Recent Results from the Double Chooz Experiment

Ralitsa Sharankova, Tokyo Tech on behalf of the Double Chooz Collaboration

NUFACT 2013 IHEP, Beijing August 19-24 2013

Motivation for θ_{13} measurments with reactor neutrinos

- Reactors: rich and free electron antineutrino sources
- Strong BG reduction by taking delayed coincidence (S/N~40)
- Pure θ_{13} measurement independent of CP- δ , θ_{23} , etc.

Motivation for θ_{13} measurements with reactor neutrinos

Survival probability

Simple 2-flavour oscillation formula is valid at L ~ 1 km with no matter effect \rightarrow no parameter degeneracy

Motivation for θ_{13} measurements with reactor neutrinos

The Double Chooz experiment

Double Chooz Collaboration

Neutrino detection

Inverse β -decay (IBD) $\bar{\nu_e} + p \rightarrow e^+ + n$

Delayed coincidence Prompt signal: positron + annihilation γ's (I~9MeV) Delayed signal: γ's from neutron capture on Gd (H)

<u>Capture on Gd</u> ΔT~30μs delayed signal: 8MeV well above natural radioactivity

<u>Capture on H</u> ΔT~200µs (out of Gd doped LS) delayed signal: 2.2MeV accidental BG is dominant

Detector design

Glove Box:

Calibration source deployment

Outer Veto: Plastic scintillator

Inner Veto:

Liquid scintillator (90 m³) in a steel vessel (8mm)
78 PMTs (8")

Inner detector (3 layers)

Buffer:

110 m³ mineral oil in a steel vessel (3mm)
390 low-BG PMTs (10")

 γ -catcher:

Liquid scintillator (22.3 m³)
Acrylic vessel (12mm)

V-target:

Gd-loaded liquid scintillator (10.3 m³)
Acrylic vessel (8mm)

Steel shielding (150mm)

Calibration

I.Calibration of PMT & electronics gain non-linearityLED light injection system

2.Correction of position dependence & stability

•Spallation neutron captures on Gd and H

3. Energy scale

•Radioactive sources deployed into V-target and γ-catcher

<u>Neutrino detection efficiency estimation</u> Energy & time window, Gd (H) fraction, spill in/out effects •²⁵²Cf source deployed into V-target and γ-catcher

Calibration & energy reconstruction

- (I) Charge to PE nonlinearity correction
- (2) Time stability Gd captures at center
- (3) Detector nonuniformity correction H capture map

Flux prediction

Neutrino yield per fission

$$N_{v}^{\exp}(E,t) = \frac{N_{p}\varepsilon}{4\pi L^{2}} \times \frac{P_{th}(t)}{\langle E_{f} \rangle} \times \langle \sigma_{f} \rangle$$

$$\left\langle \sigma_{f} \right\rangle = \left\langle \sigma_{f} \right\rangle^{Bugey} + \sum_{k} \left(\alpha_{k}^{DC}(t) - \alpha_{k}^{Bugey} \right) \left\langle \sigma_{f} \right\rangle_{k}$$
Bugey4 measurement Fission fraction in CHOOZ core

Flux prediction uncertainty is suppressed by using Bugey4 measurement: $2.7\% \rightarrow 1.8\%$

Time variation of neutrino candidates

Neutrino rate

Neutrino selection (Gd analysis)

- Muon veto
 - no coincidence in IV
 - $\Delta t_{\mu} > Imsec$
- PMT light noise cuts
- No coincidence signal in OV
- Prompt event
 - 0.7MeV < Evis < 12.2MeV
- Delayed event
 - 6MeV < Evis < 12MeV
- Delayed coincidence
 - 2μs < ΔT < 100μs
- Multiplicity cut
 - reject multiple n captures
- Further BG reduction
 - $\Delta t_{\mu} > 500 \text{msec} (E\mu > 600 \text{MeV})$

Prompt-delay time difference

Backgrounds

Data with both reactors off

- Unique for Double Chooz
- Direct BG measurement
- 7.53 days so far (6.84 after µ veto):
 - 0.84 days in October 2011
 - 6 days in June 2012
- Expected rate: 2.0±0.6 events/day
- Observed rate: I.0±0.4 events/day
 *Gd capture

BG measurement consistent with estimations

Uncertainties

Rate uncertainties (w.r.t. signal)

Source	Gd capture	H capture	
Statistical error	1.12%	1.08%	
Reactor $\bar{\nu_e}$ flux	I.8%	I.8%	
Detection efficiency	I.0%	I.6%	
Accidental BG rate	< 0.1%	0.2%	
⁹ Li rate	I.5%	I.6%	
Fast n & stopping µ rate	0.5%	0.6%	

Energy scale uncertainties: Gd capture 1.1% H capture 1.7%

Double Chooz results (Gd)

Phys. Rev. D86 (2012) 052008

Double Chooz results (H)

Phys. Lett. B723 (2013) 66-70

Statistically independent analysis

Rate+Shape:

 $\sin^2 2\theta_{13} = 0.097 \pm 0.034 \text{ (stat)} \pm 0.034 \text{ (syst)}$

 χ^2 /DOF = 38.9/30

DC-II(Gd): $sin^2 2\theta_{13} = 0.109 \pm 0.039 [0.030^{stat} \pm 0.025^{syst}]$ **DC-II(H):** $sin^2 2\theta_{13} = 0.097 \pm 0.048 [0.034^{stat} \pm 0.034^{syst}]$

Combined Gd and H fit

- Data set: April 2011- March 2012
- Correlations of systematic uncertainties are included in fit
- Reactor off-off data used to constrain BG
- Rate+Shape: $\sin^2 2\theta_{13} = 0.109 \pm 0.035$

cf. Gd analysis: $\sin^2 2\theta_{13} = 0.109 \pm 0.039$

• $\chi^2/DOF = 61.2/50$

Reactor Rate Modulation Analysis (Gd and H combined)

- Data: April 2011- March 2012
- Using dependence of V rate on reactor power
- Independent of BG estimation
- Best fit: $\sin^2 2\theta_{13} = 0.097 \pm 0.035$
- Consistent with Double Chooz rate+shape results

Near Detector

Summary

- Double Chooz θ_{13} measurements with Far detector
 - two different samples: n capture on Gd and H
 - two different approaches: rate+shape and reactor rate modulation
- All analyses showed consistent θ_{13}
 - Rate+Shape (combined): $\sin^2 2 \theta_{13} = 0.109 \pm 0.035$
 - RRM (combined): $\sin^2 2\theta_{13} = 0.097 \pm 0.035$
- Several validations of BG estimation
 - BG estimation confirmed with reactor off measurement
 - BG constrained by rate+shape fit
 - RRM analysis measured consistent θ_{13} independent of BG estimation
- Future
 - We aim at 10% precision of $sin^2 2\theta_{13}$ measurement with Near detector

Backup

Summary of Double Chooz results

24

Accidental BG mechanism

Prompt signal: γ from PMTs etc. <u>Delayed signal</u>: capture of spallation neutron

μ

Cosmogenic isotopes (⁹Li)

Spallation products from muon: ⁹Li $\rightarrow e^{-} + n + {}^{8}Be$ ($\tau \sim 200msec$)

Prompt signal: γ's from electron Delayed signal: neutron capture

Fast neutrons

Prompt signal: γ's from recoiled proton <u>Delayed signal</u>: capture of spallation neutron

Stopping muons

Prompt signal: scintillation from μ Delayed signal: scintillation from Michel electron

Neutrino selection (H analysis)

- Muon veto
 - no coincidence in IV
 - $\Delta t_{\mu} > Imsec$
- PMT light noise cuts
- No coincidence signal in OV
- Prompt event
 - 0.7MeV < Evis < 12.2MeV
- Delayed event
 - I.5MeV < Evis < 3.0MeV
- Delayed coincidence
 - Ι0μs < ΔT < 600μs
 - ∆R < 900mm
- Multiplicity cut
 - reject multiple n captures

Time variation of H capture neutrino candidates

Individual fits and combined fit results Preliminary

Rate+Shape

	Individu	al fit results	Combined fit results	
Fit parameter	nGd (PRD Sep. 2012)	nH (PhysLettB Jun. 2013)	nGd	nH
Energy scale	0.986 ± 0.007	0.99 ± 0.01	0.985 ± 0.006	0.993 ± 0.007
FN+SM rate (d^{-1})	0.64 ± 0.13	2.6 ± 0.4	0.61 ± 0.13	2.64 ± 0.35
Li-9 rate (d^{-1})	1.00 ± 0.29	3.9 ± 0.6	0.89 ± 0.24	3.93 ± 0.56
$\Delta m^2 \ (10^{-3} {\rm eV}^2)$	2.32 ± 0.12	2.32 ± 0.12	2.31 ± 0.12	
$\sin^2 2\theta_{13}$	0.109 ± 0.039	0.097 ± 0.048	0.109 ± 0.035	
$\chi^2/{ m dof}$	42.1/35	38.9/30	61.2/50	

Rate only

	Individu	al fit results	Combined	fit results
Fit parameter	nGd (PRD Sep. 2012)	nH (PhysLettB Jun. 2013)	nGd	nH
Energy scale	0.998 ± 0.011	1.000 ± 0.017	0.998 ± 0.011	1.004 ± 0.017
FN+SM rate (d^{-1})	0.69 ± 0.20	2.5 ± 0.5	0.57 ± 0.19	2.74 ± 0.46
Li-9 rate (d^{-1})	1.40 ± 0.49	2.8 ± 1.2	0.76 ± 0.37	3.65 ± 0.96
$\Delta m^2 \ (10^{-3} {\rm eV}^2)$	2.32 ± 0.12	2.32 ± 0.12	2.32 ± 0.12	
$\sin^2 2\theta_{13}$	0.170 ± 0.052	0.044 ± 0.061	0.107 ± 0.045	
$\chi^2/{ m dof}$	0.5/1	0/0	6.1/3	

*Individual fits do not use reactor off-off information

Correlations b/n Gd and H in combined fit

Correlation coefficients Preliminary

Parameter	ρ _{Gd,H}
Accidental rate	0
Corr. light noise	0
FN/SM rate	0
⁹ Li rate	0.003
⁹ Li shape	I
Efficiency	0.09
Energy scale	0.4
Reactor	I

 $\rho_{x,y} \equiv \frac{\operatorname{Cov}\left[x,y\right]}{\sigma_x \sigma_y}$

Gd capture and H capture V_e spectra with BG (April 2011~March 2012)

Gd capture

H capture

Red line shows best fit (combined analysis)

RRM individual results

