical charged leptons
- quasi-degenerate neutrino masses
- one angle of ~45 degrees
- one maximal Majorana phase and the other one trivial

Perturbations can produce a second large angle

if the three neutrinos are quasidegenerate, perturbations:

$$= U_{PMNS} \begin{pmatrix} m_0 & 0 & 0 \\ 0 & m_0 & 0 \\ 0 & 0 & m_0 \end{pmatrix} U_{PMNS}^T = \frac{y_{\nu}v^2}{M} \begin{pmatrix} 1+\delta+\sigma & \epsilon+\eta & \epsilon-\eta \\ \epsilon+\eta & \delta+\kappa & 1 \\ \epsilon-\eta & 1 & \delta-\kappa \end{pmatrix}$$

produce a second large angle and a perturbative one together with mass splittings

$$\theta_{23} \simeq \pi/4$$
 , θ_{12} large , $\theta_{13} \simeq \epsilon$

Fixed Majorana phases: (1, 1, i)

degenerate spectrum

Perturbations can produce a second large angle

if the three neutrinos are quasidegenerate, perturbations:

$$= U_{PMNS} \begin{pmatrix} m_0 & 0 & 0 \\ 0 & m_0 & 0 \\ 0 & 0 & m_0 \end{pmatrix} U_{PMNS}^T = \frac{y_{\nu}v^2}{M} \begin{pmatrix} 1+\delta+\sigma & \epsilon+\eta & \epsilon-\eta \\ \epsilon+\eta & \delta+\kappa & 1 \\ \epsilon-\eta & 1 & \delta-\kappa \end{pmatrix}$$

produce a second large angle and a perturbative one together with mass splittings

Perturbations can produce a second large angle

if the three neutrinos are quasidegenerate, perturbations:

$$=U_{PMNS}\left(egin{array}{ccc} m_0 & 0 & 0 \ 0 & m_0 & 0 \ 0 & 0 & m_0 \end{array}
ight)U_{PMNS}^T= rac{y_
u v^2}{M}\left(egin{array}{ccc} 1+\delta+\sigma & \epsilon+\eta & \epsilon-\eta \ \epsilon+\eta & \delta+\kappa & 1 \ \epsilon-\eta & 1 & \delta-\kappa \end{array}
ight)$$

produce a second large angle and a perturbative one together with mass splittings

$$\theta_{23} \simeq \pi/4$$
, θ_{12} large , $\theta_{13} \simeq \epsilon$
Fixed Majorana phases: $(1, 1, i)$
~ degenerate spectrum

accommodation of angles requires degenerate spectrum at reach in future neutrinoless double β exps.!

Slide from Laura Baudis talk presenting the new Gerda data at Invisibles I 3 workshop 3 weeks ago

The physics

-->WG1 Thursday

- Detect the neutrinoless double beta decay in ⁷⁶Ge:
 - lepton number violation
 - ⇒information on the nature of neutrinos and on the effective Majorana neutrino mass

latest from Planck....

$$\sum m_{\nu} = 0.22 \pm 0.09 \text{ eV}$$

Planck Collaboration: Cost

Fig. 12. Cosmological constraints when including neutrino masses $\sum m_{\nu}$ from: *Planck* CMB data alone (black dotted line); *Planck* CMB + SZ with 1 – *b* in [0.7, 1] (red); *Planck* CMB + SZ + BAO with 1 – *b* in [0.7, 1] (blue); and *Planck* CMB + SZ with 1 – *b* = 0.8 (green).

Where do the differences in Mixing originated?

for the type I seesaw employed here;

in general $U(n_g)$ vs $O(n_g)$

Where do the differences in Mixing originate?

From the MAJORANA vs DIRAC nature of fermions

We set the perturbations by hand. Can we predict them also dynamically?

Fundamental Fields

May provide dynamically the perturbations

In the case of quarks they can give the right corrections:

$$\frac{\mathcal{Y}_U}{\Lambda_f} + \frac{\chi_U^L \chi_U^{R\dagger}}{\Lambda_f^2} \sim \begin{pmatrix} 0 & \sin \theta_c \, y_c & 0 \\ 0 & \cos \theta_c \, y_c & 0 \\ 0 & 0 & y_t \end{pmatrix}$$

[Alonso, Gavela, Merlo, Rigolin]

under study in the lepton sector

Conclusions

* Exciting experimental windows ahead into neutrino(and/or DM) physics: μ-e conversion will test SM-singlet fermions in the
 2 GeV- 6000 TeV mass range !

* **Spontaneous flavour symmetry breaking** is very predictive. The **SM+seesaw maximal global flavor symm.**(**U(3)'s and O(3)**) points dynamically to patterns of masses and mixings close to nature, both for quarks and leptons. The differences stem from the Majorana character:

- A correlation between large angles and degenerate \vee spectrum emerges, with: i) fixed Majorana phases (1,1,i), ii) $\theta_{23} = 45^{\circ}$, iii) θ_{12} large, θ_{13} small.
- This scenario will be tested in the near future by $0\nu 2\beta$ experiments (m~.1eV).... or cosmology!!!

Back-up slides

Use the flavour symmetry of the SM with masless fermions:

 $G_{f} = U(3)_{Q_{L}} \times U(3)_{U_{R}} \times U(3)_{D_{R}}$

replace Yukawas by fields:

_

Spontaneous breaking of flavour symmetry dangerous

Flavour Symmetry Breaking

To prevent Goldstone Bosons the symmetry can be Gauged

[Grinstein, Redi, Villadoro Guadagnoli, Mohapatra, Sung Feldman]

***a good possibility for the other angles :**

Yukawas --> add fields in the fundamental of the flavour group

1)
$$Y - ->$$
 one single scalar $Y \sim (3, 1, 3)$
2) $Y - ->$ two scalars $\chi \chi^{+} \sim (3, 1, 3)$
3) $Y - ->$ two fermions $\overline{\Psi\Psi} \sim (3, 1, 3)$

1) Y --- > one single scalar
$$\mathcal{Y} \sim (3, 1, 3)$$

2) Y --- > two scalars $\chi \chi^+ \sim (3, 1, 3)$
 $\chi^- (3, 1, 1)$
3) Y --- > two fermions $\overline{\Psi\Psi} \sim (3, 1, 3)$
 $\overline{\Psi\Psi} \sim (3, 1, 3)$

2) Y -- > two scalars
$$\chi \chi^{+} \sim (3, 1, 3)$$

d=6 operator $\chi \sim (3, 1, 1)$

3) Y -- > two fermions
$$\overline{\Psi}\Psi \sim (3, 1, 3)$$

d=7 operator

y

i.e. for quarks, a possible path:

* At leading (renormalizable) order:

$$Y_{u} \equiv \frac{\langle \mathbf{y}_{u} \rangle}{\Lambda_{f}} + \frac{\langle \chi_{u}^{L} \rangle \langle \chi_{u}^{R\dagger} \rangle}{\Lambda_{f}^{2}} = \begin{pmatrix} 0 & \sin \theta_{c} y_{c} & 0 \\ 0 & \cos \theta_{c} y_{c} & 0 \\ 0 & 0 & y_{t} \end{pmatrix},$$
$$Y_{d} \equiv \frac{\langle \mathbf{y}_{d} \rangle}{\Lambda_{f}} + \frac{\langle \chi_{d}^{L} \rangle \langle \chi_{d}^{R\dagger} \rangle}{\Lambda_{f}^{2}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_{s} & 0 \\ 0 & 0 & y_{b} \end{pmatrix}.$$

without unnatural fine-tunings

* The masses of the first family and the other angles from nonrenormalizable terms or other corrections or replicas ?

....and analogously for leptonic mixing?

We set the perturbations by hand. Can we predict them also dynamically?

Fundamental Fields

May provide dynamically the perturbations

In the case of quarks they can give the right corrections:

$$\frac{\mathcal{Y}_U}{\Lambda_f} + \frac{\chi_U^L \chi_U^{R\dagger}}{\Lambda_f^2} \sim \begin{pmatrix} 0 & \sin \theta_c \, y_c & 0 \\ 0 & \cos \theta_c \, y_c & 0 \\ 0 & 0 & y_t \end{pmatrix}$$

[Alonso, Gavela, Merlo, Rigolin]

under study in the lepton sector

Boundaries Exhibit Unbroken Symmetry

Extra-Dimensions Example

<u>The smallest boundaries are</u> <u>extremal points of any function</u>

[Michel, Radicati, 1969]

Jacobian Analysis: Mixing

$$\det (J_{UD}) = (y_u^2 - y_t^2) (y_t^2 - y_c^2) (y_c^2 - y_u^2)$$
$$(y_d^2 - y_b^2) (y_b^2 - y_s^2) (y_s^2 - y_d^2)$$
$$\times |V_{ud}| |V_{us}| |V_{cd}| |V_{cs}|$$

the rank is reduced the most for:

V_{CKM}= PERMUTATION

no mixing: reordering of states

(Alonso, Gavela, Isidori, Maiani 2013)

Renormalizable Potential

Invariants at the Renormalizable Level

$$\begin{split} I_{U} &= \operatorname{Tr} \begin{bmatrix} \mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \end{bmatrix}, & I_{D} = \operatorname{Tr} \begin{bmatrix} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \end{bmatrix}, \\ I_{U^{2}} &= \operatorname{Tr} \begin{bmatrix} \left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right)^{2} \end{bmatrix}, & I_{D^{2}} = \operatorname{Tr} \begin{bmatrix} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \end{bmatrix}, \\ I_{U^{3}} &= \operatorname{Tr} \begin{bmatrix} \left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \right)^{3} \end{bmatrix}, & I_{D^{3}} = \operatorname{Tr} \begin{bmatrix} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{3} \end{bmatrix}, \\ I_{U,D} &= \operatorname{Tr} \begin{bmatrix} \mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \end{bmatrix}, & I_{U,D^{2}} = \operatorname{Tr} \begin{bmatrix} \mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \end{bmatrix}, \\ I_{U^{2},D} &= \operatorname{Tr} \begin{bmatrix} \mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \left(\mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \end{bmatrix}, & I_{(U,D)^{2}} = \operatorname{Tr} \begin{bmatrix} \left(\mathcal{Y}_{U} \mathcal{Y}_{U}^{\dagger} \mathcal{Y}_{D} \mathcal{Y}_{D}^{\dagger} \right)^{2} \end{bmatrix}. \end{split}$$

Renormalizable Potential

with the definition

$$X \equiv (I_U, I_D)^T = \left(\operatorname{Tr} \left(\mathcal{Y}_U \mathcal{Y}_U^{\dagger} \right), \operatorname{Tr} \left(\mathcal{Y}_D \mathcal{Y}_D^{\dagger} \right) \right)^T$$

the potential

Renormalizable Potential

with the definition

$$X \equiv (I_U, I_D)^T = \left(\operatorname{Tr} \left(\mathcal{Y}_U \mathcal{Y}_U^{\dagger} \right), \operatorname{Tr} \left(\mathcal{Y}_D \mathcal{Y}_D^{\dagger} \right) \right)^T,$$

the potential

mixing

$$egin{aligned} V^{(4)} &= - \, \mu^2 \cdot X + X^T \cdot \lambda \cdot X + g \, ext{Tr} \left(\mathcal{Y}_U \mathcal{Y}_U^\dagger \mathcal{Y}_D \mathcal{Y}_D^\dagger
ight) \ &+ h_U ext{Tr} \left(\mathcal{Y}_U \mathcal{Y}_U^\dagger \mathcal{Y}_U \mathcal{Y}_U^\dagger
ight) + h_D ext{Tr} \left(\mathcal{Y}_D \mathcal{Y}_D^\dagger \mathcal{Y}_D \mathcal{Y}_D^\dagger
ight) \,, \end{aligned}$$

which contains 8 parameters

e.g. for the case of two families:

Berezhiani-Rossi; Anselm, Berezhiani; Alonso, Gavela, Merlo, Rigolin

Renormalizable Potential, mixing three families **Von Neumann Trace Inequality** $y_u^2 y_b^2 + y_s^2 y_c^2 + y_d^2 y_t^2 \leq \operatorname{Tr}\left(\mathcal{Y}_U \mathcal{Y}_U^{\dagger} \mathcal{Y}_D \mathcal{Y}_D^{\dagger}\right) \leq y_u^2 y_d^2 + y_s^2 y_c^2 + y_b^2 y_t^2.$ So the Potential selects: coefficient in the potential "normal" g < 0, $V_{CKM} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$; Hierarchy "inverted" g > 0, $V_{CKM} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.

No mixing, independently of the mass spectrum

Example: 2 families; consider the renormalizable set of invariants: The flavour symmetry is $G_f = U(2)_L \times U(2)_{E_R} \times O(2)_{N_R}$

which adds a new invariant for the lepton sector. In total:

Tr ($y_E y_{E^+}$) Tr ($y_E y_{E^+}$)² Tr ($y_v y_{v^+}$) Tr ($y_v y_{v^+}$)²

Tr $(\mathcal{Y}_{E} \mathcal{Y}_{E}^{+} \mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{+}) \longleftarrow \text{mixing}$ Tr $(\mathcal{Y}_{\nu}^{+} \mathcal{Y}_{\nu} \mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{T} \mathcal{Y}_{\nu}^{*}) \leftarrow \mathbf{O}(2)_{N}$ Example: 2 families; consider the renormalizable set of invariants: The flavour symmetry is $G_f = U(2)_L \times U(2)_{E_R} \times O(2)_{N_R}$

which adds a new invariant for the lepton sector. In total:

Tr ($y_E y_{E^+}$) Tr ($y_E y_{E^+}$)² Tr ($y_v y_{v^+}$) Tr ($y_v y_{v^+}$)²

Tr $(\mathcal{Y}_{E} \mathcal{Y}_{E}^{+} \mathcal{Y}_{\nu} \mathcal{Y}_{\nu}^{+}) \longleftarrow \text{mixing}$ Tr $(\mathcal{Y}_{\nu}^{+} \mathcal{Y}_{\nu} (\mathcal{Y}_{\nu}^{+} \mathcal{Y}_{\nu})^{T}) < -- \mathbf{O}(2)_{N}$

2 families, leptons; let us analyze the mixing invariant

energy theory

* In degenerate limit of heavy neutrinos $M_{N_1}=M_{N_2}=M$

$$\mathbf{R} = \left(\begin{array}{cc} ch \boldsymbol{\omega} & -i sh \boldsymbol{\omega} \\ i sh \boldsymbol{\omega} & ch \boldsymbol{\omega} \end{array}\right) \text{ with } \boldsymbol{\omega} \text{ real,}$$

for 2 generations, the mixing terms in $\mathbf{V}(\mathcal{Y}_{\mathbf{E}}, \mathcal{Y}_{\mathbf{V}})$ is : Leptons

$$\operatorname{Tr}(\mathcal{Y}_{\rm E} \; \mathcal{Y}_{\rm E^{+}} \; \mathcal{Y}_{\nu} \; \mathcal{Y}_{\nu^{+}}) \propto (m_{\mu}^{2} - m_{e}^{2}) \left[\cos 2\omega (m_{\nu_{2}} - m_{\nu_{1}}) \cos 2\theta + 2 \sin 2\omega \sqrt{m_{\nu_{2}} m_{\nu_{1}}} \sin 2\alpha \sin 2\theta \right]$$

where
$$U_{PMNS} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} e^{-i\alpha} & 0 \\ 0 & e^{i\alpha} \end{pmatrix}$$

Quarks Tr($y_u y_u^+ y_d y_d^+$) $\propto (m_c^2 - m_u^2)(m_s^2 - m_d^2) \cos 2\theta$

1

e.g., for 2 generations, the mixing terms in $\mathbf{V}(\mathcal{Y}_{\mathbf{E}}, \mathcal{Y}_{\mathbf{V}})$ is : Leptons

 $\operatorname{Tr}(\mathcal{Y}_{\mathrm{u}} \mathcal{Y}_{\mathrm{u}}^{+} \mathcal{Y}_{\mathrm{d}} \mathcal{Y}_{\mathrm{d}}^{+}) \propto (m_{c}^{2} - m_{u}^{2})(m_{s}^{2} - m_{d}^{2}) \cos 2\theta$

e.g., for 2 generations, the mixing terms in $\mathbf{V}(\mathcal{Y}_{\mathbf{E}}, \mathcal{Y}_{\mathbf{V}})$ is : Minimisation (for non trivial sin2 ω) Tr($\mathcal{Y}_{\mathbf{E}} \mathcal{Y}_{\mathbf{E}^+} \mathcal{Y}_{\mathbf{V}} \mathcal{Y}_{\mathbf{V}^+}$)

*
$$\sin 2\omega \sqrt{m_{\nu_2} m_{\nu_1}} \sin 2\theta \cos 2\alpha = 0 \longrightarrow \alpha = \pi/4 \text{ or } 3\pi/4$$

Maximal Majorana phase

*
$$tg2\theta = \sin 2\alpha \frac{2\sqrt{m_{\nu_2}m_{\nu_1}}}{m_{\nu_2} - m_{\nu_1}} tgh 2\omega$$

Large angles correlated with degenerate masses

* What is the role of the neutrino flavour group? $O(2)_{NR}$

e.g. two families

$$\mathbf{m}_{\mathbf{v}} \sim \mathbf{Y}_{\mathbf{v}} \ \underline{\mathbf{v}^{2}}_{\mathbf{M}} \mathbf{Y}_{\mathbf{v}}^{\mathbf{T}} = \mathbf{y}_{1} \mathbf{y}_{2} \ \underline{\mathbf{v}^{2}}_{\mathbf{M}} \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{pmatrix}$$

$$\mathbf{U}_{\mathbf{PMNS}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} e^{i\pi/4} & 0 \\ 0 & e^{-i\pi/4} \end{pmatrix}$$

Degenerate neutrino masses

Generically, O(2) allows :

- one mixing angle maximal
- one relative Majorana phase of $\pi/2$
- two degenerate light neutrinos

Anarchy: alive with not so small θ_{13} and not θ_{23} not maximal

no symmetry in the lepton sector, just random numbers

$$m_{v} \sim \left(\begin{array}{ccc} \sim 1 & \sim 1 & \sim 1 \\ \sim 1 & \sim 1 & \sim 1 \\ \sim 1 & \sim 1 & \sim 1 \end{array} \right)$$

still looks "good" in GU context, coupled to U(1)s

- Does not relate mixing to spectrum

- Does not address both quarks and leptons

(Hall, Murayama, Weiner; Haba, Murayama; De Gouvea, Murayama... Going towards hierarchy: Altarelli, Feruglio, Masina, Merlo..) The non-abelian part of the flavour symmetry of the SM:

 $G_f = SU(3)_{Q_L} x SU(3)_{U_R} x SU(3)_{D_R}$

broken by Yukawas:

_

Some good ideas:

Minimal Flavour Violation:

- Use the flavour symmetry of the SM in the limit of massless fermions (Chivukula+ Georgi)

quarks: $G_{\text{flavour}} = U(3)_{QL} \times U(3)_{UR} \times U(3)_{DR}$

- Assume that Yukawas are the only source of flavour in the SM and beyond

 $\frac{\mathbf{Y}_{\boldsymbol{\alpha}\boldsymbol{\beta}}^{+}\mathbf{Y}_{\boldsymbol{\delta}\boldsymbol{\gamma}}}{\boldsymbol{\Lambda}_{\mathbf{flavour}^{2}}} \overline{\mathbf{Q}_{\boldsymbol{\alpha}}} \gamma_{\boldsymbol{\mu}}\mathbf{Q}_{\boldsymbol{\beta}} \, \overline{\mathbf{Q}_{\boldsymbol{\gamma}}} \gamma^{\boldsymbol{\mu}} \, \mathbf{Q}_{\boldsymbol{\delta}}$

... agrees with flavour data being aligned with SM ... allows to bring down Λ_{flavour} --> TeV

D'Ambrosio+Giudice+Isidori+Strumia; Cirigliano+Isidori+Grinstein+Wise

Some good ideas:

Minimal Flavour Violation:

- Use the flavour symmetry of the SM in the limit of massless fermions (Chivukula+ Georgi)

quarks: $G_{\text{flavour}} = U(3)_{QL} \times U(3)_{UR} \times U(3)_{DR}$

- Assume that Yukawas are the only source of flavour in the SM and beyond

 $\frac{Y_{\alpha\beta}^{+}Y_{\delta\gamma}}{\Lambda_{flavour}^{2}} \overline{Q_{\alpha}} \gamma_{\mu}Q_{\beta} \overline{Q_{\gamma}} \gamma^{\mu} Q_{\delta}$

... agrees with flavour data being aligned with SM ... allows to bring down Λ_{flavour} --> TeV

(Chivukula+Georgi 87; Hall+Randall; D'Ambrosio+Giudice+Isidori+Strumia; Cirigliano+Isidori+Grisntein +Wise; Davidson+Pallorini; Kagan+G. Perez + Volanski+Zupan,...)

Lalak, Pokorski, Ross; Fitzpatrick, Perez, Randall; Grinstein, Redi, Villadoro
Some good ideas:

Related to MFV:

- Use the flavour symmetry of the SM in the limit of massless fermions $C_{1} = U(2) = U(2)$

quarks: $G_{\text{flavour}} = U(3)_{QL} \times U(3)_{UR} \times U(3)_{DR}$

Hybrid dynamical-non-dynamical Yukawas:

 $\begin{array}{c} U(2) \quad (\text{Pomarol, Tomasini; Barbieri, Dvali, Hall, Romanino...}) \\ U(2)^3 \quad (\text{Craig, Green, Katz; Barbieri, Isidori, Jones-Peres, Lodone, Straub..} \begin{pmatrix} U(2) & (1) \\ 0 & 0 & 1 \end{pmatrix} \\ \\ & & & & \\ \end{array}$

Sequential ideas (Feldman, Jung, Mannel; Berezhiani+Nesti; Ferretti et al.,

Calibbi et al. ...)

The basis of the game is to find the minima of the invariants that you can construct out of Yukawa couplings

L. Michel+Radicati 70, Cabibbo+Maiani71 for the spectrum of masses

List of possible invariants: Hanani, Jenkins, Manohar 2010

 $V(\mathcal{Y}_d, \mathcal{Y}_u)$ Construction of the Potential

* 5 invariants at d=4 level: (Feldman, Jung, Mannel)

> Tr ($y_u y_u^+$) Tr ($y_u y_u^+$)² Tr ($y_d y_d^+$) Tr ($y_d y_d^+$)²

Tr ($\mathcal{Y}_u \mathcal{Y}_u^+ \mathcal{Y}_d \mathcal{Y}_d^+$)

* results following general; for this talk we will illustrate in 2-generation

(Alonso, Gavela, Merlo, Rigolin, arXiv 11; Nardi 11, Espinosa, Fong, Nardi 13)

 $V(\mathcal{Y}_d, \mathcal{Y}_u)$ Construction of the Potential

* 5 invariants at d=4 level: (Feldman, Jung, Mannel)

> Tr $(y_u y_u^+)$ Tr $(y_u y_u^+)^2$ Tr $(y_d y_d^+)$ Tr $(y_d y_d^+)^2$ Tr $(y_u y_u^+ y_d y_d^+)^{--mixing}$

(Alonso, Gavela, Merlo, Rigolin, arXiv 11; Nardi 11, Espinosa, Fong, Nardi 13)

e.g. for the case of two families:

Berezhiani-Rossi; Anselm, Berezhiani; Alonso, Gavela, Merlo, Rigolin

And what happens for leptons ?

Any difference with Majorana neutrinos?

Alonso, B.G., D. Hernandez, Merlo, Rigolin.

Just TWO heavy neutrinos

$$\mathcal{L}_{\mathcal{M}_{\nu}} = \left(\bar{\ell}_{L}, \bar{N}^{c}, \bar{N}^{\prime c}\right) \begin{pmatrix} 0 & vY & vY^{\prime} \\ vY^{T} & 0 & \mathbf{M} \\ vY^{\prime T} & \mathbf{M} & 0 \end{pmatrix} \begin{pmatrix} \ell_{L}^{c} \\ N \\ N^{\prime} \end{pmatrix}$$

the Yukawas are determined up to their overal magnitude

N.H.
$$Y = \frac{y}{\sqrt{m_{\nu_2} + m_{\nu_3}}} U_{PMNS} \begin{pmatrix} 0 \\ -i \sqrt{m_{\nu_2}} e^{-i\alpha} \\ \sqrt{m_{\nu_3}} e^{i\alpha} \end{pmatrix}$$

your symmetry is $G_f = U(3)_{\ell_1} \times U(3)_{F_0} \times O(2)_N$

The flay $U(S)_{\ell_L}$ $(J)E_R$ J J - *)* / W

(Alonso, Gavela, D. Hernandez, Merlo, Rigolin)

The flavour symmetry is $G_f = U(3)_{\ell_L} \times U(3)_{E_R} \times O(2)_N$

adds a new invariant for the lepton sector, in total:

Tr $(\mathcal{Y}_{E} \mathcal{Y}_{E}^{+})$ Tr $(\mathcal{Y}_{E} \mathcal{Y}_{E}^{+})^{2}$ Tr $(\mathcal{Y}_{v} \mathcal{Y}_{v}^{+})$ Tr $(\mathcal{Y}_{v} \mathcal{Y}_{v}^{+})^{2}$ Tr $(\mathcal{Y}_{E} \mathcal{Y}_{E}^{+} \mathcal{Y}_{v} \mathcal{Y}_{v}^{+}) \longleftarrow \text{mixing}$ Tr $(\mathcal{Y}_{v} \sigma_{2} \mathcal{Y}_{v}^{+})^{2} \longleftrightarrow O(2)_{N}$

O(2)_N is simply associated to Lepton Number

e.g., for 2 generations, the mixing terms in $\mathbf{V}(\mathcal{Y}_{\mathbf{E}}, \mathcal{Y}_{\mathbf{V}})$ is : Leptons

$$\mathsf{Tr}(\mathcal{Y}_{\mathrm{E}} \; \mathcal{Y}_{\mathrm{E}^{+}} \; \mathcal{Y}_{\nu} \; \mathcal{Y}_{\nu^{+}}) \propto \\ (m_{\mu}^{2} - m_{e}^{2}) \Big[(y^{2} + y'^{2})(m_{\nu_{2}} - m_{\nu_{1}}) \cos 2\theta + (y^{2} - y'^{2}) 2\sqrt{m_{\nu_{2}}m_{\nu_{1}}} \sin 2\alpha \sin 2\theta \Big]$$

where
$$U_{PMNS} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} e^{-i\alpha} & 0 \\ 0 & e^{i\alpha} \end{pmatrix}$$

Quarks $Tr(\mathcal{Y}_{u} \mathcal{Y}_{u}^{+} \mathcal{Y}_{d} \mathcal{Y}_{d}^{+}) \propto (m_{c}^{2} - m_{u}^{2})(m_{s}^{2} - m_{d}^{2}) \cos 2\theta$

١

e.g., for 2 generations, the mixing terms in $\mathbf{V}(\mathcal{Y}_{\mathbf{E}}, \mathcal{Y}_{\mathbf{V}})$ is : Leptons

 $\operatorname{Tr}(\mathcal{Y}_{\mathrm{u}} \mathcal{Y}_{\mathrm{u}}^{+} \mathcal{Y}_{\mathrm{d}} \mathcal{Y}_{\mathrm{d}}^{+}) \propto (m_{c}^{2} - m_{u}^{2})(m_{s}^{2} - m_{d}^{2}) \cos 2\theta$

e.g., for 2 generations, the mixing terms in $\mathbf{V}(\mathcal{Y}_{\mathbf{E}}, \mathcal{Y}_{\mathbf{V}})$ is : Minimisation Tr($\mathcal{Y}_{\mathbf{E}}, \mathcal{Y}_{\mathbf{E}^+}, \mathcal{Y}_{\mathbf{V}}, \mathcal{Y}_{\mathbf{V}^+}$)

*
$$(y^2 - y'^2)\sqrt{m_{\nu_2}m_{\nu_1}}\sin 2\theta \cos 2\alpha = 0 \longrightarrow \alpha = \pi/4 \text{ or } 3\pi/4$$

*
$$ext{tg}2 heta = 2rac{y^2 - y'^2}{y^2 + y'^2} \sin 2lpha rac{\sqrt{m_{
u_2}m_{
u_1}}}{m_{
u_2} - m_{
u_1}}$$

Large angles correlated with degenerate masses

Maximal Majorana phase

What makes the difference?

- The Majorana character?
- The flavour group?
- The particular model?

Let us try to generalize to any model

- -- for 2 families
- -- for 3 families

* Generalize to arbitrary seesaw model
in progress: Alonso, D. Hernandez, Merlo, Rigolin, B.G.
Use Casas-Ibarra parametrization
$$Y_{v} = U_{PMNS} m_{v}^{1/2} R M_{N}^{1/2}$$

The mixing invariant shown before:
 $Tr(Y_{E} Y_{E}^{+} Y_{v} Y_{v}^{+}) = Tr(m_{i}^{1/2} U^{+} m_{i}^{2} U m_{i}^{1/2} R^{+} M_{N} R)$
define $P=(R^{+} M_{N} R)$
 2 fam.
* $\sqrt{m_{1}m_{2}} |P_{12}| \sin [2\alpha - arg(P_{12})] = 0$
* $tg2\theta = 2|P_{12}| \sin 2\alpha \frac{\sqrt{m_{\nu_{2}}m_{\nu_{1}}}}{m_{\nu_{1}}P_{11} - m_{\nu_{2}}P_{22}}$

* Generalize to arbitrary seesaw model
in progress: Alonso, D. Hernandez, Merlo, Rigolin, B.G.
Use Casas-Ibarra parametrization
$$\mathbf{Y}_{v} = \mathbf{U}_{PMSS} \mathbf{m}_{v}^{1/2} \mathbf{R} \mathbf{M}_{N}^{1/2}$$

The mixing invariant shown before:
Tr($\mathcal{Y}_{E} \ \mathcal{Y}_{E}^{+} \ \mathcal{Y}_{v} \ \mathcal{Y}_{v}^{+}$) = Tr($m_{i}^{1/2} \ U^{+} \ m_{i}^{2} \ U \ m_{i}^{1/2} \ R^{+} \ \mathbf{M}_{N} \ R$)
define $P = (R^{+} \ \mathbf{M}_{N} \ R)$
 $2 \ fam.$
* $\sqrt{m_{1} m_{2}} \ |P_{12}| \ \sin [2\alpha - arg(P_{12})] = 0$
* $tg2\theta = 2|P_{12}| \ \sin 2\alpha \frac{\sqrt{m_{\nu_{2}} m_{\nu_{1}}}}{m_{\nu_{1}} P_{11} - m_{\nu_{2}} P_{22}}$
* In degenerate limit of heavy neutrinos $\mathbf{M}_{N_{1}} = \mathbf{M}_{N_{2}} = \mathbf{M}$
 $\mathbf{R} = \begin{pmatrix} ch \ \omega & -i \ sh \ \omega \\ i \ sh \ \omega & ch \ \omega \end{pmatrix}$ with ω real,

$$tg2\theta = \sin 2lpha \frac{2\sqrt{m_{\nu_2}m_{\nu_1}}}{m_{\nu_2} - m_{\nu_1}} tgh 2\omega$$

 $\alpha = \pi/4 \text{ or } 3\pi/4$

* Generalize to arbitrary seesaw model
in progress: Alonso, D. Hernandez, Merlo, Rigolin, B.G.
Use Casas-Ibarra parametrization
$$Y_{v} = U_{PMSS} m_{v}^{1/2} R M_{N}^{1/2}$$

The mixing invariant shown before:
 $Tr(Y_{E} Y_{E}^{+} Y_{v} Y_{v}^{+}) = Tr(m_{i}^{1/2} U^{+} m_{i}^{2} U m_{i}^{1/2} R^{+} M_{N} R)$
define $P=(R^{+} M_{N} R)$
 $2 fam.$
* $\sqrt{m_{1}m_{2}} |P_{12}| \sin [2\alpha - arg(P_{12})] = 0$
 $* tg2\theta = 2|P_{12}| \sin 2\alpha \frac{\sqrt{m_{\nu_{2}}m_{\nu_{1}}}}{m_{\nu_{1}}P_{11} - m_{\nu_{2}}P_{22}}$
* In degenerate limit of heavy neutrinos $M_{N1}=M_{N2}=M$
 $R = \begin{pmatrix} ch \omega & -i sh \omega \\ i sh \omega & ch \omega \end{pmatrix}$ with ω real,
 $e.g.$ in Previous model
 $tg2\theta = sin 2\alpha \frac{2\sqrt{m_{\nu_{2}}m_{\nu_{1}}}}{m_{\nu_{2}} - m_{\nu_{1}}} \frac{Y^{2}-Y^{2}}{Y^{2}-Y^{2}}$
 $\alpha = \pi/4 \text{ or } 3\pi/4$

Inmediate results using for both quark and leptons $Y = U_L y^{diag} U_R$

U(n)

U(n)

i.e.: $U(3)_L \times U(3)_{E^R} \times U(2)_{N^R}$ or: $U(3)_L \times U(3)_{E^R} \times U(3)_{N^R}$

To analyze this in general, use common parametrization for quarks and leptons:

$$\mathbf{Y} = \mathbf{U}_{\mathrm{L}} \mathbf{y}^{\mathrm{diag.}} \mathbf{U}_{\mathrm{R}}$$

* **Quarks**, for instance: U_R unphysical, $U_L \rightarrow U_{CKM}$

 $\mathbf{Y}_{\mathbf{D}} = \mathbf{U}_{\mathbf{CKM}} \operatorname{diag}(y_d, y_s, y_b) \quad ; \quad \mathbf{Y}_{\mathbf{U}} = \operatorname{diag}(y_u, y_c, y_t)$

* Leptons:

 $\mathbf{Y}_{\mathbf{E}} = \text{ diag}(y_e, y_{\mu}, y_{\tau}) \quad ; \quad \mathbf{Y}_{\mathbf{v}} = U_L \ y^{\text{diag.}} \ U_R$

U_{PMNS} diagonalize

$$m_{\nu} \sim \mathbf{Y}_{\nu} \underline{v^{2}}_{M} \mathbf{Y}_{\nu} \mathbf{T} = U_{L} y_{\nu}^{diag.} U_{R} \underline{v^{2}}_{U} U_{R}^{T} y_{\nu}^{diag.} U_{L}^{T} \mathbf{M}$$

e.g. $SU(n)_{NR}$... leptons

e.g. generic seesaw

$$\mathcal{L} = \mathcal{L}_{SM} + i\overline{N_R}\partial N_R - \left[\overline{N_R}Y_N\tilde{\phi}^{\dagger}\ell_L + \frac{1}{2}\overline{N_R}\mathbf{M}N_R^c + h.c.\right]$$

with M carrying flavour $\longrightarrow M$ spurion

More invariants in this case:

 $\begin{array}{l} \text{Tr} \left(\begin{array}{c} y_{\text{E}} \ y_{\text{E}^{+}} \right) & \text{Tr} \left(\begin{array}{c} y_{\text{E}} \ y_{\text{E}^{+}} \right)^{2} \\ \text{Tr} \left(\begin{array}{c} y_{\text{V}} \ y_{\text{V}^{+}} \right) & \text{Tr} \left(\begin{array}{c} y_{\text{V}} \ y_{\text{V}^{+}} \right)^{2} \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) & \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right)^{2} \end{array} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) & \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right)^{2} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) & \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right)^{2} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) & \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right)^{2} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) & \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right)^{2} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) & \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right)^{2} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) & \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right)^{2} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+} \end{array} \right) \\$

At the minimum:

* Tr $(\mathcal{Y}_{v} \mathcal{Y}_{v}^{+} \mathcal{Y}_{E} \mathcal{Y}_{E}^{+}) = \text{Tr} (U_{L} y_{v}^{\text{diag. 2}} U_{L}^{+} y_{l}^{\text{diag. 2}}) \longrightarrow U_{L} = 1$ * Tr $(\mathcal{M}_{N} \mathcal{M}_{N}^{+} \mathcal{Y}_{v} \mathcal{Y}_{v}^{+}) = \text{Tr} (U_{R} y_{v}^{\text{diag. 2}} U_{R}^{+} M_{i}^{\text{diag. 2}}) \longrightarrow U_{R} = 1$

same conclusion for 3 families of quarks:

$$\mathbf{Y} = \mathbf{U}_{\mathrm{L}} \mathbf{y}^{\mathrm{diag.}} \mathbf{U}_{\mathrm{R}}$$

* **Quarks**, for instance: U_R unphysical, $U_L \rightarrow U_{CKM}$

 $\mathbf{Y}_{\mathbf{D}} = \mathbf{U}_{\mathbf{CKM}} \operatorname{diag}(y_d, y_s, y_b) \quad ; \quad \mathbf{Y}_{\mathbf{U}} = \operatorname{diag}(y_u, y_c, y_t)$

Tr $(\mathcal{Y}_u \mathcal{Y}_u^+ \mathcal{Y}_d \mathcal{Y}_d^+) = \text{Tr} (U_L y_u^{\text{diag. 2}} U_L^+ y_d^{\text{diag. 2}})$ $\longrightarrow U_L = U_{CKM} \sim 1 \text{ at the minimum}$

NO MIXING

e.g. $U(n)_{NR}$... leptons

e.g. generic seesaw

$$\mathcal{L} = \mathcal{L}_{SM} + i\overline{N_R}\partial N_R - \left[\overline{N_R}Y_N\tilde{\phi}^{\dagger}\ell_L + \frac{1}{2}\overline{N_R}\mathbf{M}N_R^c + h.c.\right]$$

with M carrying flavour $\longrightarrow M$ spurion

More invariants in this case:

 $\begin{array}{ll} \operatorname{Tr} \left(\begin{array}{c} \mathcal{Y}_{E} \end{array} \mathcal{Y}_{E^{+}} \right) & \operatorname{Tr} \left(\begin{array}{c} \mathcal{Y}_{E} \end{array} \mathcal{Y}_{E^{+}} \right)^{2} & \operatorname{Tr} \left(\begin{array}{c} \mathcal{Y}_{E} \end{array} \mathcal{Y}_{E^{+}} \mathcal{Y}_{v} \end{array} \mathcal{Y}_{v^{+}} \right) \\ \operatorname{Tr} \left(\begin{array}{c} \mathcal{Y}_{v} \end{array} \mathcal{Y}_{v^{+}} \right) & \operatorname{Tr} \left(\begin{array}{c} \mathcal{Y}_{v} \end{array} \mathcal{Y}_{v^{+}} \right)^{2} & \\ \operatorname{Tr} \left(\begin{array}{c} \mathcal{M}_{N} \end{array} \mathcal{M}_{N^{+}} \right) & \operatorname{Tr} \left(\begin{array}{c} \mathcal{M}_{N} \end{array} \mathcal{M}_{N^{+}} \right)^{2} & \operatorname{Tr} \left(\begin{array}{c} \mathcal{M}_{N} \end{array} \mathcal{M}_{N^{+}} \mathcal{Y}_{v^{+}} \mathcal{Y}_{v} \right) \end{array} \right)$

Result: no mixing for flavour groups U(n)

*3 families with $O(2)_{NR}$:

- 3 light + 2 heavy N degenerate: bad θ_{12} quadrant. It cannot accomodate data!
- 3 light + 3 heavy N : OK for θ_{23} maximal and spectrum

experimentally $\sin^2\theta_{23} = 0.41 + 0.03$ or0.59+-0.02Gonzalez-Garcia, Maltoni, Salvado, Schwetz Sept. 2012T2K -> 45° in 2-fam.

*What about the other angles?

e.g. $SU(n)_{NR}$... leptons

e.g. generic seesaw

$$\mathcal{L} = \mathcal{L}_{SM} + i\overline{N_R}\partial N_R - \left[\overline{N_R}Y_N\tilde{\phi}^{\dagger}\ell_L + \frac{1}{2}\overline{N_R}\mathbf{M}N_R^c + h.c.\right]$$

with M carrying flavour $\longrightarrow M$ spurion

More invariants in this case:

 $\begin{array}{l} \text{Tr} \left(\begin{array}{c} y_{\text{E}} \ y_{\text{E}^{+}} \right) & \text{Tr} \left(\begin{array}{c} y_{\text{E}} \ y_{\text{E}^{+}} \right)^{2} \\ \text{Tr} \left(\begin{array}{c} y_{\text{V}} \ y_{\text{V}^{+}} \right) & \text{Tr} \left(\begin{array}{c} y_{\text{V}} \ y_{\text{V}^{+}} \right)^{2} \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) & \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right)^{2} \end{array} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) & \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right)^{2} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) & \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right)^{2} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) & \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right)^{2} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) & \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right)^{2} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) & \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right)^{2} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) & \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right)^{2} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+}} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+} \end{array} \right) \\ \text{Tr} \left(\begin{array}{c} M_{\text{N}} \ M_{\text{N}^{+} \end{array} \right) \\$

At the minimum:

* Tr $(\mathcal{Y}_{v} \mathcal{Y}_{v}^{+} \mathcal{Y}_{E} \mathcal{Y}_{E}^{+}) = \text{Tr} (U_{L} y_{v}^{\text{diag. 2}} U_{L}^{+} y_{l}^{\text{diag. 2}}) \longrightarrow U_{L} = 1$ * Tr $(\mathcal{M}_{N} \mathcal{M}_{N}^{+} \mathcal{Y}_{v} \mathcal{Y}_{v}^{+}) = \text{Tr} (U_{R} y_{v}^{\text{diag. 2}} U_{R}^{+} M_{i}^{\text{diag. 2}}) \longrightarrow U_{R} = 1$

$G_f = U(3)_Q x U(3)_U x U(3)_D$

 $V (\mathbf{y}_{\mathbf{u}}, \mathbf{y}_{\mathbf{u}}) = \sum_{i} [-\mu_{i}^{2} \operatorname{Tr} (\mathbf{y}_{i} \mathbf{y}_{i}^{+}) - \lambda_{i} \operatorname{Tr} (\mathbf{y}_{i} \mathbf{y}_{i}^{+})^{2}]$ $+ \sum_{i \neq j} [\lambda_{ij} \operatorname{Tr} (\mathbf{y}_{i} \mathbf{y}_{i}^{+} \mathbf{y}_{j} \mathbf{y}_{j}^{+})] + \dots$

it only relies on Gf symmetry and SM gauge symmetry

It allows for either (too) hierarchical or degenerate spectrum

(Alonso, Gavela, Merlo, Rigolin 11; Nardi 11; Espinosa, Fong, Nardi 13)

Use the flavour symmetry of the SM with masless fermions:

 $G_f = U(3)_{Q_L} \times U(3)_{U_R} \times U(3)_{D_R}$

replace Yukawas by fields:

_

Spontaneous breaking of flavour symmetry dangerous

--> i.e. gauge it (Grinstein, Redi, Villadoro, 2010) (Feldman, 2010) (Guadagnoli, Mohapatra, Sung, 2010)

$G_f = U(3)_Q x U(3)_U x U(3)_D$

 $V (\mathcal{Y}_{\mathbf{u}}, \mathcal{Y}_{\mathbf{u}}) = \sum_{i} [-\mu_{i}^{2} \operatorname{Tr} (\mathcal{Y}_{i} \mathcal{Y}_{i}^{+}) - \lambda_{i} \operatorname{Tr} (\mathcal{Y}_{i} \mathcal{Y}_{i}^{+})^{2}]$ + $\sum_{i \neq j} [\lambda_{ij} \operatorname{Tr} (\mathcal{Y}_{i} \mathcal{Y}_{i}^{+} \mathcal{Y}_{j} \mathcal{Y}_{j}^{+})] + \dots$

> it only relies on G_f symmetry and SM gauge symmetry and analyzed its minima

(Alonso, Gavela, Merlo, Rigolin, arXiv 11; Nardi 11, Espinosa, Fong, Nardi 13)

Can its minimum correspond <u>naturally</u> to the observed masses and mixings?

i.e. with all dimensionless λ 's ~ 1

and dimensionful $\mu's = \Lambda_f$

Y --> one single field Σ

Spectrum for flavons Σ in the bifundamental:

* 3 generations: for the largest fraction of the parameter space, the stable solution is a degenerate spectrum

$$\left(\begin{array}{ccc} y_{u} & & \\ & y_{c} & \\ & & y_{t} \end{array}\right) \sim \left(\begin{array}{ccc} y & & \\ & y & \\ & & y \end{array}\right)$$

instead of the observed hierarchical spectrum, i.e.

$$\left(\begin{array}{ccc} y_{u} & & \\ & y_{c} & \\ & & y_{t} \end{array}\right) \sim \left(\begin{array}{ccc} 0 & & \\ & 0 & \\ & & y \end{array}\right)$$

(at leading order)

Spectrum: the hierarchical solution is unstable in most of the parameter space. **Stability:** $\frac{\tilde{\mu}^2}{2} < \frac{2\lambda'^2}{2}$

$$V^{(4)} = \sum_{i=u,d} \left(-\mu_i^2 A_i + \tilde{\mu}_i B_i + \lambda_i A_i^2 + \lambda_i' A_{ii} \right) + g_{ud} A_u A_d + \lambda_{ud} A_{ud} .$$

ie, the u-part: $V^{(4)} = -\mu_u^2 A_u + \tilde{\mu}_u B_u + \lambda_u A_u^2 + \lambda'_u A_{uu}$

Spectrum: the hierarchical solution is unstable in most of the parameter space. Stability: $\frac{\tilde{\mu}^2}{\kappa} < \frac{2\lambda'^2}{\kappa}$

$$V^{(4)} = \sum_{i=u,d} \left(-\mu_i^2 A_i + \tilde{\mu}_i B_i + \lambda_i A_i^2 + \lambda'_i A_{ii} \right) + g_{ud} A_u A_d + \lambda_{ud} A_{ud} .$$

ie, the u-part: $V^{(4)} = -\mu_u^2 A_u + \tilde{\mu}_u B_u + \lambda_u A_u^2 + \lambda'_u A_{uu}$

Nardi emphasized this solution (and extended the analysis to include also U(1) factors)

Normal hierarchy:

Up to terms of $\mathcal{O}(\sqrt{r}, s_{13})$, we find

$$\begin{split} \sqrt{r}, s_{13}), \text{ we find} & r = \frac{|\Delta m_{12}^2|}{|\Delta m_{13}^2|} \\ Y_N^T &\simeq y \begin{pmatrix} e^{i\delta}s_{13} + e^{-i\alpha}s_{12}r^{1/4} \\ s_{23} \begin{pmatrix} 1 - \frac{\sqrt{r}}{2} \end{pmatrix} + e^{-i\alpha}r^{1/4}c_{12}c_{23} \\ c_{23} \begin{pmatrix} 1 - \frac{\sqrt{r}}{2} \end{pmatrix} - e^{-i\alpha}r^{1/4}c_{12}s_{23} \end{pmatrix} . \end{split}$$

Inverted hierarchy:

$$Y_N^T \simeq \frac{y}{\sqrt{2}} \left(\begin{array}{c} c_{12} e^{i\alpha} + s_{12} e^{-i\alpha} \\ c_{12} \left(c_{23} e^{-i\alpha} - s_{23} s_{13} e^{i(\alpha-\delta)} \right) - s_{12} \left(c_{23} e^{i\alpha} + s_{23} s_{13} e^{-i(\alpha+\delta)} \right) \\ -c_{12} \left(s_{23} e^{-i\alpha} + c_{23} s_{13} e^{i(\alpha-\delta)} \right) + s_{12} \left(s_{23} e^{i\alpha} - c_{23} s_{13} e^{-i(\alpha+\delta)} \right) \end{array} \right)$$

The invariants can be written in terms of masses and mixing

* two families:

$$<\Sigma_{d}> = \Lambda_{f}$$
. diag (y_d); $<\Sigma_{u}> = \Lambda_{f}$. V_{Cabibbo} diag(y_u)

$$Y_D = \begin{pmatrix} y_d & 0\\ 0 & y_s \end{pmatrix}, \qquad Y_U = \mathcal{V}_C^{\dagger} \begin{pmatrix} y_u & 0\\ 0 & y_c \end{pmatrix} \qquad \mathbf{V}_{\text{Cabibbo}} = \begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix}$$

<Tr $(\Sigma_{u} \Sigma_{u}^{+}) > = \Lambda_{f}^{2} (y_{u}^{2} + y_{c}^{2}); <$ det $(\Sigma_{u}) > = \Lambda_{f}^{2} y_{u} y_{c}$

$$< Tr \left(\sum_{u} \sum_{u}^{+} \sum_{d} \sum_{d}^{+} \right) > = \Lambda_{f}^{4} \left[\left(y_{c}^{2} - y_{u}^{2} \right) \left(y_{s}^{2} - y_{d}^{2} \right) \cos 2\theta + \dots \right] / 2$$

(Alonso, Gavela, Merlo, Rigolin, arXiv 1103.2915)
Y --> one single field Σ

Minimum of the Potential

Dimension 5 Yukawa Operator

The minimum of the Potential is given by:

$$\frac{\partial V}{\partial y_i} = 0 \qquad \frac{\partial V}{\partial \theta_i} = 0$$

Take the angle for example:

$$rac{\partial V}{\partial heta_c} \propto \left(y_c^2 - y_u^2
ight) \left(y_s^2 - y_d^2
ight) \sin 2 heta_c = 0$$

Non-degenerate masses $\longrightarrow \sin 2\theta_c = 0$ No mixing !

Notice also that
$$\frac{\partial V^{(4)}}{\partial \theta} \sim \sqrt{J}$$
 (Jarlskog determinant)

(Alonso, Gavela, Merlo, Rigolin, arXiv 1103.2915)

Y --> one single field Σ

Minimum of the Potential

Dimension 5 Yukawa Operator

The minimum of the Potential is given by:

$$\frac{\partial V}{\partial y_i} = \mathbf{0} \qquad \frac{\partial V}{\partial \theta_i} = \mathbf{0}$$

Take the angle for example:

$$rac{\partial V}{\partial heta_c} \propto \left(y_c^2 - y_u^2
ight) \left(y_s^2 - y_d^2
ight) \sin 2 heta_c = 0$$

Non-degenerate masses $\longrightarrow \sin 2\theta_c = 0$ No mixing !

Can the actual masses and mixings fit naturally in the minimum of the Potential? e.g. adding non-renormalizable terms...

(Alonso, Gavela, Merlo, Rigolin, arXiv 1103.2915)

Minimum of the Potential

Dimension 5 Yukawa Operator

The minimum of the Potential is given by:

$$\frac{\partial V}{\partial y_i} = \mathbf{0} \qquad \frac{\partial V}{\partial \theta_i} = \mathbf{0}$$

Take the angle for example:

$$rac{\partial V}{\partial heta_c} \propto \left(y_c^2 - y_u^2
ight) \left(y_s^2 - y_d^2
ight) \sin 2 heta_c = 0$$

Non-degenerate masses $\sin 2\theta_c = 0$ No mixing !

Can the actual masses and mixings fit naturally in the minimum of the Potential? e.g. adding non-renormalizable terms...

* Without fine-tuning, for two families the spectrum is degenerate

* To accomodate realistic mixing one must introduce wild fine tunnings of $O(10^{-10})$ and nonrenormalizable terms of dimension 8

Y --> one single field Σ

three families

* at renormalizable level: 7 invariants instead of the 5 for two families

$$\begin{aligned} \operatorname{Tr} \left(\Sigma_{u} \Sigma_{u}^{\dagger} \right) &\stackrel{vev}{=} \Lambda_{f}^{2} \left(y_{t}^{2} + y_{c}^{2} + y_{u}^{2} \right) , & Det \left(\Sigma_{u} \right) \stackrel{vev}{=} \Lambda_{f}^{3} y_{u} y_{c} y_{t} , \\ \operatorname{Tr} \left(\Sigma_{d} \Sigma_{d}^{\dagger} \right) \stackrel{vev}{=} \Lambda_{f}^{2} \left(y_{b}^{2} + y_{s}^{2} + y_{d}^{2} \right) , & Det \left(\Sigma_{d} \right) \stackrel{vev}{=} \Lambda_{f}^{3} y_{d} y_{s} y_{b} , \\ &= \operatorname{Tr} \left(\Sigma_{u} \Sigma_{u}^{\dagger} \Sigma_{u} \Sigma_{u}^{\dagger} \right) \stackrel{vev}{=} \Lambda_{f}^{4} \left(y_{t}^{4} + y_{c}^{4} + y_{u}^{4} \right) , \\ &= \operatorname{Tr} \left(\Sigma_{d} \Sigma_{d}^{\dagger} \Sigma_{d} \Sigma_{d}^{\dagger} \right) \stackrel{vev}{=} \Lambda_{f}^{4} \left(y_{b}^{4} + y_{s}^{4} + y_{d}^{4} \right) , \\ &= \operatorname{Tr} \left(\Sigma_{u} \Sigma_{u}^{\dagger} \Sigma_{d} \Sigma_{d}^{\dagger} \right) \stackrel{vev}{=} \Lambda_{f}^{4} \left(P_{0} + P_{int} \right) , \\ \\ \mathbf{Interesting \ angular \ dependence:} \quad P_{0} \equiv -\sum_{i < j} \left(y_{u_{i}}^{2} - y_{u_{j}}^{2} \right) \left(y_{d_{i}}^{2} - y_{d_{j}}^{2} \right) \sin^{2} \theta_{ik} \sin^{2} \theta_{jk} + \\ &- \left(y_{d}^{2} - y_{s}^{2} \right) \left(y_{c}^{2} - y_{t}^{2} \right) \sin^{2} \theta_{13} \sin^{2} \theta_{23} + \\ &+ \frac{1}{2} \left(y_{d}^{2} - y_{s}^{2} \right) \left(y_{c}^{2} - y_{t}^{2} \right) \cos \delta \sin 2\theta_{12} \sin 2\theta_{23} \sin \theta_{13} , \end{aligned}$$

The real, unavoidable, problem is again mixing:

* Just one source:

Tr
$$(\Sigma_u \Sigma_u^+ \Sigma_d \Sigma_d^+) = \Lambda_f^4 (P_0 + P_{int})$$

 P_0 and P_{int} encode the angular dependence,

$$P_{0} \equiv -\sum_{i < j} \left(y_{u_{i}}^{2} - y_{u_{j}}^{2} \right) \left(y_{d_{i}}^{2} - y_{d_{j}}^{2} \right) \sin^{2} \theta_{ij} ,$$

$$P_{int} \equiv \sum_{i < j,k} \left(y_{d_{i}}^{2} - y_{d_{k}}^{2} \right) \left(y_{u_{j}}^{2} - y_{u_{k}}^{2} \right) \sin^{2} \theta_{ik} \sin^{2} \theta_{jk} + \left(y_{d}^{2} - y_{s}^{2} \right) \left(y_{c}^{2} - y_{t}^{2} \right) \sin^{2} \theta_{12} \sin^{2} \theta_{13} \sin^{2} \theta_{23} + \frac{1}{2} \left(y_{d}^{2} - y_{s}^{2} \right) \left(y_{c}^{2} - y_{t}^{2} \right) \cos \delta \sin 2\theta_{12} \sin 2\theta_{23} \sin \theta_{13} ,$$

Sad conclusions as for 2 families:

needs non-renormalizable + super fine-tuning

Automatic strong mass hierarchy and one mixing angle already at the renormalizable level

Holds for 2 and 3 families !

i.e. $Y_D \sim \chi^L d (\chi^R d)^+ \sim (3, 1, 1) (1, 1, \overline{3}) \sim (3, 1, \overline{3})$ Λf^2

It is very simple:

- a square matrix built out of 2 vectors

$$\begin{pmatrix} d \\ e \\ f \\ \vdots \end{pmatrix} (a, b, c \dots)$$

has only one non-vanishing eigenvalue

strong mass hierarchy at leading order: -- only 1 heavy "up" quark -- only 1 heavy "down" quark

only $|\chi|$'s relevant for scale

Minimum of the Potential

Dimension 6 Yukawa Operator

The invariants are:

$$\begin{split} \chi_u^{L\dagger} \chi_u^L, & \chi_u^{R\dagger} \chi_u^R, & \chi_d^{L\dagger} \chi_d^L, \\ \chi_d^{R\dagger} \chi_d^R, & \chi_u^{L\dagger} \chi_d^L = \left| \chi_u^L \right| \left| \chi_d^L \right| \cos \theta_c \,. \end{split}$$

 θ_{c} is the angle between up and down L vectors

Minimum of the Potential

Dimension 6 Yukawa Operator

The invariants are:

$$\begin{split} \chi_u^{L\dagger} \chi_u^L, & \chi_u^{R\dagger} \chi_u^R, & \chi_d^{L\dagger} \chi_d^L, \\ \chi_d^{R\dagger} \chi_d^R, & \chi_u^{L\dagger} \chi_d^L = \left| \chi_u^L \right| \left| \chi_d^L \right| \cos \theta_c \,. \end{split}$$

We can fit the angle and the masses in the Potential; as an example:

$$V' = \lambda_u \left(\chi_u^{L\dagger} \chi_u^L - \frac{\mu_u^2}{2\lambda_u} \right)^2 + \lambda_d \left(\chi_d^{L\dagger} \chi_d^L - \frac{\mu_d^2}{2\lambda_d} \right)^2 + \lambda_{ud} \left(\chi_u^{L\dagger} \chi_d^L - \frac{\mu_{ud}^2}{2\lambda_{ud}} \right)^2 + \cdots$$

Whose minimum sets (2 generations):

$$y_c^2 = \frac{\mu_u^2}{2\lambda_u \Lambda_f^2} \quad y_s^2 = \frac{\mu_d^2}{2\lambda_d \Lambda_f^2} \quad \cos\theta = \frac{\mu_{ud}^2 \sqrt{\lambda_u \lambda_d}}{\mu_u \mu_d \lambda_{ud}}$$

Towards a realistic 3 family spectrum

e.g. replicas of
$$\chi^L$$
, χ^R_u , χ^R_d
???

Suggests sequential breaking:

$$\begin{split} & \mathbf{SU}(3)^3 \xrightarrow{\mathbf{mt, mb}} \mathbf{SU}(2)^3 \xrightarrow{\mathbf{mc, ms, \theta_C}} \overset{\text{mmmm}}{\mathbf{mc, ms, \theta_C}} \\ & Y_u \equiv \frac{\langle \chi^L \rangle \langle \chi_u^{R\dagger} \rangle}{\Lambda_f^2} + \frac{\langle \chi_u^{\prime L} \rangle \langle \chi_u^{\prime R\dagger} \rangle}{\Lambda_f^2} = \begin{pmatrix} 0 & \sin \theta \, y_c & 0 \\ 0 & \cos \theta \, y_c & 0 \\ 0 & 0 & y_t \end{pmatrix} \\ & Y_d \equiv \frac{\langle \chi^L \rangle \langle \chi_d^{R\dagger} \rangle}{\Lambda_f^2} + \frac{\langle \chi_d^{\prime L} \rangle \langle \chi_d^{\prime R\dagger} \rangle}{\Lambda_f^2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_s & 0 \\ 0 & 0 & y_b \end{pmatrix} . \end{split}$$

Towards a realistic 3 family spectrum

e.g. replicas of
$$\chi^L$$
, χ^R_u , χ^R_d
???

Suggests sequential breaking:

* From bifundamentals:
$$\langle y_{u} \rangle = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_{t} \end{pmatrix}$$

 $\langle y_{d} \rangle = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_{b} \end{pmatrix}$

* From fundamentals χ : y_c , y_s and θ_C

Towards a realistic 3 family spectrum Combining fundamentals and bi-fundamentals

i.e. combining d=5 and d =6 Yukawa operators

$$\Sigma_u \sim (3,\overline{3},1) , \qquad \Sigma_d \sim (3,1,\overline{3}) , \qquad \Sigma_R \sim (1,3,\overline{3}) ,$$
$$\chi_u^L \in (3,1,1) , \qquad \chi_u^R \in (1,3,1) , \qquad \chi_d^L \in (3,1,1) , \qquad \chi_d^R \in (1,1,3) .$$

The Yukawa Lagrangian up to the second order in $1/\Lambda_f$ is given by:

$$\mathscr{L}_{Y} = \overline{Q}_{L} \left[\frac{\Sigma_{d}}{\Lambda_{f}} + \frac{\chi_{d}^{L} \chi_{d}^{R\dagger}}{\Lambda_{f}^{2}} \right] D_{R}H + \overline{Q}_{L} \left[\frac{\Sigma_{u}}{\Lambda_{f}} + \frac{\chi_{u}^{L} \chi_{u}^{R\dagger}}{\Lambda_{f}^{2}} \right] U_{R}\tilde{H} + \text{h.c.} ,$$

 Three types of models yield the Weinberg operator at tree level

Use the flavour symmetry of the SM with masless fermions:

 $G_f = SU(3)_{Q_L} \times SU(3)_{U_R} \times SU(3)_{D_R} \times U(1)_{S_R}$

which is broken by Yukawas:

_

*In the O(2)model used before: tgh $2\omega = \frac{y^2 - y'^2}{y^2 - y'^2}$ and

$$tg2\theta = \sin 2\alpha \frac{2\sqrt{m_{\nu_2}m_{\nu_1}}}{m_{\nu_2} - m_{\nu_1}} \frac{y^2 - y'^2}{y^2 - y'^2}$$
 $\alpha = \pi/4 \text{ or } 3\pi/4$

*If we had used instead a flavor SU(2)model sinh $2\omega = 0$ -->NO MIXING

Some good ideas:

"Partial compositeness":

D.B. Kaplan-Georgi in the 80s proposed a composite Higgs:

* Higgs light because the whole Higgs doublet is multiplet of goldstone bosons

They explored **SU(5)--> SO(5)**.

Explicit breaking of SU(2)xU(1) symmetry via external gauged U(1) (Kaplan, Georgi, Dimopoulos, Banks, Dugan, Galison)

Nowadays SO(5)--> SO(4) and explicit breaking via SM weak interaction (Contino, Nomura, Pomarol; Agashe, Contino, Pomarol; Giudice, Pomarol, Ratazzi, Grojean; Contino, Grojean, Moretti; Azatov, Galloway, Contino...)

 $SO(6) \rightarrow SO(5)$ to get also DM (Frigerio, Pomarol, Riva, Urbano)

Anarchy: alive with not so small θ_{13} and not θ_{23} not maximal

no symmetry in the lepton sector, just random numbers

$$m_{v} \sim \left(\begin{array}{ccc} \sim 1 & \sim 1 & \sim 1 \\ \sim 1 & \sim 1 & \sim 1 \\ \sim 1 & \sim 1 & \sim 1 \end{array} \right)$$

Does not relate mixing to spectrumDoes not address both quarks and leptons

(Hall, Murayama, Weiner; Haba, Murayama; De Gouvea, Murayama... Going towards hierarchy: Altarelli, Feruglio, Masina, Merlo)

μ -->e conversion

We performed an exact one-loop calculation, but for obvious approximations:

- -- $m_e=0$ compared to m_{μ}
- -- $m_{v1} = m_{v2} = m_{v3} = 0$ compared to heavy neutrino masses (that is, assume $m_N > eV$)
- -- higher orders in the external momentum neglected versus $M_{W_{\text{-}}}$ as usual

We did many checks to our results, e.g.:

.

* For "dipole" for factors check with b --> s l^+ l^-

* For the other form factors \dots agreement with μ --> eee form factors

$|U_{\mu N} U_{eN}^*|$ versus m_N

Sensitivity up to $m_N \sim 6000$ TeV for Ti

For the particular case of seesaw I : $U_{IN} \sim Y V/M$

 $|Y_{\mu N} Y_{e N}^*|$ versus m_N

* Large mass m_N >> m_W

When one \mathbf{m}_N scale dominates (e.g. degenerate heavy neutrinos or hierarchical) the ratio of any two μ -e transitions only depends on \mathbf{m}_N (Chu, Dhen, Hambye 11)

Besides, μ -e conversion vanishes at some large m_N

(Dinh, Ibarra, Molinaro, Petcov 12)

.)

For instance, we find that for light nuclei ($\alpha Z \ll 1$), it vanishes as

$$m_N^2 \Big|_0 = M_W^2 \exp\left(\frac{\frac{9}{8}(A-Z) + \left(\frac{9}{8} + \frac{31s_W^2}{12}\right)Z}{\frac{3}{8}(A-Z) + \left(\frac{4s_W^2}{3} - \frac{3}{8}\right)Z}\right)_{\text{(Alonso, Dhen, Hambye, B.G.)}}$$

exponential sensitivity

The ratios of two e-µ transitions....

we obtain:

...typically vanishes for m_N in 2-7 TeV range

(Alonso, Dhen, Hambye, B.G.)

* Low mass regime eV << m_N << m_W

.... de Gouvea 05...

* Low mass regime eV << m_N << m_W

μ --> e conversion does not vanish for low mass

* Low mass regime eV << m_N << m_W

This experiment (considered alone) will probe masses down to $m_N=2MeV$

For instance, in the minimal seesaw I, Lepton number scale and flavour scale linked:

$$\mathscr{L}_{M_{\nu}} = \begin{pmatrix} \mathbf{0} & \mathbf{Y}^{\mathrm{T}} \mathbf{v} \\ \mathbf{Y} & \mathbf{M}_{\mathrm{N}} \end{pmatrix}$$

 $-\mathcal{L}_{\text{seesaw I}} = \overline{L} H Y_E E_R + \overline{L} \tilde{H} \frac{Y}{V} N + M \overline{N} N^c + h.c.$

$$m_{v} = \mathbf{Y} \underline{\mathbf{V}^{2}} \mathbf{Y}^{T} \qquad \mathbf{U}_{IN} \sim \frac{\mathbf{Y}}{M}$$

LHC is more competitive for concrete seesaw models:

Low M, large Y is typical of seesaws with approximate Lepton Number conservation

U(1)_{LN}

(-> ~ degenerate heavy neutrinos)

These models separate the flavor and the lepton number scale

Wyler+Wolfenstein 83, Mohapatra+Valle 86, Branco+Grimus+Lavoura 89, Gonzalez-Garcia+Valle 89, Ilakovac+Pilaftsis 95, Barbieri+Hambye+Romanino 03, Raidal+Strumia+Turzynski 05, Kersten+Smirnov 07, Abada+Biggio+Bonnet+Gavela+Hambye 07, Shaposhnikov 07, Asaka+Blanchet 08, Gavela+Hambye+D. Hernandez+ P. Hernandez 09

M~1 TeV is suggested by electroweak hierarchy problem

$$\frac{H}{L} \qquad \qquad \delta m_H^2 = -\frac{Y_N^{\dagger} Y_N}{16\pi^2} \left[2\Lambda^2 + 2M_N^2 \log \frac{M_N^2}{\Lambda^2} \right]_{\text{(Vissani, Casas et al., Schmaltz)}}$$

(Abada, Biggio, Bonnet, Hambye, M.B.G.) $\int m_{H}^{2} = -3 \frac{Y_{\Sigma}^{\dagger} Y_{\Sigma}}{16\pi^{2}} \left[2\Lambda^{2} + 2M_{\Sigma}^{2} \log \frac{M_{\Sigma}^{2}}{\Lambda^{2}} \right]$

Higgs decay (LHC)

e.g. $H \rightarrow v N$

Pilaftsis92....Chen et al.10, Dev+Franceschini+Mohapatra 12, Cely+Ibarra+Molinaro+Petcov

We get for the model-independent rate:

$$Br(h \to \nu N) = \frac{\alpha_W}{8M_W^2 \Gamma_h^{tot}} \sum_{i}^k \left(|U_{eN_i}|^2 + |U_{\mu N_i}|^2 + |U_{\tau N_i}|^2 \right) m_h m_{N_i}^2 \left(1 - \frac{m_{N_i}^2}{m_h^2} \right)^2$$

and using $|\Sigma_i U_{eN_i} U_{\mu N_i}^*| < \Sigma_{i,\alpha} |U_{\alpha N_i}|^2$

$$\begin{aligned} & Just TWO heavy neutrinos \\ \mathcal{L}_{\mathcal{M}_{\nu}} = \left(\bar{\ell}_{L}, \, \bar{N}^{c}, \, \bar{N}^{\prime c}\right) \begin{pmatrix} 0 & vY & vY' \\ vY^{T} & 0 & \mathbf{M} \\ vY'^{T} & \mathbf{M} & 0 \end{pmatrix} \begin{pmatrix} \ell_{L}^{c} \\ N \\ N' \end{pmatrix} \end{aligned}$$

--> One massless neutrino and only one Majorana phase α the Yukawas are determined up to their overal magnitude

N.H.
$$Y = \frac{y}{\sqrt{m_{\nu_2} + m_{\nu_3}}} U_{PMNS} \begin{pmatrix} 0 \\ -i\sqrt{m_{\nu_2}}e^{-i\alpha} \\ \sqrt{m_{\nu_3}}e^{i\alpha} \end{pmatrix}$$

Gavela, Hambye, Hernandez² Raidal, Strumia, Turszynski Leptons

Just TWO heavy neutrinos $\mathcal{L}_{\mathcal{M}_{\nu}} = (\bar{\ell}_{L}, \bar{N}^{c}, \bar{N}^{\prime c}) \begin{pmatrix} 0 & vY & vY^{\prime} \\ vY^{T} & 0 & \mathbf{M} \\ vY^{\prime T} & \mathbf{M} & 0 \end{pmatrix} \begin{pmatrix} \ell_{L}^{c} \\ N \\ N^{\prime} \end{pmatrix}$

the Yukawas are determined up to their overal magnitude

N.H.
$$Y = \frac{y}{\sqrt{m_{\nu_2} + m_{\nu_3}}} U_{PMNS} \begin{pmatrix} 0 \\ -i\sqrt{m_{\nu_2}}e^{-i\alpha} \\ \sqrt{m_{\nu_3}}e^{i\alpha} \end{pmatrix}$$

The flavour symmetry is $G_f = U(3)_{\ell_L} \times U(3)_{E_R} \times O(2)_N$

(Alonso, Gavela, D. Hernandez, Merlo, Rigolin)

seesaw I with **Just TWO heavy neutrinos** $\mathcal{L}_{\mathcal{M}_{\nu}} = (\bar{\ell}_{L}, \bar{N}^{c}, \bar{N}^{\prime c}) \begin{pmatrix} 0 & vY & vY' \\ vY^{T} & 0 & \mathbf{M} \\ vY^{\prime T} & \mathbf{M} & 0 \end{pmatrix} \begin{pmatrix} \ell_{L}^{c} \\ N \\ N' \end{pmatrix}$

Lepton number scale and flavour scale distinct

Raidal, Strumia, Turszynski Gavela, Hambye, Hernandez²

--> Lepton number conserved conserved if either Y or Y' vanish:

Raidal, Strumia, Turszynski Gavela, Hambye, Hernandez²

* What is the role of the neutrino flavour group?

e.g. O(2)_{NR} ... leptons e.g. seesaw with approximately conserved lepton number

$$\mathcal{L}_{\mathcal{M}_{\nu}} = \left(\bar{\ell}_{L}, \bar{N}^{c}, \bar{N}^{\prime c}\right) \begin{pmatrix} 0 & vY & vY^{\prime} \\ vY^{T} & 0 & \mathbf{M}^{T} \\ vY^{\prime T} & \mathbf{M} & 0 \end{pmatrix} \begin{pmatrix} \ell_{L}^{c} \\ N \\ N^{\prime} \end{pmatrix}$$

* What is the role of the neutrino flavour group? e.g. O(2)_{NR} ... leptons e.g. seesaw with approximately conserved lepton number

 $\mathcal{L}_{mass} = \overline{\ell}_L \phi \underline{Y}_E E_R + \overline{\ell}_L \widetilde{\phi} \underline{\widetilde{Y}}_{\nu} (N_1, N_2)^T + M (\overline{N}_1 N_1^c + \overline{N}_2 N_2^c) + h.c.$

$$ilde{Y}_{m
u} = rac{1}{\sqrt{2}} U_{PMNS} f_{m_
u} \left(egin{array}{cc} y+y' & -i(y-y') \ i(y-y') & y+y' \end{array}
ight)$$

$U(3)_{\ell_L} \times U(3)_{E_R} \times O(2)_N$

$$Y_E = \frac{\langle y_E \rangle}{\Lambda_f} \sim (3, \overline{3}, 1); \quad (Y, Y') = \frac{\langle y_V \rangle}{\Lambda} \sim (3, 1, 2)$$

$$< y_{\rm E} > \propto \left(\begin{array}{ccc} m_{\rm e} & 0 & 0 \\ 0 & m_{\mu} & 0 \\ 0 & 0 & m_{\tau} \end{array} \right) \\ < y_{\nu} > \propto U_{PMNS} \left(\begin{array}{ccc} 0 & 0 \\ \sqrt{m_{\nu_2}} & 0 \\ 0 & \sqrt{m_{\nu_3}} \end{array} \right) \left(\begin{array}{c} -iy & iy' \\ y & y' \end{array} \right)$$

Varying the **CP** phases, we get:

(Alonso, Dhen, Gavela, Hambye)

Varying the CP phases α and δ , we get:

~ it could be consistent with Cely et al. 12, for $\alpha \sim 0$, $\delta \sim 0$

Varying the CP phases α and δ , we get:

For inverted hierarchy: some very low points for which μ -->e very small, because the Yukawas involved ---> 0 for particular values of α and δ (Alonso et al. 09, Alonso 08, Chu+Dhen+Hambye 11....)

Varying the **CP** phases, we get:

In any case, LHC expected sensitivity negligible compared with that of future μ --> e conversion expts.

* What is the role of the neutrino flavour group?

e.g. O(2)_{NR} ... leptons e.g. seesaw with approximately conserved lepton number

$$\mathcal{L}_{\mathcal{M}_{\nu}} = \left(\bar{\ell}_{L}, \bar{N}^{c}, \bar{N}^{\prime c}\right) \begin{pmatrix} 0 & vY & vY^{\prime} \\ vY^{T} & 0 & \mathbf{M}^{T} \\ vY^{\prime T} & \mathbf{M} & 0 \end{pmatrix} \begin{pmatrix} \ell_{L}^{c} \\ N \\ N^{\prime} \end{pmatrix}$$

* What is the role of the neutrino flavour group? e.g. O(2)_{NR} ... leptons e.g. seesaw with approximately conserved lepton number

 $\mathcal{L}_{mass} = \overline{\ell}_L \phi \underline{Y}_E E_R + \overline{\ell}_L \widetilde{\phi} \underline{\widetilde{Y}}_{\nu} (N_1, N_2)^T + M (\overline{N}_1 N_1^c + \overline{N}_2 N_2^c) + h.c.$

$$ilde{Y}_{m
u} = rac{1}{\sqrt{2}} U_{PMNS} f_{m_
u} \left(egin{array}{cc} y+y' & -i(y-y') \ i(y-y') & y+y' \end{array}
ight)$$

$U(3)_{\ell_L} \times U(3)_{E_R} \times O(2)_N$

$$Y_E = \frac{\langle y_E \rangle}{\Lambda_f} \sim (3, \overline{3}, 1); \quad (Y, Y') = \frac{\langle y_V \rangle}{\Lambda} \sim (3, 1, 2)$$

$$< y_{\rm E} > \propto \left(\begin{array}{ccc} m_{\rm e} & 0 & 0 \\ 0 & m_{\mu} & 0 \\ 0 & 0 & m_{\tau} \end{array} \right) \\ < y_{\nu} > \propto U_{PMNS} \left(\begin{array}{ccc} 0 & 0 \\ \sqrt{m_{\nu_2}} & 0 \\ 0 & \sqrt{m_{\nu_3}} \end{array} \right) \left(\begin{array}{c} -iy & iy' \\ y & y' \end{array} \right)$$

ΙH

Gavela, Hambye, Hernandez²; Degeneracy in the Majorana phase α

Figure 3: Left: Ratio $B_{e\mu}/B_{e\tau}$ for the normal hierarchy (solid) and the inverse hierarchy (dashed) as a function of α for $(\delta, s_{13}) = (0, 0.2)$. Right: the same for the ratio $B_{e\mu}/B_{\mu\tau}$.

Figure 5: m_{ee} as a function of α for the normal (solid) and inverted (dashed) hierarchies, for $(\delta, s_{13}) = (0, 0.2)$.

Gavela, Hambye, Hernandez²;

* Alonso + Li, 2010, MINSIS report: possible suppression of μ -e transitions for large θ_{13}

- * e- μ , μ - τ etc. oscillations and rare decays studied: Gavela, Hambye, Hernandez²09 ;
- * Alonso + Li, 2010: possible suppression of μ -e transitions ->important impact of ν_{μ} - ν_{τ} at a near detectors

$$B_{\mu
ightarrow e\gamma} \propto |Y_{N_e}Y_{N_\mu}|^2$$

- * e-μ, μ-τ etc. oscillations and rare decays studied: Gavela, Hambye, Hernandez²09;
- * Alonso + Li, 2010: possible suppression of μ -e transitions ->important impact of ν_{μ} - ν_{τ} at a near detectors

We find that there are regions where an experiment as MINSIS would improve the present bounds on our Model

E. Baracchini - MEG Experiment: past, present and future - Recontres du Vietnam

The FLAVOUR WALL for BSM

i) Typically, BSMs have **electric dipole moments** at one loop i.e susy MSSM:

< 1 loop in SM ---> Best (precision) window of new physics

ii) **FCNC**

i.e susy MSSM:

$$K^{0} - \overline{K}^{0} \operatorname{mixing} \begin{array}{c} \bar{s} \\ \tilde{g} \\ \underline{\tilde{g}} \\ \underline{\tilde{g}} \\ \underline{\tilde{d}}_{R_{\times}} \\ \tilde{s}_{R} \\ \tilde{s}_{R_{\times}} \\$$

competing with SM at one-loop

The FLAVOUR WALL for BSM

i) Typically, BSMs have **electric dipole moments** at one loop i.e susy MSSM:

< 1 loop in SM ---> Best (precision) window of new physics

ii) **FCNC**

i.e susy MSSM:

$$K^{0} - \overline{K}^{0} \operatorname{mixing} \begin{array}{c} \frac{\bar{s}}{\tilde{g}} \\ \frac{\tilde{g}}{\tilde{g}} \\ \frac{\tilde{d}}{\tilde{g}} \\ \frac{\tilde{d}}{\tilde{g}} \\ \frac{\tilde{d}}{\tilde{g}} \\ \frac{\tilde{d}}{\tilde{g}} \\ \frac{\tilde{d}}{\tilde{g}} \\ \frac{\tilde{g}}{\tilde{g}} \\ \frac{\tilde{g}}{\tilde{g}$$

competing with SM at one-loop

Cabibbo's dream

Beyond Standard Model because

1) Experimental evidence for new physics:

*** "Dark energy"/cosmological cte.

- *** Neutrino masses
- ***** Dark matter**
- **** Matter-antimatter asymmetry**

2) Uneasiness with SM fine-tunings

Only three singlet combinations in SM with d < 4:

Only three singlet combinations in SM with d < 4:

Only three singlet combinations in SM with d < 4:

H⁺ H S² Scalar

 $B_{\mu\nu}V_{\mu\nu}$ V

Vector

ĪΗΨ

Fermionic

Only three singlet combinations in SM with d < 4:

Analysis of SM-DM with higer-dimensional ops. (d>= 4) starting:

- with and withour flavour associated to DM:

$$\frac{1}{\Lambda_{DM}^{2}} \overline{Q}_{\alpha} \gamma_{\mu} Q_{\beta} \overline{\Psi}_{DM\gamma} \gamma^{\mu} \Psi_{DM\delta}$$

Flavour can stabilize DM (Batel et al.)

example of check: **Decoupling limits**

* Large mass m_N >> m_W

In the seesaw, for $m_N \rightarrow \infty$ the remaining theory is renormalizable (SM) --> rate must vanish then. Our results do decouple for $x_N = m_N^2/M_W^2 \gg 1$

 $\begin{array}{ll} \Gamma & \sim & (\log x_N)^2 / x_N^2 \,, & \quad {\rm for} \ \mu \to {\rm eee} & \quad {\rm and} & \quad \mu \to {\rm e \ conversion} \,, \\ \Gamma & \sim & 1 / x_N^2 \,, & \quad {\rm for} \ \mu \to {\rm e}\gamma \,. \end{array}$

* Low mass $m_N \ll m_W$

they also vanish for $m_N \rightarrow 0$ $x_N = m_N^2 / M_W^2 \ll 1$ $\Gamma \sim x_N^2 (\log x_N)^2$, for $\mu \rightarrow eee$ and $\mu \rightarrow e$ conversion; $\Gamma \sim x_N^2$, for $\mu \rightarrow e\gamma$.

Some good ideas:

 $Y \sim \left(< \frac{\phi}{\Lambda} \right)^n$

Frogatt-Nielsen '79:

U(1)_{flavour} symmetry

- Yukawa couplings are effective couplings,
- Fermions have U(1)_{flavour} charges

$$\mathbf{Y} \mathbf{Q} \mathbf{H} \mathbf{q}_{\mathbf{R}} = \left(\underbrace{< \boldsymbol{\Phi} >}_{\boldsymbol{\Lambda}} \right)^{\mathbf{n}} \mathbf{Q} \mathbf{H} \mathbf{q}_{\mathbf{R}}$$

e.g. n=0 for the top, n large for light quarks, etc.

--> FCNC ?

A good idea with continuous groups:

 $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}$

Frogatt-Nielsen '79: U(1)_{flavo}

U(1)_{flavour} symmetry

- Yukawa couplings are effective couplings,
- Fermions have U(1)_{flavour} charges

$$\mathbf{Y} \mathbf{Q} \mathbf{H} \mathbf{q}_{\mathbf{R}} = \left(\underbrace{< \boldsymbol{\Phi} >}_{\boldsymbol{\Lambda}} \right)^{\mathbf{n}} \mathbf{Q} \mathbf{H} \mathbf{q}_{\mathbf{R}}$$

e.g. n=0 for the top, n large for light quarks, etc.

--> FCNC ?

PROPOSED SEARCH FOR $\mu^+ \rightarrow e^+ e^- @ PSI$ (Mu3e)

A search for $\mu^+ \rightarrow e^+ e^+ e^$ down to BR ~ 10⁻¹⁶

Anarchy

no symmetry in the lepton sector, just random numbers

$$m_{v} \sim \left(\begin{array}{ccc} \sim 1 & & \sim 1 & & \sim 1 \\ \sim 1 & & \sim 1 & & \sim 1 \\ \sim 1 & & \sim 1 & & \sim 1 \end{array} \right)$$

Does not relate mixing to spectrumDoes not address both quarks and leptons

(Hall, Murayama, Weiner; Haba, Murayama; De Gouvea, Murayama... Going towards hierarchy: Altarelli, Feruglio, Masina, Merlo)

v masses beyond the SM

The Weinberg operator $O^{d=5}$

It's unique \rightarrow very special role of v masses: lowest-order effect of higher energy physics

This mass term violates lepton number (B-L) → Majorana neutrinos

 $igodol^{d=5}$ is common to all models of Majorana $oldsymbol{V}$ s

v masses beyond the SM : tree level

SU(2) $xU(1)_{em}$ inv.

 $2 \ge 2 = 1 + 3$

There are only three d≤4 combinations of SM and singlet fields:

Dark portals

There are only three d≤4 combinations of SM and singlet fields:

H⁺ H S² Scalar

 $B_{\mu\nu} V_{\mu\nu}$ Vector

LΗΨ

Fermionic

Any hidden sector, singlet under SM, can couple to the dark portals

Dark portals

There are only three d≤4 combinations of SM and singlet fields:

COMET μ -e conv. search

Phase-I phys run in 2017

Full COMET run in 2021-2022

Pion collection

- Search for cLFV mu-e conv. •
 - 10⁻¹⁶ sensitivity (Target S.E.S. 2.6 × 10⁻¹⁷)
 - Improve O(10⁴) than present upper bound such as SINDRUM-II BR[μ + Au \rightarrow $e^{-} + Au] < 7 \times 10^{-13}$
- Signature: 105MeV monochromatic • electron
- Beam requirement •
 - 8GeV bunched slow extraction
 - 1.6x10²¹ pot needed to reach goal
 - 7 uA (56kW) x 4 SN year (4x10⁷sec)
 - Extinction $< 10^{-9}$

ハドロンビール

Proton Beam

courtesy of Yoshi Kuno

Type I seesaw

Fermionic Singlet Seesaw (or type I)

 $-\mathcal{L}_{\text{seesaw I}} = \overline{L} H Y_E E_R + \overline{L} \widetilde{H} Y N + M \overline{N} N^c + h.c.$

$$m_v = \mathbf{Y} \mathbf{V}^2 \mathbf{Y}^T$$

 $-\mathcal{L}_{\text{seesaw I}} = \overline{L} H Y_E E_R + \overline{L} \tilde{H} Y N + M \overline{N} N^c + h.c.$ $m_v = Y \underline{v^2} Y^T \qquad Y \sim 1 \quad \text{for } M \sim N$

$$\frac{V^2}{M} \frac{\mathbf{Y}^1}{\mathbf{Y}^2} = \frac{\mathbf{Y}^2}{\mathbf{Y}^2} \frac{\mathbf{Y}^2}{\mathbf{Y}^2} = \frac{\mathbf{Y}^2}{\mathbf{Y}^2} \frac{\mathbf{Y}^2}{\mathbf{Y}^2} = \frac{\mathbf{Y}^2}{\mathbf{Y}^2} \frac{\mathbf{Y}^2}{\mathbf{Y}^2} \frac{\mathbf{Y}^2}{\mathbf{Y}^2} = \frac{$$