Determining neutrino masses from cosmology

Yvonne Y. Y. Wong The University of New South Wales Sydney, Australia

NuFact 2013, Beijing, August 19 – 24, 2013

The cosmic neutrino background...

Embedding the **standard model** in **FLRW cosmology** necessarily leads to a thermal neutrino background (decoupling at T ~ 1 MeV). Fixed by weak interactions

Present temperature:

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} = 1.95 \,\mathrm{K}$$

Number density per flavour:

$$n_{\rm v} = \frac{6}{4} \frac{\zeta(3)}{\pi^2} T_{\rm v}^3 = 112 \ {\rm cm}^{-3}$$

The cosmic neutrino background: energy density...

The present-day neutrino energy density depends on whether the neutrinos are relativistic or nonrelativistic.

Relativistic (m << T):
 Photon energy density

$$\rho_{\nu} = \frac{7}{8} \frac{\pi^2}{15} T_{\nu}^4 = \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} \rho_{\gamma}^4 \qquad \qquad \frac{3\rho_{\nu}}{\rho_{\gamma}} \sim 0.68$$

• **Nonrelativistic** (m >> T ~
$$10^{-4}$$
 eV):

ACDM (since Planck)

Detecting neutrino masses via free-streaming...

For most of the observable history of the universe neutrinos have significant speeds.

Consider a neutrino and a cold dark matter particle encountering two gravitational potential wells of different sizes in an expanding universe:

→ Cosmological neutrino mass measurement is based on observing this freestreaming induced potential decay at $\lambda << \lambda_{FS}$. Large-scale matter distribution...

 $P(k) = \langle |\delta(k)|^2 \rangle$

CMB anisotropies...

CMB anisotropies...

Present constraints...

Post-Planck... Ade et al.[Planck] 2013

Post-Planck... Ade et al.[Planck] 2013

In a nutshell...

• Formally, the best minimal (7-parameter) upper bound on Σm_v is still hovering around 0.3 eV post-Planck.

- The bound has however become more robust against uncertainties:
 - Less nonlinearities in BAO than in the matter power spectrum.
 - Does not rely on local measurement of the Hubble parameter...
 - ... or on the choice of lightcurve fitters for the Supernova la data.
- **Dependence on cosmological model** used for inference?

Model dependence: parameter degeneracies...

- We **do not** measure the neutrino mass *per se*, but rather its **indirect effect** on the clustering statistics of the CMB/large-scale structure.
 - It is **not impossible** that other cosmological parameters could give rise to similar effects (within measurement errors/cosmic variance).

Model dependence: parameter degeneracies...

- We **do not** measure the neutrino mass *per se*, but rather its **indirect effect** on the clustering statistics of the CMB/large-scale structure.
 - It is **not impossible** that **other cosmological parameters** could give rise to **similar effects** (within measurement errors/cosmic variance).

Model dependence: parameter degeneracies...

- We **do not** measure the neutrino mass *per se*, but rather its **indirect effect** on the clustering statistics of the CMB/large-scale structure.
 - It is **not impossible** that **other cosmological parameters** could give rise to **similar effects** (within measurement errors/cosmic variance).

Post-Planck... Ade et al.[Planck] 2013

Discrepancies potentially resolved by neutrino physics??

Planck discrepancies with other observations...

- **Hubble parameter** H_0 : Planck-inferred value lower than local HST measurement.
 - Alleviated by postulating N_{eff} > 3?
- Small-scale RMS fluctuation σ_8 : Planck CMB prefers a higher value than galaxy cluster count and galaxy shear from CFHTLens.

	Planck		Planck+lensing		Planck+WP	
Parameter	Best fit	68% limits	Best fit	68% limits	Best fit	68% limits
σ_8	0.8344	0.834 ± 0.027	0.8285	0.823 ± 0.018	0.8347	0.829 ± 0.012
<i>z</i> _{re}	11.35	$11.4^{+4.0}_{-2.8}$	11.45	$10.8^{+3.1}_{-2.5}$	11.37	11.1 ± 1.1
H_0	67.11	67.4 ± 1.4	68.14	67.9 ± 1.5	67.04	67.3 ± 1.2

Planck SZ clusters $\sigma_8(\Omega_m/0.27)^{0.3} = 0.782 \pm 0.01$ Ade et al. [Planck collaboration] 2013 CFHTLens galaxy shear $\sigma_8(\Omega_m/0.27)^{0.46} = 0.774 \pm 0.04$ Heymans et al. 2013

A neutrino solution??

My take: These discrepancies are most likely due to poorly understood nonlinearities.

- Cluster counts are particularly difficult to model.
- But at face value a sterile neutrino solution is possible.


```
CMB+all
(\LambdaCDM+\Delta N_{eff}+m_s
8-parameter model)
```

$$\Delta N_{\rm eff} = 0.61 \pm 0.30$$

 $m_{\rm s} = (0.41 \pm 0.13) \,\,{\rm eV}$

Hamann & Hasenkamp 2013 also Wyman et al. 2013

A neutrino solution??

Future sensitivities... (Planck is not the end of the story!!)

ESA Euclid mission selected for implementation...

Launch planned for 2019.

- 6-year lifetime
- 15000 deg² (>1/3 of the sky)
- Galaxies and clusters out to z~2
 - Photo-z for 1 billion galaxies
 - Spectro-z for 50 million galaxies
- Optimised for weak gravitational lensing (cosmic shear)

Expected sensitivity...

A 7-parameter forecast: Hamann, Hannestad & Y³W 2012

Data	$10^3 imes \sigma(\omega_{ m dm})$	$100 imes \sigma(h)$	$\sigma(\sum m_{ u})/\mathrm{eV}$
с	2.02	1.427	0.143
CS	0.423	0.295	0.025
cg	0.583	0.317	0.016
$\mathbf{cg}_{\mathbf{l}}$	0.828	0.448	0.019
cg_b	0.723	0.488	0.039
cg_bl	1.165	0.780	0.059
csg	0.201	0.083	0.011
csgx	0.181	0.071	0.011
csg_b	0.385	0.268	0.023
csg_bx	0.354	0.244	0.022

c = CMB (Planck); g = Euclid galaxy clustering s = Euclid cosmic shear; x = Euclid shear-galaxy cross

Most optimistic

 Σm_{v} potentially detectable at 5 σ + with Planck+Euclid (assuming nonlinearities to be completely under control)

Expected sensitivity...

A 7-parameter forecast: Hamann, Hannestad & Y³W 2012

Data	$10^3 imes \sigma(\omega_{ m dm})$	$100 imes \sigma(h)$	$\sigma(\sum m_{ u})/\mathrm{eV}$
с	2.02	1.427	0.143
CS	0.423	0.295	0.025
cg	0.583	0.317	0.016
cg_l	0.828	0.448	0.019
cg_b	0.723	0.488	0.039
cg_bl	1.165	0.780	0.059
csg	0.201	0.083	0.011
csgx	0.181	0.071	0.011
csg_b	0.385	0.268	0.023
csg_bx	0.354	0.244	0.022

c = CMB (Planck); g = Euclid galaxy clustering s = Euclid cosmic shear; x = Euclid shear-galaxy cross

Moderate

2σ+ detection (only shear nonlinearities under control)

Very pessimistic

No knowledge of nonlinearities

Most optimistic

 Σm_{v} potentially detectable at 5 σ + with Planck+Euclid (assuming nonlinearities to be completely under control)

- Precision cosmological observables can be used to "measure" the absolute neutrino mass scale based on the effect of neutrino free-streaming.
- Existing precision cosmological data already provide strong constraints on the neutrino mas sum.
 - No significant formal improvement between the best pre-Planck and post-Planck upper bounds (at least not for the minimal 7-parameter model).
 - But the **post-Planck** bound is **arguably more robust**.
- There are **outstanding discrepancies** between Planck and measurements from HST, clusters, and cosmic shear.
 - Taken at face value these discrepancies can be resolved by new neutrino physics (although not necessarily the same physics in all cases...).
 - But personally I'd take it *cum grano salis*.