Charged-current quasi-elastic ν_{μ} / ν_{μ} scattering with MINERvA

Chris Marshall, University of Rochester for the MINERvA collaboration

> NuFact 2013 – Beijing, China 20 August, 2013

Assuming quasi-free nucleons at rest, E_v and Q^2 can be estimated from lepton kinematics:

$$E_{\nu}^{QE} = \frac{2(M_n - E_B)E_l - [(M_n - E_B)^2 + m_l^2 - M_p^2]}{2[M_n - E_B - E_l + p_l \cos\theta_l]}$$

$$Q_{QE}^{2} = -m_{l}^{2} + 2E_{\nu}^{QE}(E_{l} - \sqrt{E_{l}^{2} - m_{l}^{2}}\cos\theta_{l})$$

 M_n, M_p = neutron, proton mass E_B = nuclear binding energy m_l, E_l, θ_l = mass, energy, angle of final state lepton

2013-08-20

Present-day MC generators

- Relativistic Fermi Gas (RFG): free nucleons in mean field
- Free nucleon cross-section formula: Llewellyn Smith

$$\frac{d\sigma}{dQ^2} = \frac{M^2 G_F^2 cos^2 \theta_C}{8\pi E_\nu^2} \times [A(Q^2) \mp \frac{(s-u)B(Q^2)}{M^2} + \frac{C(Q^2)(s-u)^2}{M^2}]$$

$$\begin{split} A(Q^2) &= \frac{m_l^2 + Q^2}{M^2} [(1+\tau)|F_A|^2 - (1-\tau)|F_1^V|^2 + \tau(1-\tau)|F_2^V|^2 + 4\tau F_1^V F_2^V] \\ &- \frac{m_l^2 + Q^2}{M^2} \frac{m_l^2}{M^2} [|F_1^V + F_2^V|^2 + |F_A + 2F_P|^2 - 4(1+\tau)F_P^2] \\ B(Q^2) &= 4\tau F_A(F1^V + F_2^V) \qquad C(Q^2) = \frac{1}{4} (|F_A|^2 + |F_1^V|^2 + \tau|F_2^V|^2) \end{split}$$

Llewellyn Smith, C.H., 1972, Phys. Rep. C3, 261.

2013-08-20

Present-day MC generators

- Relativistic Fermi Gas (RFG): free nucleons in mean field
- Free nucleon cross-section formula: Llewellyn Smith
- F_V from electron scattering
- Assume dipole form of F_A

Present-day MC generators

- Relativistic Fermi Gas (RFG): free nucleons in mean field
- Free nucleon cross-section formula: Llewellyn Smith
- F^V from electron scattering
- Assume dipole form of F_A
- Measure M_A in deuterium bubble chambers

$$F_A(Q^2) = \frac{F_A(0)}{(1 + \frac{Q^2}{M_A^2})^2}$$

Bodek, et. al., J.Phys.Conf.Ser. 110 082004 (2008)

2013-08-20

- NOMAD data at 3 100 GeV consistent with $\rm M_A$ from deuterium bubble chambers
- MiniBooNE data at 0.4 2 GeV favors higher M_A

2013-08-20

Multi-nucleon effects

- Electron scattering data indicates short-range correlations (SRC) affect ~20% of nucleons
- Meson exchange currents (MEC) could result in multi-nucleon emission
- Low-momentum correlated pair can have high-momentum constituent nucleons $\vec{p}_n \qquad \vec{p}_p$
- Get wrong neutrino energy:

$$E_{\nu}^{QE} \rightleftharpoons \frac{2(M_n - E_B)E_l - [(M_n - E_B)^2 + m_l^2 - M_p^2]}{2[M_n - E_B - E_l + p_l \cos\theta_l]}$$

R. Subedi et al., Science 320, 1476 (2008)

Enter Minerva

arXiv:1305.5199 [physics.ins-det]

CCQE event selection

 u_{μ}

12

Selected sample

Error summary

Shape-only error summary

Absolute cross section

M _A = 1.35	best fit to MiniBooNE data
TEM	empirical model based on electron scattering data
GENIE	independent nucleons in mean field
SF	more realistic nucleon momentum-energy relation

2013-08-20

Shape-only ratio

2013-08-20

2013-08-20

- Look for evidence of extra energy inside "vertex region"
- Fit to data assuming extra energy is due to protons
- Ignored this region for CCQE event selection
 Chris Marshall University of Rochester

Energy in vertex region

Neutrino mode - 30cm

Antineutrino mode - 10cm

Look in "annuli"

(N100 - 25 mm (MeV) ⁻robability 10⁻¹ 50 0 Energy r = 10⁻² 10^{-3} 200 400 600 True Proton KE (MeV) Energy r = 75 - 100 mm (MeV) Probability 10⁻¹ 10⁻² 10^{-3} 600 200 400 True Proton KE (MeV)

Simulated CC events with exactly 1 proton, no π/γ

For proton of given KE, column represents probability distribution for energy deposit in given region

Fit by adding energy to some fraction of events based on these distributions

2013-08-20

Annulus fits

Fit results - neutrino

• Fit wants to add low-energy protons to $(25 \pm 10)\%$ of CCQE events

Fit results - antineutrino

- Consistent with no additional protons
- Fit wants to "add" proton to (-10 ± 8)% of CCQE events

2013-08-20

Conclusions

- CCQE d σ /dQ² shape distributions prefer RFG+TEM model with $M_A \approx 1$ GeV for both neutrino and antineutrino
- Extra energy near vertex suggests additional protons in 25% of CCQE events in *neutrino mode only*, consistent with np initial state pairs

Future directions

- Michel electron tag to reject $\pi \rightarrow \mu \rightarrow e$
- Improve acceptance at high Q^2 by reconstructing E_{ν} and Q^2 from proton
- $\sigma(E)$ and $d^2\sigma/dT_{\mu}d\theta_{\mu}$
- CCQE in nuclear targets

Thank you

• Simulated with GEANT4, reweighted by NA49 data

- Flux
 - Simulated with GEANT4, reweighted by NA49 data
- Recoil energy reconstruction
 - Overall scale from muons, test beam for hadrons

T977 + MINERvA Preliminary

2013-08-20

- Flux
 - Simulated with GEANT4, reweighted by NA49 data
- Recoil energy reconstruction
 - Overall scale from muons, test beam for hadrons
- Muon energy reconstruction
 - Dominated by MINOS momentum errors

Reconstructed by	Uncertainty		
Range (all p)	2.0%		
Curvature (p < 1.0 GeV)	2.1%		
Curvature (p > 1.0 GeV)	3.3%		
MINOS NIM A 596, 190 (2008)			

- Flux
 - Simulated with GEANT4, reweighted by NA49 data
- Recoil energy reconstruction
 - Overall scale from muons, test beam for hadrons
- Muon energy reconstruction
 - Dominated by MINOS momentum errors
- Hadron interaction model
 - Final state interaction uncertainties

Model parameter	Uncertainty
Pion/nucleon mean path	20%
Pion/nucleon charge exchange	50%
Pion absorbtion	30%
Pion/nucleon inelastic cross section	40%
Elastic cross sections	10-30%

- Flux
 - Simulated with GEANT4, reweighted by NA49 data
- Recoil energy reconstruction
 - Overall scale from muons, test beam for hadrons
- Muon energy reconstruction
 - Dominated by MINOS momentum errors
- Hadron interaction model
 - Final state interaction uncertainties
- Primary interaction (GENIE)
 - Impacts background subtraction
- Other
 - Detector mass, cross-talk, other detector effects

2013-08-20

Model parameter	Uncertainty
CC Resonance Norm.	20%
Resonance M _A	20%
Non-resonance pion production	50%

NuMI beamline

120 GeV protons from Main Injector incident on graphite target

Pions focused by two horns, decay in 675-meter pipe

210 meters of rock before Minerva

2013-08-20

Absolutely normalized XS

good fit to MiniBooNE data
parameterization of electron scattering data
independent nucleons in mean field
more realistic nucleon momentum
Random phase approximation

2013-08-20

 $\theta_{\mu} < 20^{\circ}$

MA = 1.35 TEM-GENIE SF-RPA good fit to MiniBooNE data
parameterization of electron scattering data
independent nucleons in mean field
more realistic nucleon momentum
Random phase approximation

Split by neutrino energy

37

NuWro RFG M,=1.35

NuWro SF M,=0.99

NuWro RFG M₄=1.35

NuWro SF M₄=0.99

NuWro RFG M,=0.99 + TEM

1

1.5 < E_v < 4 GeV

Area Normalized

 Q_{QE}^2 (GeV²)

4 < E_v < 10 GeV

Area Normalized

 Q_{QE}^2 (GeV²)

10⁻¹

10⁻¹

NuWro RFG M,=0.99 + TEM

Correlation matrices

Isolated showers cut

• <=2 for neutrino, <=1 for nubar

Number of tracks cut

• No more than 1 for nubar, no cut for neutrino

Background subtraction

- Sideband of recoil energy in 4 bins of Q^2_{QE}
- Fit background normalization to match data
- Allow MC templates to fluctuate within stat errors
 2013-08-20 Chris Marshall University of Rochester

Unfolding matrices

- Bins of Q^2_{QE}
- Unfolded using Bayesian method with 4 iterations

Vertex energy due to 1 proton

2013-08-20

Annulus fits – log Y

Annulus fits - NuBar

Vertex energy error summary

• Dominated by modeling uncertainties (GENIE)

BBC TEM model

A. Bodek, H. Budd, M.E. Christy, Eur. Phys. J. C 71, 1726 (2011)

Transverse Enhancement Carbon 12

2013-08-20

BBC TEM model

A. Bodek, H. Budd, M.E. Christy, Eur. Phys. J. C 71, 1726 (2011)

Preliminary E04-001, E = 4.629, Ø = 10.661

Example: one bin of $Q^2 \sim 0.68$

Ratio of integrated transverse response function: ¹²C / free

2013-08-20

BBC TEM model

A. Bodek, H. Budd, M.E. Christy, Eur. Phys. J. C 71, 1726 (2011)

At MINERvA peak energy, TEM is like $M_A = 1.35$ at low Q^2 and like $M_A = 1.01$ at high Q^2

With NuWro RPA model

Valencia 2p2h RPA model

Gran *et. al.*, arXiv:1307.8105 [hep-ph]

RPA 2p2h
Alternate high-Q² behavior
No RPA no 2p2h

CAVEAT: Calculation at 3 GeV, true Q^2 Data is flux-integrated from 1.5 to 10 peaking at 3 GeV, true Q^2_{QE}

2013-08-20

Valencia 2p2h RPA model

 RPA 2p2h
 Alternate high-Q² behavior No RPA no 2p2h = 1.00 CAVEAT: Calculation at 3 GeV, true Q^2 Data is flux-integrated from 1.5 to 10 peaking at 3 GeV, true Q^2_{QE}

2013-08-20