T2K 2013 Neutrino Oscillation Results and Expected Sensitivity at the T2K Proposed POT For NuFact2013

> Megan Friend (KEK) for the T2K Collaboration

> > Aug 20, 2013

Outline

The T2K Experiment Overview Data-Taking Status

2 Newest T2K Results

2013 $u_{\mu} \rightarrow \nu_{e}$ Appearance Results 2013 $u_{\mu} \rightarrow \nu_{\mu}$ Disappearance Results

3 T2K Expected Sensitivity

Physics Goals Sensitivity Contours T2K Sensitivity to δ_{CP} θ_{23} Octant Discrimination Sensitivity Oscillation Parameter Precision vs. POT

The T2K Collaboration

 ${\sim}500$ members from 59 institutes in 11 countries

The T2K Experiment (Tokai to Kamioka Long Baseline Neutrino Experiment)

- Primarily u_{μ} , 2.5° off axis neutrino beam produced at J-PARC
- ND280 Near Detector

– 280 m from ν source

- Constrains systematic errors
- Measures ν cross sections and beam backgrounds
- Neutrino interactions detected at the Super-Kamiokande (SK) far detector -295 km from ν source
 - 22.5 kT fiducial volume water Cherenkov detector
 - Good performance of $\nu_{\rm e}/\nu_{\mu}$ particle ID for sub-GeV energy ν 's
 - ν_e appearance and ν_μ disappearance ν oscillation information

The T2K Experiment – Current Status

- Current total integrated POT: $\sim 6.63 \times 10^{20}$ $\rightarrow \sim 8.5\%$ of T2K approved full statistics (7.8 $\times 10^{21}$ POT)
- Integrated POT analyzed for 2013 ν_e appearance results: 6.39×10^{20}
- Integrated POT analyzed for 2013 ν_{μ} disappearance results: 3.01 \times 10^{20}

2013 $u_{\mu} \rightarrow \nu_{e}$ Appearance Fit Results

- Expected 20.4 \pm 1.8 signal events and 4.6 \pm 0.5 background events \rightarrow 5.5 σ sensitivity
- Observed 28 \u03c6_e candidate events

2013 $u_{\mu} \rightarrow \nu_{e}$ Appearance Results

Observation of ν_e appearance Released at EPS-HEP last month

- Observed 28 ν_e candidate events for 6.39 \times 10^{20} POT
 - Expect 4.6 events if no $u_{\mu} \rightarrow \nu_{e}$ oscillation $\rightarrow 7.5\sigma$ observation
 - Background rejection has improved following implementation of a new SK reconstruction algorithm
 - $6.4 \rightarrow 4.6$ background events expected
- NOTE: δ_{CP} values are fixed when generating these plots, they are not 2D contours

Dependence of ν_e Appearance Results on Uncertainty in $\sin^2 2\theta_{23}$

- 2013 T2K appearance results assume $\sin^2 \theta_{23} = 0.5$
- However, the $\nu_{\mu} \rightarrow \nu_{e}$ appearance sensitivity depends on the true value of $\sin^{2} \theta_{23}$
- Precision measurement of $\sin^2 \theta_{23}$ will be important for future $\nu_{\mu} \rightarrow \nu_{e}$ results
 - Particularly for possible δ_{CP} measurement
- NOTE: δ_{CP} values are fixed when generating these plots, they are not 2D contours

2013 $u_{\mu} ightarrow u_{\mu}$ Disappearance Results

New results released this year with 3.01×10^{20} POT

 $P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - (\cos^{4} \theta_{13} \sin^{2} 2\theta_{23} + \sin^{2} 2\theta_{13} \sin^{2} \theta_{23}) \sin^{2} \frac{\Delta m_{31}^{2} L}{4E}$ Leading Term Next-to-Leading

- Newly released results showing the sensitivity assuming $\sin^2 2\theta_{13} \neq 0$ for both θ_{23} octants
- C.L. contours highly dependent on θ_{23} octant
- Best fit points are independent of octant:

$$\sin^2 2\theta_{23} = 1.00$$
 $\Delta m_{32}^2 = 2.44 \times 10^{-3} \text{ eV}^2$

$u_{\mu} \rightarrow \nu_{\mu}$ World Disappearance Results

Including new T2K results released this year

- Solid red line for T2K $\theta_{23} > \pi/4$
- Solid black line for T2K $\theta_{23} < \pi/4$
- Future T2K results may be plotted in $\sin^2 \theta_{23}$ instead of $\sin^2 2\theta_{23}$

The T2K Experiment – Physics Goals

The physics goals of the first phase of T2K are (from LOI):

- "... a factor of 20 more sensitive search for $\nu_{\mu} \rightarrow \nu_{e}$ appearance: $\sin^{2} 2\theta_{\mu e} \simeq 0.5 \sin^{2} 2\theta_{13} > 0.003 \dots$ "
- 2 "... an order of magnitude better precision in the $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation measurement:

 $\delta(\Delta m^2_{23}) = 10^{-4} \text{ eV}^2$ and $\delta(\sin^2 2 heta_{23}) = 0.01$..."

- **3** "... a confirmation of the $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation or discovery of sterile neutrinos by detecting the neutral current events ..."
- Requested: 750 kW \times 5 \times 10^7 s (115 days \times 5 years) at 30 GeV = 7.80 \times 10^{21} POT

The T2K Experiment – Physics Goals

The physics goals of the first phase of T2K are (from LOI):

- "... a factor of 20 more sensitive search for $\nu_{\mu} \rightarrow \nu_{e}$ appearance: $\sin^{2} 2\theta_{\mu e} \simeq 0.5 \sin^{2} 2\theta_{13} > 0.003 \dots$ "
- 2 "... an order of magnitude better precision in the $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation measurement:

 $\delta(\Delta m^2_{23}) = 10^{-4} \text{ eV}^2$ and $\delta(\sin^2 2 heta_{23}) = 0.01$..."

- **3** "... a confirmation of the $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation or discovery of sterile neutrinos by detecting the neutral current events ..."
- Requested: 750 kW \times 5 \times 10^7 s (115 days \times 5 years) at 30 GeV = 7.80 \times 10^{21} POT

 \rightarrow Can now update the T2K experimental goals following the 7.5 σ observation of ν_e appearance by T2K and the precise measurement of $\sin^2 2\theta_{13}$ by reactor experiments:

- Precisely measure θ_{23} and Δm_{32}^2
- Obtain hints about δ_{CP} , θ_{23} Octant, Mass Hierarchy

$\nu_{\mu} \rightarrow \nu_{e}$ Oscillation Probability

Precise measurement of $\sin^2 2\theta_{13}$ enhances the T2K sensitivity to δ_{CP} and the θ_{23} octant:

 ν_{μ} disappearance measures $\sin^2 2\theta_{23}$ to first order and cannot distinguish the octant alone

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31}\left(1 + \frac{2a}{\Delta m_{31}^{2}}(1 - 2S_{13}^{2})\right) & \rightarrow \text{Leading, matter effect} \\ &+ 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} & \rightarrow \text{CP conserving} \\ &- 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\Phi_{32}\sin_{31}\sin\Phi_{21} & \rightarrow \text{CP violating} \\ &+ 4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\sin^{2}\Phi_{21} & \rightarrow \text{Solar} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1 - 2S_{13}^{2})\frac{aL}{4E}\cos\Phi_{32}\sin\Phi_{31} & \rightarrow \text{Matter effect} \end{split}$$

• δ_{CP} completely unknown

 $(C_{ij} = \cos \theta_{ij}, S_{ij} = \sin \theta_{ij}, \Phi_{ij} = \Delta m_{ij}^2 L/4E)$

- MH completely unknown
- $\theta_{12} = 33.6^{\circ} \pm 1.0^{\circ}$
- $\theta_{23} = 45^{\circ} \pm 6^{\circ} (90\% \text{ C.L.}) \text{is } \theta_{23} \text{ maximal}?$
- $heta_{13} = 9.1^\circ \pm 0.6^\circ$ from reactor

T2K Expected Sensitivity Analysis Method

Unlike official analysis method:

- Use both $\nu_{\mu} \rightarrow \nu_{e}$ appearance and $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance MC information simultaneously
- Include possible $\bar{\nu}$ -mode running information
 - Assuming full T2K statistics $7.8\times10^{21}\mbox{ POT}$
 - Simultaneously use far detector reconstructed energy spectra information for ν_e , ν_μ , $\bar{\nu}_e$, and $\bar{\nu}_\mu$ data
 - Uncertainties on $\sin^2 2\theta_{13}$, δ_{CP} , $\sin^2 \theta_{23}$, and Δm_{32}^2 are all considered (all 4 parameters are fit simultaneously)
- Current T2K systematic errors are used
 - ${\sim}10\%$ for ${\nu_e}$, ${\sim}13\%$ for ${\nu_\mu}$
 - $\bar{\nu}$ errors estimated as equal to ν errors with an additional 10% normalization uncertainty; fully correlated with ν errors
- With and without a reactor constraint based on the expected ultimate precision of Daya Bay + RENO + Double Chooz on $\sin^2 2\theta_{13}$: $\delta(\sin^2 2\theta_{13}) = 0.005$

Impact of ν - vs. $\bar{\nu}$ -Mode Running

90% C.L. Solid: no sys. err., Dashed: with current sys. err. True MH is NH; contours drawn for two MH assumptions

$$\sin^2 2\theta_{13} = 0.1, \ \delta_{CP} = -90^\circ$$
, $\sin^2 \theta_{23} = 0.5$, and $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{eV}^2$, NH

Impact of ν - vs. $\bar{\nu}$ -Mode Running

90% C.L. Solid: no sys. err., Dashed: with current sys. err. True MH is NH; contours drawn for two MH assumptions

Difference in sensitivity to δ_{CP} for ν - vs. $\bar{\nu}$ -mode beam means that δ_{CP} can be constrained with combined $\nu + \bar{\nu}$ data

 $\sin^2 2 heta_{13}=0.1,~\delta_{CP}=-90^\circ$, $\sin^2 heta_{23}=0.5$, and $\Delta m^2_{32}=2.4 imes 10^{-3} eV^2$, NH

 $\sin^2 2\theta_{13} = 0.1$, $\delta_{CP} = 0^\circ$, $\sin^2 \theta_{23} = 0.5$, and $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{eV}^2$, NH 14/22

 $\sin^2 2\theta_{13} = 0.1$, $\delta_{CP} = -90^\circ$, $\sin^2 \theta_{23} = 0.5$, and $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{eV}^2$, NH $^{15/22}$

$$\sin^2 2\theta_{13} = 0.1$$
, $\delta_{CP} = 0^\circ$, $\sin^2 \theta_{23} = 0.4$, and $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{eV}^2$, NH $_{18/22}$

 $\sin^2 2\theta_{13} = 0.1, \ \delta_{CP} = 0^\circ, \ \sin^2 \theta_{23} = 0.4, \ \text{and} \ \Delta m_{32}^2 = 2.4 \times 10^{-3} \text{eV}^2, \ \text{NH}$

θ_{23} Octant 90% C.L. Discrimination

Solid: no sys. err., Dashed: with current sys. err.

T2K sin² θ_{23} 1 σ Precision vs. POT

Solid: no sys. err., Dashed: with current sys. err.

100% POT ν

50% POT ν + 50% POT $ar{
u}$

- Statistical limit of 1σ precision is ~0.045 at full POT
- Running with a combination of ν- and ν̄-mode slightly degrades sensitivity in some cases, although it also reduces the effect of systematic errors

Assuming true: $\sin^2 2\theta_{13} = 0.1$, $\sin^2 \theta_{23} = 0.5$, $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$, NH θ_{13} constrained by the projected reactor sensitivity: $\delta(\sin^2 2\theta_{13}) = 0.005$

T2K $\Delta m_{32}^2 \ 1\sigma$ Precision vs. POT Solid: no sys. err., Dashed: with current sys. err.

• Statistical limit of 1σ precision is $\sim 4 \times 10^{-5}$ eV² at full POT

• Running with a combination of ν - and $\bar{\nu}$ -mode very slightly degrades the Δm^2_{32} sensitivity, although sensitivity is largely independent of $\nu/\bar{\nu}$ running ratio

Assuming true: $\sin^2 2\theta_{13} = 0.1$, $\sin^2 \theta_{23} = 0.5$, $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$, NH θ_{13} constrained by the projected reactor sensitivity: $\delta(\sin^2 2\theta_{13}) = 0.005$

Conclusion

T2K recent results and current status:

- 7.5 $\sigma \nu_e$ appearance observation
- u_{μ} disappearance results for both θ_{23} octants
 - Results assuming $\sin^2 2\theta_{13} \neq 0$
 - θ_{23} octant dependence of disappearance analysis results

T2K expected sensitivity at 7.8×10^{21} POT:

- At the full statistics, T2K may have sensitivity to constrain δ_{CP} and determine the θ_{23} octant
- T2K strategy (ν vs. $\bar{\nu}$ -mode) is still to be decided
 - Will be decided based on input from these case studies
 - Information about accelerator status and development also needed

Backup Slides

T2K POT Accumulation Scenario

Possible scenario based on the J-PARC accelerator upgrade plan