ICARUS Status and Plans

P. Sala INFN Milano For the ICARUS Collaboration

The ICARUS Collaboration

M. Antonello^a, B. Baibussinov^b, P. Benetti^c, F. Boffelli^c, A. Bubak^k, E. Calligarich^c, N. Canci^a, S. Centro^b, A. Cesana^d, K. Cieslik^e, D. B. Cline^f, A.G. Cocco^g,
A. Dabrowska^e, D. Dequal^b, A. Dermenev^h, R. Dolfini^c, A. Falcone^c, C. Farnese^b, A. Fava^b, A. Ferrariⁱ, G. Fiorillo^g, D. Gibin^b, S. Gninenko^h, A. Guglielmi^b,
M. Haranczyk^e, J. Holeczek^k, M. Kirsanov^h, J. Kisiel^k, I. Kochanek^k, J. Lagoda^j, S. Mania^k, A. Menegolli^c, G. Meng^b, C. Montanari^c, S. Otwinowski^f, P. Picchi^l,
F. Pietropaolo^b, P. Plonskiⁿ, A. Rappoldi^c, G.L. Raselli^c, M. Rossella^c, C. Rubbia^{a,i,m},
P. Sala^d, A. Scaramelli^d, E. Segreto^a, F. Sergiampietri^o, D. Stefan^a, R. Sulej^{j,i}, M. Szarska^e, M. Terrani^d, M. Torti^c, F. Varanini^b, S. Ventura^b, C. Vignoli^a, H. Wang^f, X. Yang^f, A. Zalewska^e, A. Zani^c, K. Zarembaⁿ.

a INFN Laboratori Nazionali del Gran Sasso Assergi, Italy

- b Dipartimento di Fisica e Astronomia, Università di Padova and INFN, Padova, Italy
- c Dipartimento di Fisica Nucleare e Teorica Università di Pavia and INFN, Pavia, Italy
- d Politecnico di Milano and INFN, Milano, Italy
- e Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Science, Krakow, Poland
- f Department of Physics and Astronomy, University of California, Los Angeles, USA
- g Dipartimento di Scienze Fisiche Università Federico II di Napoli and INFN, Napoli, Italy
- h INR RAS, Moscow, Russia
- i CERN, Geneva, Switzerland
- j National Centre for Nuclear Research, Otwock/Swierk, Poland
- k Institute of Physics, University of Silesia, Katowice, Poland
- I INFN Laboratori Nazionali di Frascati, Frascati, Italy
- m GSSI, Gran Sasso Science Institute, L'Aquila, Italy
- n Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland
- o INFN Pisa. Pisa, Italy

The ICARUS detector at LNGS Laboratory

- ICARUS T600 is the first large mass LAr-TPC (760 tons) operated underground (in Hall B of LNGS Laboratory).
- Exposed to CNGS ${\rm v}$ beam, taking data also with cosmic rays to study the detector capability for atmospheric ${\rm v}$ and proton decay search.

In operation since May 2010 ICARUS decommissioning started on

June 27th, cryo empty on July 25th

740 tons of LAr recovered

Outline

- Plenty of high quality data from CNGS and cosmic rays allows for physics studies, for deep investigation of all the detector technical aspects and for development of advanced reconstruction algorithms
- In this talk, focus will be on
 - Validation of the muon momentum measurement with the Multiple Scattering technique
 - Search for $v_{\mu} \rightarrow v_{e}$ oscillations in the framework the "LSND/MiniBooNE" anomaly

ICARUS @ LNGS: the first LARGE LAr-TPC

- Two identical T300 modules (2 TPC chambers per module)
- □ LAr active mass 476 t:;
 - drift length = 1.5 m;
 - E_{drift} = 0.5 kV/cm; v_{drift} = 1.6 mm/µs

- **]** 3 readout wire planes at 0° , \pm 60
 - ≈ 53000 wires, 3 mm pitch
 - 2 Induction planes, 1 Collection
- □ PMT for scintillation light (128 nm):
 - (20+54) PMTs
 - trigger and t₀
- Total energy reconstruction of events from charge integration.
- Full sampling, homogeneous calorimeter; excellent accuracy for contained Nurevents.

ICARUS CNGS RUN (Oct 2010 - Dec 2012)

- Exposed to CNGS v beam since 2010 October 1st up to 2012 December 3rd
- CNGS trigger: coincidence of PMT sum signals with beam extraction
- Total collected event statistics: 8.6 10¹⁹ pot with a remarkable detector live-time > 93 %
- Excellent results on Lar purification
- LAr continuously filtered
- τ_{ele} > 5ms (~60 ppt [O₂]_{eq}), maximum charge attenuation at 1.5 m: 17%.

Nufact 2013

Measurement of muon momentum via multiple scattering

- In the T600 and in future LAr TPCs, a method to measure the momentum of escaping μ is needed in order to reconstruct v_{μ} CC events
- Deflections due to Multiple Coulomb Scattering (MS) provide such a tool

The RMS of θ depends on p and on the meas. error σ

• Horizontal μ stopping in the T600 are an excellent benchmark

- Calorimetric measurement is possible
- The energy range (0.5-4 GeV) is perfectly matched to those of future short and long baseline experiments
- A sample of 130 stopping muons from CNGS v interactions in the upstream rock has been selected and analyzed

Muon momentum reconstructed by calorimetric measurement for the stopping muon sample

 $\theta_{RMS} \div \frac{13.6MeV}{p} \sqrt{\frac{l}{X_{\circ}}} \oplus \frac{\sigma_{noise}}{l^{3/2}}$

Results

$v_{\mu} \rightarrow v_{e}$ "anomalous" oscillations

See Carlo Giunti's talk on sterile \boldsymbol{v}

LSND has observed an excess of \bar{v}_e events in a \bar{v}_μ beam, 87.9 ± 22.4 ± 6.0 \Rightarrow 3.8 σ

neutrino 162±47.8 events (3:4σ) but the energy distribution is marginally compatible with a two neutrino oscillation formalisms/ide: 9

A search for LSND effects

• The CNGS facility delivered an almost pure v_{μ} beam peaked in 10-30 GeV energy range (beam associated $v_e \sim 1\%$) at a distance L=732 km from target

Expected CNGS neutrino CC spectra at LNGS

Differences w.r.t. the LSND experiment:

 L/E_v ≈ 1 m/MeV at LSND, but L/E_v ≈ 36.5 m/MeV at CNGS
 LSND-like short distance oscillation signal averages to: sin²(1.27∆m²_{new} L /E) ≈ ¹/₂ and <P>v_µ→v_e ≈ ¹/₂ sin²(2θ_{new})

 When compared to other long baseline results (MINOS,T2K) ICARUS operates in a L/E, region in which contributions from standard neutrino oscillations are not yet too relevant..

Event Selection

- v_e CC eventcandidates are selected visually
- Fiducial volume (for shower id.) : > 5 cm from TPC walls and 50 cm downstream
- Energy cut: < 30 GeV</p>

hightarrow pprox 50% reduction on beam v_e

only 15% signal events rejected

- v_{μ} CC events identified by L > 250 cm primary track without had. int.
- The "Electron signature" requires:

A charged track from primary vertex, m.i.p. on 8 wires, subsequently building up into a shower; very dense sampling: every 0.02 X₀ !!!

Clearly separated (150 mrad) from other ionizing tracks near the vertex in at least one of 2 transverse views.

• Electron efficiency studied with events from a MC (FLUKA) reproducing in every detail the signals from wire planes: $\eta = 0.74 \pm 0.05$ ($\eta' = 0.65$ Nufter 0.006 for intrinsic v_e beam due to its harder spectrum).

Event rates

- First results published in Eur. Phys. J. C 73 (2013).
- New analysis presented here refers to 1995 v interactions (6.0 10¹⁹ pot statistics).
- The expected number of v_e events due to conventional sources in the energy range and fiducial volume are:

> 5.7 ± 0.8 events due to the estimated v_e beam contamination;

- > 2.3 \pm 0.5 v_e events due to the oscillations from sin²(θ_{13}) = 0.0242 \pm 0.0026;
- > 1.3 ± 0.1 ν_τ with τ → e events from the three neutrino mixing standard model predictions,

 \blacktriangleright Giving a total of 9.3 \pm 0.9 expected events

- Taking into account the selection efficiency, the expected number of e- events from intrinsic v_e beam, $\theta_{13} \sim 9^0$ and $v_{\mu} v_{\tau}$ oscillations is then 6.4±0.9 (syst. only).
- The measurement error is dominated by statistics

Sources of systematic errors : 1

- v_e component in the CNGS beam: from MC predictions on particle production and transport
- Normalization errors cancel out in the v_e / v_μ ratio

Comparison of FLUKA predictions with NA49 data for primary π^{\pm} (on C) and K^{\pm} production (on free proton).

~5% extimated uncertainty on particle production mostly based on NA49 angle integrated data at 158 GeV (3.8% exp. systematics), assuming the X_F scaling between reality and MC is the same within few %.

Conservative estimate on v_e / v_μ : 10%

Work in progress for next analyses

Sources of systematic errors : 2

Effect of 30 GeV energy cut on background estimate:

e/ γ separation and π^0 reconstruction in ICARUS

Unique feature of LAr to distinguish e from γ and reconstruct π^0 \Rightarrow Estimated bkg. from π^0 in NC and ν_{μ} CC : negligible (from MC and scanning) Nufact 2013 Slide: 15

v_e events

In the sample of 1995 v events, 4 were identified as $v_e CC$ The expected backgr. being 6.4±0.9

- (1) $E_{tot} = 11.5 \pm 1.8 \text{ GeV},$ $p_t = 1.8 \pm 0.4 \text{ GeV/c}$ (2) $E_{tot} vis = 17 \text{ GeV},$ $p_t = 1.3 \pm 0.18 \text{ GeV/c}$
- (3) $E_{tot} = 27 \pm 2.0 \text{ GeV},$ $p_t = 3.5 \pm 0.8 \text{ GeV/c}$ (4) $E_{tot} = 14 \pm 1 \text{ GeV},$ $p_t = 1.5 \pm 0.1 \text{ GeV/c}$

In all events: single electron shower opposite to had. component in the transverse plane

Nufact 2013

Event n. 3

- Experimental pictures of the third event with a clear electron signature
- The evolution of the actual dE/dx from a single track to an e.m. shower for the electron shower is shown along the individual wires.
- The event has a total energy of ~27 GeV and an electron of 6.3 \pm 1.5 GeV with a transverse momentum of 3.5 \pm 0.9 GeV/c.

Event N.4

ICARUS results on the LSND-like anomaly

- The first ICARUS result (Eur. Phys. J. C 73 2013) limits the window of possible parameters for LSND anomaly to a narrow region around $(\Delta m^2 \sin^2 2\theta) = (0.5 \text{ eV}^2 0.005)$, where all experiments are compatible.
- This analysis is based on a doubled statistics => in total 6.0 x 10¹⁹ pot and 1995 v events
- → 4 evt observed , 6.4±0.9
 expected background
- Limits on number of events due to LSND anomaly:
 3.68 (90% CL)

8.34 (99% CL)

the corresponding limits on oscillation probability are: $P_{\nu\mu\rightarrow\nu e} \leq 3.4 \ 10^{-3} \ (90\% \ CL)$ $P_{\nu\mu\rightarrow\nu e} \leq 7.6 \ 10^{-2} \ (99\% \ CL)$

Nufact 2013

Neutrino

Antineutrino

The LSND result was based on anti-neutrino events. A small ~2% antineutrino event contamination is also present in the CNGS beam

According to simulations, the \overline{v}_{μ} CC event rate is (1.2 ± 0.25) % of v_{μ} CC for E_v < 30 GeV

In the limiting case in which the whole effect is due to $\overline{\nu}_{\mu}$, the absence of an anomalous signal gives a limit of

4.2 events at 90% CL.

Corresponding to $\langle P(\bar{v}_{\mu} \rightarrow \bar{v}_{e}) \rangle \leq 0.32$ Or $\sin^{2}(2\theta_{new}) \leq 0.64$.

Conclusions on v_{e} search

- A major fraction of the two dimensional plot [Δm², sin²(2θ)]_{new} from the experiments sensitive to the LSND anomaly is excluded by ICARUS
- The ICARUS result allows to define a small region around $(\Delta m^2, sin^2(2\theta)) = (0.5 \text{ eV}^2, 0.005)$ in which there is 90 % CL agreement among all experiments
- A similar search performed at the CNGS beam by the OPERA exp. has confirmed our finding with an independent limit $\sin^2(2\theta_{new}) < 7.2 \times 10^{-3}$
- There is tension between the limit $\sin^2(2\theta_{new}) < 6.8 \times 10^{-3}$ at 90% CL and $< 1.52 \times 10^{-2}$ at 99% CL of ICARUS and the neutrino lowest energy points of MiniBooNE (see also Giunti's talk)
- As a conclusion, the LSND anomaly appears to be still alive and further experimental efforts are required to prove the possible existence of sterile neutrinos. The recently proposed ICARUS/NESSiE experiment at the CERN-SPS neutrino beam, based on two identical LAr-TPC detectors, complemented with magnetized muon spectrometers and placed at two ("near" and "far") distances from proton target, has been designed to definitely settle the origin of these v-related anomalies. Nufact 2013

ICARUS at the (proposed) CERN North Area Neutrino Facility

New CERN SPS 2 GeV neutrino facility in North Area

100 GeV primary proton beam fast extracted from SPS in North Area: C-target station + two magnetic horns, \approx 100 m decay pipe, Fe/graphite dump, followed by μ stations.

Interchangeable n and anti n focussing.

Exploring all channels: expected sensitivity

e-appearance: MiniBooNE (90%) 1 year v_{μ} beam (left) Bugey CCFR _ KARMEN 2 year antiv_u beam (right) 10 LSND (99%) for 4.5 1019 pot/year, ۵m² [eV²/c⁴] .m² [eV²/c⁴] 3% syst. uncertainty BNL 776 LSND (99% LNSD (90%) 99% C.I 99% C I LSND allowed region is 90% C.L 0.1 2 | Ar-TPC's @ CERN-SPS (2v) Anti Neutrino Beam fully explored in both cases Neutrino Beam 10-4 10-3 10-2 10-1 10-3 10-4 $sin^{2}(2\theta)$

e/µ-disappearance: 1 year v_{μ} beam (left) 1 year v_{μ} + 2 years anti- v_{μ} beams (right)

combined "anomalies": from reactor vs, Gallex and Sage experiments.

In addition: Detector R&D (T150) Neutrino cross sections (huge statistcs of v_e) Event reconstruction "pave the way for future LBL experiments"

10-2

 $sin^{2}(2\theta)$

1iniBooNE anti-ν

90% CL 99% CL

Bugey

BNL 776

10-1

LNSD (90%)

CCFR

Minutes of the 108th SPSC meeting - Jan 2013:

The SPSC recommends moving the ICARUS detector from LNGS to CERN during LHC LS1, to a position suitable for use as the far detector of a short baseline experiment for search for sterile neutrinos.

The SPSC supports the physics cases

- The SPSC supports the focus of the European neutrino community on the LAr TPC technology,
- The SPSC recommends that future European R&D for neutrino beam physics at CERN should be made in close contact with the US groups in anticipation of cooperation on future projects.

Backup slides

3D reconstruction (example of stopping μ)

NEW: Simultaneous **3D** polygonal fit \rightarrow **2D** hit-to-hit associations no longer needed

Adv.High Energy Phys. 2013 (2013) 260820

Beam and detector systematics on v_{μ} disappearance

Results at Muon pits: data vs MC

Effect of Earth B field (in 1 km decay tunnel) included in MC.

Experimental uncertainties: muon detector calibration (work ongoing), density of rock in between the two pits (67 m).

Spill by spill corrections for (small) horn/reflector instabilities

- ICARUS trigger system efficiency
- Selection efficiency & possible contamination from interactions in the materials around the active LAr: data and MC scanning ongoing
- Detector response uniformity/stability for interaction vertices. SPS-C_June.2013

Performance of the ICARUS T600 Trigger

- Main trigger source: scintillation light signals from PMT system integrated with low noise (RC=10 μs) preamps to efficiently exploit the 6ns fast and 1.6 μs slow components
- CNGS neutrino trigger:

PMT-Sum signal (thr. ~100 phe) for each chamber Time Samples [x 50 in coincidence with CNGS "Early Warning" beam gate (60 μs)

≻~80 triggers/day (few tens events expected).

• Cosmic Rays trigger:

PMT-Sum signal coincidence of two adjacent chambers (50% central cathode transparency)

>~130 events/h (~160 expected)

Preliminary analysis done, needing a more detailed study of the collected data and comparison with MC simulation.

Additional trigger on local charge deposition

 Dedicated algorithm implemented on FPGA on SuperDAEDALUS chip: on-line hit-finding of ionization charge signal from single TPC wires

Slide#Slidg030

LAr purification (<60 parts per trillion O_2 equivalent)

operation of the cryogenic plant.

SPS-C_June.2013

Slide# : 31

Date

2013

2013

2013

2013

2013

2013

Automation of reconstruction

• CNGS v event primary vertex: automatic reconstruction

> Validation with visually identified CNGS vertices

>algorithm efficiency ~ 97%

- •automatic event segmentation algorithm
 - Track identification
 - Shower identification
 - >Ready in 2D, to be extended in 3D

FIRST STAGE, output from segmentation: clusters and vertices Candidates for shower: high density of vertices

Just single hits-> neutron, noise

ICARUS LAr-TPC detection technique

- 2D projection for each of 3 wire planes per TPC
- 3D spatial reconstruction from stereoscopic 2D projections
- charge measurement from Collection plane signals

CNGS v_{μ} charged current interactio

The method

3 dimensional reconstruction

Two method developed for ICARUS:

- Variable track segmentation ("classical")
- Kalman filter

- The projection of the track in the Collection plane is split in segments of length /
- Deflections between segments are calculated
- The RMS of deflection angles θ depends on the momentum p and on the measurement error σ

$$\theta \div \frac{13.6MeV}{p} \sqrt{\frac{l}{X_0}} \oplus \frac{\sigma_{noise}}{l^{3/2}}$$

Signal selection efficiency check in MC simulation

automatic cuts mimicking data selection, large sample of MC

C1: inside fiducial volume and $E_{dep} < 30 \text{ GeV}$;

C2: no identified muon, at least one shower;

C3: one shower: initial point (or γ conversion point) < 1 cm from vtx, separated from other tracks;

C4: ionisation signal from single mip in the first 8 wires.

Sel. cut	$ u_e \text{ CC} $ beam	${\displaystyle \begin{array}{c} u_e \ { m CC} \ heta_{13} \end{array}}$	$\nu_{\tau} \ {\rm CC}$	NC	$ u_{\mu} { m CC}$	$ u_e \ CC $ signal
C1 C2 C3 C4	$0.47 \\ 0.47 \\ 0.33 \\ 0.30$	$0.92 \\ 0.92 \\ 0.79 \\ 0.71$	$0.93 \\ 0.17 \\ 0.14 \\ 0.13$	$0.89 \\ 0.66 \\ 0.10 \\ 0.0002$	$0.89 \\ 0.19 \\ 0.03 \\ 0.00005$	$\begin{array}{c} 0.81 \\ 0.81 \\ 0.66 \\ 0.60 \end{array}$

Signal selection efficiency (after the fiducial and energy cuts): 0.6/0.81 = 0.74, in agreement with the visual scanning method.