

International Workshop on Neutrino Factories, Super Beams and Beta Beams

August 19-24,2013,IHEP,Beijing,China

NUFACT 2013

T2K Neutral Current Elastic Scattering Cross Section

Daniel Ruterbories for the T2K Collaboration NuFact2013, Beijing August 21st, 2013

Colorado State University

On Behalf Of

~500 people, From 59 institutes, In 11 countries

Long baseline neutrino oscillation experiment designed to

- measure oscillation parameters ($\theta_{13}, \theta_{23}, \Delta m_{32}^2$)
- <u>neutrino-nucleus interaction cross sections</u> ...

T2K

See "T2K 2013 Neutrino Oscillation Results and Future Sensitivity" by Megan Friend at 11:20 Aug 20th

"CC cross section measurements at T2K" by David Hadley at 10:55 Aug 20th

RC Main Ring

Long baseline neutrino oscillation experiment designed to

- measure oscillation parameters (θ_{13} , θ_{23} , Δm_{32}^2)
- <u>neutrino-nucleus interaction cross sections</u> …

T2K Beam Configuration

• Predominately ν_{μ} narrowband off-axis

Upcoming Analyses

Current analyses include: CC inclusive cross section from flux variation across detector and CCQE measurements on scintillator and iron

INGRID

- 16 plastic scintillator + iron detectors
 - 7 vertical, 7 horizontal and 2 off axis
- 1 additional module
 - Finer grained, all scintillator
 - Designed to measure the protons from CCQE interactions
 - Measures flux normalization and profile

Off-axis detector

Magnetized detector at 0.2T **SMRD (Side Muon Range Detector):**

• Scintillator planes in the magnet yoke to measure muon momenta

T2/k

π^0 -detector (P0D)

- Partially active volume
- Two EM Calorimeters (ECal)
 - Scintillator + <u>lead</u>
 - Helps contain EM showers
- Two water targets (WT)
 - Scintillator + brass + water(air)
 - Removable water to provide measurement of neutrino cross-sections on water
 - Brass to help initiate EM showers

Neutral Current Elastic Interaction

• Primary Interaction:

$$\nu_{\mu} + \mathbf{n} \rightarrow \nu_{\mu} + \mathbf{n}$$

$$\nu_{\mu} + \mathbf{p}^{+} \rightarrow \nu_{\mu} + \mathbf{p}^{+}$$

- With perfect reconstruction and detectors:
 - 1 track corresponding to a proton
 - Neutrons are not directly visible to the P0D
- Can produce multiple nucleons with final state interaction (FSI)
 - Cause feed down from other NC processes
- T2K's measurement investigates NCE-like events, or events where only nucleons and a v_{μ} exit the nucleus,

р

Defined by FSI topologies

Topology Definitions

NCE: Any interaction where there is a v_{μ} but no mesons exiting the interaction nucleus. Any number of protons and/or neutrons are allowed in the final state.

NC π^0 : Any interaction where there is only one π^0 exiting the interaction nucleus. Any number of nucleons are allowed

CCQE: Any interaction where there is a μ^{-} but no mesons exiting the nucleus.

Outside FV in P0D: Any interaction with a v_{μ} of any interaction type that occurs within the active volume, but outside the FV of the P0D.

CC Other: Any interaction where there is a μ^- but any number of mesons exiting the nucleus. NC Other: Any interaction where there is a v_{μ} plus some number of mesons exiting the nucleus.

Other: Any non- v_{μ} neutrino interaction

Outside P0D: Any interaction with a ν_{μ} of any interaction type that occurs outside the active volume of the P0D.

Sand Interactions: Any interaction with the interaction vertex outside the magnet volume

Signal Definition

Defined by FSI topologies

NCE: Any interaction where there is a v_{μ} but no mesons exiting the interaction nucleus. Any number of protons and/or neutrons are allowed in the final state.

All of these types of events are signal events

Internal POD Background

Defined by FSI topologies

T2

NCE NC π^0 CCQE Outside FV in P0D Other CC/NC/Non- v_{μ} Outside P0D Sand Interactions Data

Largest single channel background

Irreducible background

NC π^0 : Any interaction where there is only one π^0 exiting the interaction nucleus. Any number of nucleons are allowed

*****CCQE: Any interaction where there is a μ^{-} but no mesons exiting the nucleus.

Outside FV in P0D: Any interaction with a v_{μ} of any interaction type that occurs within the active volume, but outside the FV of the P0D.

CC Other: Any interaction where there is a μ^- but any number of mesons exiting the nucleus. NC Other: Any interaction where there is a v_{μ} plus some number of mesons exiting the nucleus.

Other: Any non- v_{μ} neutrino interaction

Mostly neutrons from interactions upstream

External Backgrounds

Defined by FSI topologies

	NCE
	$NC\pi^0$
	CCQE
	Outside FV in P0D
	Other CC/NC/Non- v_{μ}
	Outside P0D
	Sand Interactions
•	Data

Come from upstream neutrino interactions

- From the wall and dirt (Sand)
- From the magnet and support structures (Outside P0D)

Outside P0D: Any interaction with a v_{μ} of any interaction type that occurs outside the active volume of the P0D. Sand Interactions: Any interaction with the interaction vertex outside the magnet volume

Flux averaged cross section

$$<\sigma>_{\rm flux} = \frac{N_{\rm data} - B_{\rm mc}}{T\Phi\varepsilon}$$

T2

selected number of events in data N_{data}

- B_{MC} background prediction from MC Т
 - total number of target nucleons
- Neutrino flux Φ
 - Selection efficiency correction
- Uses data with water in the P0D
- Reported as cross section per nucleon
 - Averages over carbon, brass, water
- Background subtracted result
- Using 9.918 x 10¹⁹ POT select 3936 events with a predicted background of 2016 events

Analysis cuts

- 1 reconstructed vertex with 1 3D track
- Start position within the fiducial volume
 - 25cm from active edges in water target (XY cut)
 - Within readout planes in the water target (Z cut)
- Track is contained
- Downstream PID pull non-muon like
 - Cut results in 82% of the selected tracks having a proton at the downstream end.
- Upstream PID pull non-muon like
- No Michel decay clusters

External Background Estimation

- Predominately neutrons from v_{μ} interactions upstream of the detector
- Insufficient timing resolution to detect by time of flight
- Significant background with large uncertainty
 - Measure neutron flux with data

Low Energy Clustering

- Reconstruct low energy neutron
 re-interactions
- Results in an independent event sample
 - Reject events where there are other reconstructed neutrino interactions
 - Enhanced sample for external neutral particles
- Fit data for scaling factor to apply to MC

Cluster Y Position [mm]

First 6 bins used; 6 MPV and Sigma constants Fit with a Landau Gaussian function MPV and Gaussian sigma used by PID

Particle Identification

 Select, in data, all upstream entering particles which stopped at least 1 m into the detector The PID is applied to the end and beginning of the track resulting in 2 distributions

PID applied to end of track

Cuts applied: 1 3D track, fiducial volume

Cuts applied: 1 3D track, FV, PID on track end

TZR Remove Michel Decays

Cuts applied: 1 3D track, FV, PID on track end and beginning

24

Final Sample

Systematic Name	Error on cross section	
Detector and Reconstruction		
Fiducial Volume	0.72%	
PID Algorithm	1.12%	
Reconstruction Road Following	1.66%	
Michel Efficiency	0.98%	
Number of targets	0.7%	
Physics		
Cross section model parameters	+14.33%, -16.60%	See next
Pion Absorption	2.29%	Silue
Secondary Interactions	2.5%	
Outside background scaling factor	6.40%	
Beam Flux		See later
Flux	+17.5%, -21.5%	slide
Total Systematics	+23.88%, -28.22%	
Total Statistical	$\pm 3.3\%$	26

Model Uncertainty

- Uncertainty dominated by background channels
- 3 largest contributors:
 - Pionless delta decay
 - $-NC\pi^0$ normalization
 - CCQE uncertainty modeled by varying M_A^{QE}
 - ~30% of the background

T2K Flux Uncertainty

Flux averaged cross section

$$<\sigma>_{\rm flux} = \frac{N_{\rm data} - B_{\rm mc}}{T\Phi\varepsilon}$$

Τ2

N_{data} selected number of events in data

- B_{MC} background prediction from MC
 - total number of target nucleons
- Φ Neutrino flux

Т

- Selection efficiency correction
- Uses data with water in the P0D
- Reported as cross section per nucleon
 - Averages over carbon, brass, water
- Background subtracted result
- Using 9.918 x 10¹⁹ POT select 3936 events with a predicted background of 2016 events

$$<\sigma>_{\rm flux} = 2.24 \times 10^{-39} \pm 0.07({\rm stat.}) + 0.53 ({\rm sys.}) \frac{{\rm cm}^2}{{\rm nucleon}}$$

NEUT:
$$\langle \sigma \rangle_{\text{flux}} = 2.02 \times 10^{-39} \frac{\text{cm}^2}{\text{nucleon}}$$

$$GENIE: <\sigma>_{flux} = 1.78 \times 10^{-39} \frac{cm^2}{nucleon}$$

Future

- Currently in the works:
 - Data driven background fit
 - Reduction in flux and model systematics
 - Goal is to reduce from 25% level to ~15%
 - Full T2K data set
 - Higher statistics for differential measurement with respect to proton kinematics
 - Uses ~1/3 of water-in data and none of water out
 - ~40% water-in, 60% water-out at just over 6E20 POT
 - Water-in water-out measurement
 - Differential measurements on water only
 - Differential measurements on carbon + brass

Conclusion

• The preliminary T2K ND280 NCE flux averaged cross section per nucleon has been measured

$$<\sigma>_{\rm flux} = 2.24 \times 10^{-39} \pm 0.07(\text{stat.}) + 0.53 - 0.63(\text{sys.}) \frac{\text{cm}^2}{\text{nucleon}}$$

- Future improvements in background prediction will reduce systematics significantly
- Future NCE differential cross section measurements on water
- Active cross section program using the on and off axis detectors using a variety of nuclear targets

Backups

BNL 734

-L.A. Ahrens et al., Phys. Rev. D 35, 785 (1987)

• In the end after bkg subtraction 951(776) elastic events for 0.55(2.5)E19 POTfor $v_{\mu}(v_{\mu}$ -bar) respectively

$$R_{\nu} = \frac{\sigma(\nu_{\mu}p \rightarrow \nu_{\mu}p)}{\sigma(\nu_{\mu}n \rightarrow \mu^{-}p)} = 0.153 \pm 0.007(\text{stat})$$
$$\pm 0.017(\text{syst}) ,$$

$$\begin{split} R_{\bar{\nu}} &= \frac{\sigma(\bar{\nu}_{\mu}p \longrightarrow \bar{\nu}_{\mu}p)}{\sigma(\bar{\nu}_{\mu}p \longrightarrow \mu^+ n)} = 0.218 \pm 0.012 (\text{stat}) \\ &\pm 0.023 (\text{syst}) \;, \end{split}$$

FIG. 35. The data points are the measured flux-averaged differential cross sections for $v_{\mu}p \rightarrow v_{\mu}p$ and $\overline{v}_{\mu}p \rightarrow \overline{v}_{\mu}p$ from this experiment. The solid curves are best fits to the combined data with the values $M_A = 1.06 \text{ GeV}/c^2$ and $\sin^2\theta_W = 0.220$. This fitting procedure imposes adjustment of the solid curves by scale factors of 1.05 for $v_{\mu}p$ and 1.09 for $\overline{v}_{\mu}p$ consistent with the absolute scale uncertainty of approximately 11% in each of the individual cross sections which was included in the fitting procedure. The error bars represent statistical error and also include Q^2 -dependent systematic errors (see Table IX).

MiniBooNE

- 94,531 events pass the cuts for 6.46E20 POT
 - World's largest NCE sample

