Neutrino – Nucleus Scattering Physics with nuSTORM

What can a dedicated nuSTORM neutrinonucleus scattering physics program deliver?

Jorge G. Morfín

NuFact 2013 IHEP-Beijing August 2013

What is nuSTORM?

Neutrinos from Stored Muons – Alan Bross Presentation on Saturday

- High-Precision v interaction physics program.
- v_e and \overline{v}_e cross-section measurements.
- Address the large Δm² oscillation regime, make a major contribution to the study of sterile neutrinos.
- Either allow for precision study (in many channels), if they exist in this regime.
- ▼ Or greatly expand the dis-allowed region.

- Provide a technology test demonstration (μ decay ring) and μ beam diagnostics test bed.
- Provide a precisely understood v beam for detector studies.

Change the conception of the neutrino factory.

The nuSTORM Neutrino Beam

$$\mu^+ \rightarrow \overline{\nu}_{\mu} + \nu_e + e^+ \qquad \mu^- \rightarrow \nu_{\mu} + \overline{\nu}_e + e^-$$

- nuSTORM will provide a very well-known (δ φ(E) ≤ 1%) beam of ν and ν.
- nuSTORM will provide a high-intensity source of v_e events!

μ^+		μ	
Channel	$N_{ m evts}$	Channel	$N_{ m evts}$
$\bar{ u}_{\mu} { m NC}$	844,793	$\bar{\nu}_e ~\mathrm{NC}$	709,576
$\nu_e { m NC}$	1,387,698	$ u_{\mu} \; { m NC}$	$1,\!584,\!003$
$ar{ u}_{\mu}~{ m CC}$	$2,\!145,\!632$	$\bar{\nu}_e~\mathrm{CC}$	1,784,099
$\nu_e { m CC}$	$3,\!960,\!421$	$ u_\mu \ { m CC}$	$4,\!626,\!480$

event rates per 1E21 POT -100 tons at 50m

Jorge G. Morfín - Fermilab

Practicality of nuSTORM Neutrino Spectrum

v_e Event Fractions in a vSTORM Near Detector

• v_e produced by 3.8 GeV μ^+ beam.

* 56% resonant * 32% QE * 12% DIS

For $\overline{\nu}_{e}$ sample, 52% resonant, 40% QE, 8% DIS)

v-Nucleus Interaction Physics with nuSTORM A partial sampling

- v_e and \overline{v}_e cross-section measurements
 - ▼ A UNIQUE contribution from nuSTORM
 - Essentially no existing data
- π^0 production in v interactions
 - **v** Coherent and quasi-exclusive single π^0 production
- Charged π & K production
 - ▼ Coherent and quasi-exclusive single π^+ production
- Multi-nucleon final states
- v-e scattering
- v-Nucleon neutral current scattering
 - Measurement of NC to CC ratio
- Charged and neutral current processes
 - Measurement of v_e induced resonance production
- Nuclear effects
- Semi-exclusive & exclusive processes
 - Measurement of K_s^0 , $\Lambda \& \Lambda$ -bar production
- New physics & exotic processes
 - Test of $v_{\mu} v_{e}$ universality
 - Heavy v
 - eV-scale pseudo-scalar penetrating particles

Combined with the right detector, opportunity for detailed studies of the hadronic vertex.

Why is Neutrino Nucleus Scattering Important?

What do we observe in our (neutrino oscillation) experiment detectors?

- The events we observe in our detectors are convolutions of: $Y_{c-like}(E) \alpha \quad \phi(E' \ge E) \bigotimes \sigma_{c,d,e..}(E' \ge E) \bigotimes Nuc_{c,d,e.. \rightarrow c}(E' \ge E)$
- φ(E) is the energy dependent neutrino flux that enters the detector. Currently, with traditional meson-decay-source neutrino beams, φ(E) ≈10% absolute and ≈ 7% energy bin-to-bin accuracy. Significant contribution to systematics.
- σ_{c,d,e.}(E' ≥ E) is the measured or the Monte Carlo (model) energy dependent
 neutrino cross section off a nucleon within a nucleus.
- $\operatorname{Nuc}_{c,d,e.. \rightarrow c} (E' \geq E) \operatorname{Nuclear Effects}$
 - Nuclear Effects a migration matrix that mixes produced/observed channels and energy
 - In general the interaction of a neutrino with energy E' creating initial channel d,e...
 can appear in our detector as energy E and channel c.
 - Particularly **fierce bias** when using the **QE hypothesis** to calculate E and Q²!
- $Y_{c-like}(E)$ is the event energy and channel / topology of the event observed in the detector. Appears to be channel c but may not have been channel c at interaction.

What are these Nuclear Effects Nuc_{c,d,e..→c} (E' ≥ E) in Neutrino Nucleus Interactions? (Partial List) A Migration Matrix

- Target nucleon in motion classical Fermi gas model or the superior spectral functions (Benhar et al.)
- Multi-nucleon initial states: Short-range correlations, meson exchange currents.
- Form factors, structure functions, resonance widths, parton distribution functions and, consequently, cross sections are modified within the nuclear environment. (Butkevich / Kulagin, Tsushima et al., Kovarik et al.)
- Produced topologies are modified by final-state interactions modifying topologies and possibly reducing **detected** energy and **increasing** wrong-sign background.
 Convolution of δσ(nπ) (x) formation zone uncertainties (x) π-charge-exchange/ absorption probabilities and nuclear density uncertainties.
- Systematics associated with each of these effects.
- Event Generators like GENIE try to include all these effects.

How well off are we with v_{μ} Cross sections: Range of Existing Model (MC) Predictions off C

NuInt09 – Steve Dytman

Example Model Uncertainties

Cross Section Model Uncertainties

Uncertainty	1σ
M _A (Elastic Scattering)	± 25%
Eta (Elastic scattering)	± 30%
MA (CCQE Scattering)	+25%
	-15%
CCQE Normalization	+20%
	-15%
CCQE Vector Form factor model	on/off
CC Resonance Normalization	± 20%
M _A (Resonance Production)	$\pm 20\%$
M _V (Resonance Production)	$\pm 10\%$
1pl production from $vp / \overline{v}n$ non- resonant interactions	± 50%
1pi production from $vn/\overline{v}p$ non-	± 50%
Pei preduction term tra (Ter pen	
resonant Interactions	± 50%
2pi production from $vn/\overline{v}p$ non-	$\pm 50\%$
resonant Interactions	
Modfly Pauli blocking (CCQE) at low Q ² (change PB momentum threshold)	± 30%

Intranuclear Rescattering Uncertainties

Uncertainty	1σ
Plon mean free path	± 20%
Nucleon mean free path	± 20%
Pion fates – absorption	± 30%
Pion fates – charge exchange	± 50%
Pion fates - Elastic	$\pm 10\%$
Pion fates - Inelastic	± 40%
Plon fates – plon production	± 20%
Nucleon fates – charge exchange	± 50%
Nucleon fates - Elastic	± 30%
Nucleon fates - Inelastic	± 40%
Nucleon fates - absorption	± 20%
Nucleon fates – plon production	± 20%
AGKY hadronization model - x _E distribution	± 20%
Delta decay angular distribution	On/off
Resonance decay branching ratio to photon	± 50%

Hugh Gallagher

References: (1) www.genie-mc.org, (2) arXiv:0806.2119, (3) D. Bhattacharya, Ph. D Thesis (U. Pittsburgh) 2009.

What do we observe in our detectors? Further implications for Oscillation Experiments

• The events we observe in our detectors are convolutions of: $Y_{c-like}(E) \alpha \phi(E' \ge E) \otimes \sigma_{c,d,e..}(E' \ge E) \otimes Nuc_{c,d,e.. \rightarrow c}(E' \ge E)$

- Experimentally, the convolution of initial cross section and nuclear effects are combined into an effective cross section σ_c^A(E) that depends on incoming neutrino energy spectrum and nuclear effects that populate the yield Y_c^A(E).
- In a two-detector LBL oscillation experiment, neutrino flux entering the FD is different than the neutrino flux at the ND due to geometry and oscillations. The $\sigma_c^A(E)$ effective that should be applied to expectations (Monte Carlo) at FD is NOT the same as that which we would measure at the ND.
- What would be ideal is a measurement of the nuclear effects migration matrix. Since we can't isolate that from cross section and flux, the next best measurement would be a measurement of the effective σ_c^A(E) for different well-measured incoming neutrino spectra.

effective $\sigma_c^A(E)$

How well off are we with v_{μ} Cross sections: Ratios: Prediction/MiniBooNE Data – NuInt12

NuInt12 – Phil Rodrigues

1.6 1.6 Prediction/Data Prediction/Data $CC1\pi^+$ CC1π⁰ 1 1.4 1.2 .2 Athar et al. 1.0 1.0 E_{v} Nieves *et al.* 0.8 0.8 GiBUU 0.6 0.6 0.4[[] 0.4^L 1.0 2.0 1.5 1.0 1.5 2.0 E_v (GeV) E_v (GeV) 1.6 1 .6 Prediction/Data Prediction/Data $CC1\pi^+$ CC1π⁰ NuWro 1.4 1.4 GENIE 1.2 1.2 Q^2 1.0 --- NEUT 0.8 0.8 0.6 0.6 + MB data 0.4 0.4 2.0 0.5 1.5 1.0 0.5 1.0 1.5 Prediction/Data 1.1 1.2 1.0 1.0 Q^2 (GeV²) 1.6 Prediction/Data $CC1\pi^0$ $CC1\pi^+$ 1.4 1.2 1.0 T_{μ} 0.8 0.8 0.6 0.6 0.4^L 0.4L 0.5 1.0 0.5 1.0 1.5 T_{μ} (GeV) T_{...} (GeV)

Jorge G. Morfin - Fermilab

12

Nuclear Effects can Change the Energy Reconstruction for "QE" Events

In pure QE scattering on a nucleon at rest, the outgoing lepton can determine the neutrino energy:

However, not on nuclei.

Reconstructed energy is shifted to lower values for all processes other than true QE off nucleon at rest

U. Mosel GiBUU

Jorge G. Morfín - Fermilab

Detailed Study by P. Coloma and P. Huber arXiv 1307.1243

- Disappearance experiment using CC QE-like signal events. T2K 5 years; 850 QE
- QE-like includes pion absorption and scattering off nucleon pairs. 1300 QE-like
- E_v is reconstructed from the observed muon which gives a lower E_v for non-QE.
- Give a quantitative estimate of this problem using: $N_i^{\text{test}}(\alpha) = \alpha \times N_i^{QE} + (1 \alpha) \times N_i^{QE-like}$
- $\alpha = 1$ implies completely ignore nuclear effects while $\alpha = 0$ implies you know/ model the nuclear effects completely.
- The importance of a near detector to help normalize the signal is obvious. However have not yet included different near and far incoming neutrino spectra.
- Even with ND, $\alpha = 0.3 \rightarrow 1 \sigma$ bias in parameters! Need accurate nuclear model!

14

Advantage Number One of nuSTORM

The nuSTORM beam will provide a

very well-known ($\delta \phi(E) \approx 1\%$) beam of v and \overline{v} .

• The events we observe in our detectors are convolutions of: $Y_{c-like}(E) \alpha \left(\phi(E' \ge E) \otimes \sigma_{c,d,e..}(E' \ge E) \otimes Nuc_{c,d,e.. \rightarrow c}(E' \ge E) \right)$

- Y_{c-like} (E) is the event energy and channel / topology of the event observed in the detector. The errors on the three components create a nasty, oozy morass!
- nuSTORM takes one of these convoluted components $\phi(E' \ge E)$ essentially out of the equation: a very well-known ($\delta \phi(E) < 1\%$) beam of ν and $\overline{\nu}$.
- With a variable incoming ν spectrum, nuSTORM can get a first measurement of the energy dependence of:
 σ_c^A(E) = σ_{c d e} (E' ≥ E) (X) Nuc_{c d e} → c (E' ≥ E)
- Combine with a high-resolution near detector with multiple nuclear targets to provide detailed studies of the final states including the vertex multiplicities and energy flow..

nuSTORM Near Detectors

 \Rightarrow HiResMNu idea being developed within the LBNE collaboration

◆ A 1-2 ton fiducial liquid hydrogen/deuterium track sensitive target upstream of HiRes for normalization. This could be a bubble chamber.

 $\label{eq:rho} \begin{array}{l} \bullet \circ \rho \simeq 0.1 gm/cm^3 \\ \bullet \circ \text{Space point position} \simeq 200 \mu \\ \bullet \circ \text{Time resolution} \simeq 1 \text{ ns} \end{array}$

- CC-Events Vertex: $\Delta(X,Y,Z) \simeq O(100\mu)$ • Energy in Downstream-ECAL $\simeq 6\%/\sqrt{E}$ • μ -Angle resolution (~5 GeV) $\simeq O(1 \text{ mrad})$
 - μ-Energy resolution (~3 GeV) ~ 3.5%
 e-Energy resolution (~3 GeV) ~ 3.5%

Transitivity Calculations:

•We have used LBNE Flux: Flux from $\mu \ge v_e v_{\mu}$ will be cleaner/simpler

Parametrized calculation

Repeat with NOMAD configuration and checked against the Data and Geant-MC (Agree within 15%)

Scattering Measurements with nuSTORM + Near Detector nuSTORM provides a well-known ($\delta \phi(E) \approx 1\%$) beam of v and \overline{v} .

Ed Santos – Imperial College

 $HIRESM_{V}$ – systematics

Jorge G. Morfin - Fermilab

Advantage Number 2 of nuSTORM How well do we know cross sections: $v_e vs. v_{\mu}$? Existing v_e Cross Section Data

- What do we know about $\sigma_{ve}(E)$? Mostly very low energy results.
 - Reactor neutrinos studying Inverse Beta Decay
 - ▼ Solar neutrino off deuterium (SNO)
 - Stopping π/μ decay neutrinos off higher A targets
 - ▼ See Formaggio and Zeller **Rev. Mod. Phys. 84, 1307–1341 (2012).**
- One of few measurements of spectral shape of σ reflects the upper limit of most existing measurements, $E \le 50$ MeV.

Jorge G. Morfin - Fermilab

19

 $v_e^{12}C \rightarrow e^{-12}N_{q.s.}$

Where Are We with High-energy v_e Cross Sections?

• **NOWHERE!** Need to measure the $\sigma_{ve}(E)$ of multiple channels to fully predict a spectrum at a far detector for LBL experiments.

We infer them from σ_{νμ}(E) results. The validity of this inference directly impacts the uncertainty of the measurements.

Jorge G. Morfín - Fermilab

What are the Differences $\sigma_{\nu\mu}(E)$ and $\sigma_{\nu e}(E)$? Quasi-elastic Scattering Day-McFarland study: Phys.Rev. D86 (2012) 053003

- QE scattering dominates at low energies (2nd oscillation maxima)
- Sources of possible differences and uncertainties obvious:
 - Kinematic limits from μ / e mass difference.

21

What are the Differences? Δ Production Paschos – Schalla: arXiv:1209.4219

 Paschos-Schalla predicts the following differences in cross sections where only the lepton mass term contributions are shown and any differences in form factors are not yet included.

• We need to measure these v_e cross sections. **nuSTORM sould do it.**

Differences between ν_e or ν_μ Meson-exchange Current Contributions – Marco Martini

- Hadronic part (nuclear response functions) is the same for v_e or v_μ cross section.
- However, the lepton tensor changes \rightarrow the relative weight of the nuclear responses in the several channels may change.
- The double ratio suggests the effect on the v_e/v_u cross section ratio is $\leq 5\%$
- nuSTORM could measure this difference $v_e v_s$. v_{μ} .

What could a nuSTORM Scattering analysis add? Provide significant input to knowledge of electro-weak physics.

- Use the unique qualities of the nuSTORM beam meaning the flux of v_e and the fantastic knowledge of absolute and relative flux.
- Need an experiment that has a track sensitive H and D target (bubble chamber) upstream of a high-resolution near detector with multiple nuclear targets to provide detailed studies of the final states including the vertex (multiplicities and energy flow.
- However, this is not the same nuSTORM approved by the Fermilab PAC. This requires a high-resolution near detector and, preferably, a H/D Bubble Chamber.
- Now forming an independent nuSTORM neutrino interaction collaboration for the nuSTORM <u>facility</u>!

BACKUP

High Resolution Near Detector

- NOMAD-like resolution in HiRes detector allows to:
 - Measure absolute flux using
 - ν e elastic scattering –
 - ▼ Measure quasi-elastic scattering
 - NC vs CC events (NOMAD with 90% purity)
 - Coherent π^0
 - Comparison $\sin^2 \theta_{\rm W}$ from DIS and $\nu e \rightarrow \nu e$
 - ▼ 77 different physics topics!

A $\bar{\nu}_e$ CC candidate in NOMAD

x12 higher sampling in HiResMnu
 x4π 12 calorimetric and μ converage

v-e NC elastic scattering

$$\sigma(\nu_{l}e \rightarrow \nu_{l}e) = \frac{G_{\mu}^{2}m_{e}E_{\nu}}{2\pi} \left[1 - 4\sin^{2}\theta_{W} + \frac{16}{3}\sin^{4}\theta_{W} \right] \sim 10^{-42} (E_{\nu}/\text{ GeV}) cm^{2}$$

$$\sigma(\bar{\nu}_{l}e \rightarrow \bar{\nu}_{l}e) = \frac{G_{\mu}^{2}m_{e}E_{\nu}}{2\pi} \left[\frac{1}{3} - \frac{4}{3}\sin^{2}\theta_{W} + \frac{16}{3}\sin^{4}\theta_{W} \right] \sim 10^{-42} (E_{\nu}/\text{ GeV}) cm^{2}$$

$$\int_{0}^{1} \frac{1}{10^{-4}} \int_{0}^{1} \frac{1}{10^{-$$

Jorge G. Morfín - Fermilab

Pion Production Challenges

• State of the art calculations describe better the data without FSI

Jorge G. Morfin - Fermilab

Nuclear Effects and Oscillation Measurements

Ulrich Mosel using his Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) Transport Model looking at T2K

Jorge G. Morfin - Fermilab

What are the Differences $\sigma_{\nu\mu}(E)$ and $\sigma_{\nu e}(E)$? Quasi-elastic Scattering Day-McFarland study: Phys.Rev. D86 (2012) 053003

- Sources of possible differences: form factor uncertainties entering through lepton mass alterations - much more subtle:
 - ▼ Form factor contributions both Axial and Pseudoscalar
 - ▼ Second class current contributions to vector and axial-vector form factors
- Possible contribution to CP uncertainties: effect on the FF could be different for v and \overline{v}

What are the Differences? △ Production Paschos – Schalla: arXiv:1209.4219

- Manny and his student have investigated v_{μ} and $\overline{v_{\mu}}$ differences in Δ production in the low-Q ($Q^2 \approx m_{\pi}^2$) region where PCAC dominates the axial contribution.
- At E = 1-2 GeV, V part and V/A interference same size \rightarrow cancel for \overline{v}
- Use the Adler-Nussinov-Paschos model for nuclear corrections.

