Outline	Introduction 00 0000	Synergy effects 0000	PINGU+JUNO 000 000	

PINGU and JUNO synergy for mass ordering determination

Mattias Blennow emb@kth.se

August 21, 2013, NuFact 13, Beijing, China

Based on arXiv:1306.3988, MB and T. Schwetz

Mattias Blennow

KTH Theoretical Physics

Outline	Introduction 00 0000	Synergy effects 0000	PINGU+JUNO ooo ooo	

KTH Theoretical Physics

Mattias Blennow

Outline	Introduction 00 0000	Synergy effects 0000	PINGU+JUNO ooo ooo	

2 Synergy effects

Mattias Blennow

KTH Theoretical Physics

Outline	Introduction 00 0000	Synergy effects 0000	PINGU+JUNO 000 000	

2 Synergy effects

3 PINGU+JUNO

・ロト・西ト・ヨト・ヨー うらぐ

Mattias Blennow

KTH Theoretical Physics

Outline	Introduction 00 0000	Synergy effects 0000	PINGU+JUNO 000 000	

2 Synergy effects

3 PINGU+JUNO

4 Summary and conclusions

KTH Theoretical Physics

< < >> < <</>

PINGU and JUNO synergy for mass ordering determination

Mattias Blennow

Outline	Introduction 00 0000	Synergy effects 0000	PINGU+JUNO ooo ooo	

2 Synergy effects

3 PINGU+JUNO

4 Summary and conclusions

・ロト・西ト・ヨト・ヨー めんの

Mattias Blennow

KTH Theoretical Physics

Outline	Introduction	Synergy effects	PINGU+JUNO	Summary and conclusions
	••		000	
	0000		000	
Neutrino statu	s			

Current parameter knowledge

The oscillation parameter status

 $\begin{cases} \sin^2 \theta_{12} = 0.302^{+0.013}_{-0.012} \\ \sin^2 \theta_{13} = 0.0227^{+0.0023}_{-0.0024} \\ \sin^2 \theta_{23} = 0.413^{+0.037}_{-0.025} / 0.594^{+0.021}_{-0.022} \end{cases} \begin{cases} \Delta m_{21}^2 / 10^{-5} = 7.50^{+0.18}_{-0.19} \,\mathrm{eV}^2 \\ \Delta m_{31}^2 / 10^{-3} = 2.473^{+0.070}_{-0.067} \,\mathrm{eV}^2 \,\mathrm{(NH)} \\ \Delta m_{32}^2 / 10^{-3} = -2.427^{+0.042}_{-0.065} \,\mathrm{eV}^2 \,\mathrm{(IH)} \end{cases}$

Gonzalez-Garcia, Maltoni, Salvado, Schwetz, arXiv:1209.3023 We will use (unless stated otherwise):

$$\begin{split} |\Delta m_{31}^2| &= 2.4 \cdot 10^{-3} \text{ eV}^2 \,, \qquad \Delta m_{21}^2 = 7.59 \cdot 10^{-5} \text{ eV}^2 \,, \\ \sin^2 2\theta_{13} &= 0.09 \,, \quad \sin^2 2\theta_{23} = 1 \,, \quad \sin^2 \theta_{12} = 0.302 \,, \quad \delta = 0 \,. \end{split}$$

Mattias Blennow

PINGU and JUNO synergy for mass ordering determination

Outline	Introduction	Synergy effects 0000	PINGU+JUNO	
Neutrino status	0000		000	

Mattias Blennow

- The sign of Δm_{31}^2 (neutrino mass ordering)
- The value of δ (CP violation)
- The octant of θ_{23} (for non-maximal mixing)
- I will concentrate on the first of these in this talk

Outline	Introduction	Synergy effects	PINGU+JUNO	Summary and conclusions
	00 0000		000	
How to measure t	he ordering (with oscillatio	ins)		

Atmospherics

Several proposals exist

- Indian Neutrino
 Observatory (INO)
- Hyper-Kamiokande
- PINGU
- Far detector for LBNE/LBNO

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \text{ NO}$$

A D > <
 A P >
 A

MB, Smirnov, arXiv:1306.2903

Outline	Introduction	Synergy effects	PINGU+JUNO	Summary and conclusions
	00 0000		000	
How to measure t	he ordering (with oscillatio	ins)		

Atmospherics

Several proposals exist

- Indian Neutrino
 Observatory (INO)
- Hyper-Kamiokande
- PINGU
- Far detector for LBNE/LBNO

 $P(\bar{
u}_{\mu}
ightarrow \bar{
u}_{\mu})$ NO

< < >> < <</>

MB, Smirnov, arXiv:1306.2903

Outline	Introduction	Synergy effects	PINGU+JUNO	Summary and conclusions	
	0000		000		
How to measure the ordering (with oscillations)					

Long baseline experiments

295 km

- Must be long to give large matter effect
- Compare with CP-violation, which prefers shorter baseline
- LBNE / LBNO
- T2HK too short

MB, Smirnov, arXiv:1306.2903

Mattias Blennow

PINGU and JUNO synergy for mass ordering determination

Outline	Introduction	Synergy effects	PINGU+JUNO	Summary and conclusions
	00	0000	000	
	0000			
How to measu	ire the ordering (with osci	llations)		

Long baseline experiments

810 km

- Must be long to give large matter effect
- Compare with CP-violation, which prefers shorter baseline
- LBNE / LBNO
- T2HK too short

MB, Smirnov, arXiv:1306.2903

Mattias Blennow

PINGU and JUNO synergy for mass ordering determination

Outline	Introduction	Synergy effects	PINGU+JUNO	Summary and conclusions
	0000		000	
How to measure	the ordering (with oscil	lations)		

Long baseline experiments

7500 km

- Must be long to give large matter effect
- Compare with CP-violation, which prefers shorter baseline
- LBNE / LBNO
- T2HK too short

MB, Smirnov, arXiv:1306.2903

Mattias Blennow

PINGU and JUNO synergy for mass ordering determination

Outline	Introduction 00 0000	Synergy effects 0000	PINGU+JUNO ooo ooo	
How to measure th	e ordering (with oscillatio			

Reactors

- Have been very successful in determining θ₁₃
- Proposals have longer baseline
- Aim to detect wiggles in high frequency oscillations
- JUNO (Daya Bay II)
- RENO50

KTH Theoretical Physics

Mattias Blennow

Outline	Introduction	Synergy effects	PINGU+JUNO	Summary and conclusions	
	0000		000		
How to measure the ordering (with oscillations)					

What about synergy effects?

- Experiments are studying different channels/energies/baselines
- Sensitivity in different parts of parameter space
- Will exclude different regions for the same true values
- It may happen that only the combined fit excludes a specific ordering

Mattias Blennow

Outline	Introduction 00 0000	Synergy effects	PINGU+JUNO 000 000	

2 Synergy effects

3 PINGU+JUNO

4 Summary and conclusions

・ロト・日本・日本・日本・日本・今日の

KTH Theoretical Physics

Mattias Blennow

Outline	Introduction 00 0000	Synergy effects ●000	PINGU+JUNO 000 000	
Fixed baselines				

Two flavor approximations

$$P_{\alpha\beta} = \sin^2(2\theta_{\alpha\beta})\sin^2\left(\frac{\Delta m_{\alpha\beta}^2 L}{4E}\right), \quad P_{\alpha\alpha} = 1 - \sin^2(2\theta_{\alpha\alpha})\sin^2\left(\frac{\Delta m_{\alpha\alpha}^2 L}{4E}\right)$$

- What $\Delta m^2_{\alpha\beta}$ should be inserted in the two-flavor approximations?
- \blacksquare Typically, we see $\Delta m^2_{lphaeta}\simeq \Delta m^2_{31}\simeq \Delta m^2_{32}$
- What happens when we test the two-flavor formula in an experiment with better resolution?

Outline	Introduction 00 0000	Synergy effects ○●○○	PINGU+JUNO ooo ooo	
Fixed baselines				

Looking at different channels

Based on the oscillation maximum:

Nunokawa, Parke, Funchal, hep-ph/0503283

$$\begin{split} \Delta m_{ee}^2 &= c_{12}^2 \Delta m_{31}^2 + s_{12}^2 \Delta m_{32}^2 \\ \Delta m_{\mu\mu}^2 &= s_{12}^2 \Delta m_{31}^2 + c_{12}^2 \Delta m_{32}^2 + c_{\delta} s_{13} \sin(2\theta_{12}) \tan(\theta_{23}) \Delta m_{21}^2 \\ \Delta m_{\tau\tau}^2 &= s_{12}^2 \Delta m_{31}^2 + c_{12}^2 \Delta m_{32}^2 - c_{\delta} s_{13} \sin(2\theta_{12}) \cot(\theta_{23}) \Delta m_{21}^2 \end{split}$$

KTH Theoretical Physics

Atmospherics are trickier

- Full spectrum of baselines and energies
- Combination of channels

Outline	Introduction 00 0000	Synergy effects 00●0	PINGU+JUNO 000 000	
Fixed baselines				

Reactors vs Long baselines

- Idea has been around for a while
- The effect is at the % level

KTH Theoretical Physics

Nunokawa, Parke, Funchal, hep-ph/0503283

Mattias Blennow

Outline	Introduction 00 0000	Synergy effects 00●0	PINGU+JUNO 000 000	
Fixed baselines				

Reactors vs Long baselines

- Idea has been around for a while
- The effect is at the % level
- Both experiments must measure Δm_{31}^2 with high precision

Nunokawa, Parke, Funchal, hep-ph/0503283

Outline	Introduction 00 0000	Synergy effects 000●	PINGU+JUNO 000 000	
Fixed baselines				

Atmospherics

MB, Schwetz, arXiv:1306.3988

- More complicated dependence
 - Baseline
 - Energy
 - Resolutions
- $\Delta m_{21}^2 = 0$, still a difference
- Simulated $|\Delta m^2| = 2.4 \cdot 10^{-3} \text{ eV}^2$
- \leftarrow inverted, \rightarrow normal true ordering

KTH Theoretical Physics

Outline	Introduction 00 0000	Synergy effects 0000	PINGU+JUNO	

2 Synergy effects

3 PINGU+JUNO

4 Summary and conclusions

KTH Theoretical Physics

Image: A math a math

Mattias Blennow

Outline	Introduction 00 0000	Synergy effects 0000	PINGU+JUNO ●00 ○00	
Assumptions				

PINGU

Muon reconstruction:

- Assume no knowledge on the hadronic part
- Just reconstruct the muon energy and direction
- See also Franco et al, arXiv:1301.4332

Neutrino reconstruction:

- Assume hadronic shower can help neutrino reconstruction
- Do the analysis in the reconstructed neutrino parameters

PINGU and JUNO synergy for mass ordering determination

Outline		Synergy effects	PINGU+JUNO	Summary and conclusions
	00		000	
A	0000		000	

PINGU results (muon parameters)

Mattias Blennow

KTH Theoretical Physics

Outline	Introduction 00 0000	Synergy effects 0000	PINGU+JUNO ○○● ○○○	
Assumptions				
JUNO				

Assumptions:

- Point-like source at 58 km
- Different assumptions on energy resolution
- Normalized to 10⁵ events for 6 years running (4320 kt GW year)

MB, Schwetz, arXiv:1306.3988

Outline	Introduction 00 0000	Synergy effects 0000	PINGU+JUNO ○○○ ●○○	
Results				

PINGU dependence on assumptions (ν reconstruction)

MB, Schwetz, arXiv:1306.3988

Shape mainly dependent on resolutions

- Thin: High, Thick: Low
- Red: w syst, Black: w/o syst
- Solid: fixed, Dash: free
- \leftarrow inverted, \rightarrow normal true ordering

KTH Theoretical Physics

Outline	Introduction 00 0000	Synergy effects 0000	PINGU+JUNO ○○○ ○●○	
Results				

Synergy results

MB, Schwetz, arXiv:1306.3988

Outline	Introduction 00 0000	Synergy effects 0000	PINGU+JUNO ○○○ ○○●	
Results				

Mass squared precision

Mattias Blennow

KTH Theoretical Physics

Outline	Introduction 00 0000	Synergy effects 0000	PINGU+JUNO ooo ooo	Summary and conclusions

2 Synergy effects

3 PINGU+JUNO

4 Summary and conclusions

KTH Theoretical Physics

(日)

Mattias Blennow

Outline	Introduction 00 0000	Synergy effects 0000	PINGU+JUNO 000 000	Summary and conclusions

Summary and conclusions

- The neutrino mass ordering is one of the remaining unknowns in neutrino oscillations
- Synergies in different types of experiments may significantly increase global sensitivity
- Atmospherics and reactors provide the most separated best-fits in the wrong ordering
- Crucially dependent on resolution for Δm^2