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1. How to make an accelerator-based neutrino beam 
 1.1 Generic design of an accelerator-based  
   neutrino beam 
 1.2 Proton interactions on nuclear targets 
 1.3 Magnetic focusing systems 
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2. History of accelerator-based neutrino experiments 
 2.1 The two neutrino experiment 
 2.2 Discovery of neutral currents 
 2.3 Neutrino interaction experiments, nuclear 
structure, charm production 
 2.4 Discovery of the tau neutrino 

Lecture 1: the past 
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Lecture 2: the present 
3. Accelerator-based neutrino oscillation experiments 

 3.1 Short-baseline neutrino experiments: LSND, 
KARMEN, NOMAD, CHORUS, MiniBooNE 
 3.2 Long-baseline neutrino experiments: K2K, 
MINOS, T2K, NOvA   

Lecture 3: the future? 
4. Future neutrino beams 

 4.1 Remaining questions in neutrino oscillation physics 
 4.2 Conventional accelerator-based Super-Beam 
experiments: CERN-Gran Sasso, T2HK, LBNE, LBNO 
 4.3 Beta-beams: neutrinos from the decay of 
radioactive isotopes 
 4.4 nuSTORM: neutrinos from a muon storage ring 
 4.5 Neutrino Factory, the ultimate neutrino facility 
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S.E. Kopp, arXiv:physics/0609129 
Phys. Rept.439 (2007) 101. 

Schwartz, Lederman, Steinberger et al.PRL 9, 36 (1962) 

€ 

π ± →µνµ (~ 100%);K
± →µνµ (63.4%);

KL →πµνµ (27.2%);

  Excellent review article: 
  First neutrino beam was created for the “two neutrino” 

experiment: 

―  Protons of 15 GeV/c hit bare target at the AGS at Brookhaven 
―  Production of pion and kaon secondaries 
―  Pions, kaons decay: 

―  Filter to remove π, µ and K: only neutrinos remain 
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  Main problem with AGS beam was low efficiency of 
extracting secondaries: select only decays at 7.5o. 

  At CERN, neutrino-based accelerator experiments 
were also developed (1963):  
―  Fast extraction of protons from CERN PS at 20.6 GeV 
―  Van de Meer invents magnetic horn to focus secondary pions 

and kaons in forward direction  

  Most neutrino beams now extract protons and use 
some sort of focusing lens, like a horn 

  Proton beam power on target has increased since the 
1960’s – measured as protons-on-target (POT) or as 
time-integrated power (POT × energy/POT) in Joules 
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  Total time-integrated power of neutrino beams 
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  Design of a neutrino beam from π, K decays:  
―  Extraction of proton beam from accelerator 
―  Proton beam hits target to create secondary pions, kaons 
―  Secondaries are focused by magnetic lenses (horns or others) 
―  Secondaries are allowed to decay in decay pipe 
―  Absorber material and “beam dump” removes charged particles 
―  Detectors along beam line are used to monitor flux and direction 
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i.e. NuMI Beam at FNAL 
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  To be able to predict neutrino flux accurately, one needs to 
understand the production of hadrons from proton 
interactions: 
―  Need to calculate and measure production yields: 
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€ 

p + A→π + X; p + A→K + X

€ 

d2N
dpdΩ

€ 

d2N
dpdΩ

≈ f (xF )g(pT )

  Hadronic models are built up around simulation packages, 
such as GEANT3, GEANT4, MARS, FLUKA and/or 
parameterisations that describe hadron production data 
―  Physics models rely on Feynman scaling and pT invariance: 

€ 

xF =
pz
p0
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  FLUKA predictions of: 

€ 

p +C→π + + X

Feynman  
scaling 

€ 

d2N
dpdΩ

≈ f (xF )g(pT )

€ 

nπ ∝ p0( )0.7
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  FLUKA predictions of: 

€ 

p +C→π + + X

€ 

d2N
dpdΩ

≈ f (xF )g(pT )

pT  
distribution 
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Tertiary π+  
production 

  For long targets, re-interactions play important role: 
―  Re-interactions decrease yield at high E and increase yield low E 

€ 

p +C→π + + X
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  Flux uncertainties in all accelerator-based neutrino 
experiments from π, K decay rely on accurate knowledge 
of secondary hadron production. 
−  Neutral kaons from quark counting: 

  Need experiments to measure hadron production and 
models that use data to predict yields in all phase space  

  Two type of hadron production experiments: 
―  Single-arm spectrometers: long spectrometer that measures 

production on a particle-by-particle basis – mainly 1960-1990s 
―  Full acceptance spectrometers, which include a wide acceptance 

tracking device (ie. TPC), with analysing magnets, complemented 
by a forward region tracker for low angle scattering (more modern 
experiments: HARP, NA49, MIPP, NA61/SHINE) 

―  Both types of experiments rely on particle identification through 
dE/dx, Cherenkov and/or Time-of-Flight systems 

€ 

N(Ks) = N(KL ) =
1
4
NK + + 3NK −( )
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  Summary of hadron production experiments 
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  Example of a single-arm spectrometer: NA56/SPY 
―  Measured 450 GeV protons on Beryllium target for CERN West 

Area neutrino Facility (WANF) for NOMAD and CHORUS expts 
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Ambrosini et al. 
Eur.Phys.J. C10 605 (1999) 
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  Example of a single-arm spectrometer: NA56/SPY (~1995) 
―  Measured 450 GeV protons on Beryllium target for CERN West 

Area neutrino Facility (WANF) for NOMAD and CHORUS expts 
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Ambrosini et al. 
Eur.Phys.J. C10 605 (1999) 

Sparsely populated data 
Need to interpolate from models 
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  Example of wide-angle spectrometer: HARP (2002-2003) 
―  Measured 3-12.9 GeV protons on Be, C, Al, Cu, Sn, Pb, H2, O2, N2 

targets at CERN – also did replica K2K and MiniBooNE targets 

Accelerator-based Neutrinos, Paul Soler 



21 

  Differential cross-section definition used in HARP 
analysis: 

–  Number protons: 
–  Target nuclei per unit area:  
–  Number of observed particles of type α’ in momentum 

bin pi’ and angle θj’: 
–  Inverse of correction matrix that corrects for detector 

efficiency and resolution:  
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  Differential cross-sections: 
 12.9 GeV/c protons on 5% 
ΛΙ aluminium 

Sangford-Wang 
HARP 

Catanesi et al., Nucl.Phys. B732, 1 (2006) 
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  π+ production from 8.9 GeV/c 
protons on 5% ΛΙ Be target : 
–  Sangford-Wang parametrization 
–  8.9 GeV/c protons  
–  5% ΛΙ Be target  
–  Inclusion also of E910 data at 6.4 

GeV/c and 12.3 GeV/c 

Catanesi et al., Eur.Phys.J. C52, 29 (2007) 
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  Atmospheric neutrinos and 
extended air shower (EAS) flux 
calculations rely on hadronic 
models: 
–  Primary flux (70% p, 20% He, 10% 

heavier nuclei)  is known to better than 
15%  

–  Most uncertainty comes from hadron 
interaction model. 

  Model-dependent extrapolations 
from the limited set of data leads to 
about 30% uncertainty in 
atmospheric fluxes 

   cryogenic targets (O2 and N2 
and compare to nearby C data) 
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Astroparticle Physics 29 (2008), 257-281. 
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Astroparticle Physics 30 (2008), 124-132 
First ever result with O2 and N2 
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Forward 
0.35 <  θ < 1.55 

Backward 
1.55 <  θ < 2.15 

p 

  Tantalum (Z=73): potential 
neutrino factory solid 
target, close to Hg (Z=80) 

Accelerator-based Neutrinos, Paul Soler 



28 

Forward 
0.35 <  θ < 1.55 

Backward 
1.55 <  θ < 2.15 

p 

  Tantalum (Z=73): potential 
neutrino factory solid 
target, close to Hg (Z=80) 
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Cross-sections to be fed into 
neutrino factory studies 
to find optimum design: 

Ta and Pb x-sections at large 
angle (see Eur. J. Phys C51 

(2007) 787) 

p-Ta yield/Ekin 

π± 

p-Ta yield 

π± 
π± 

  Different assumptions about 
neutrino factory front-end 
depending on momentum and 
angular acceptance 
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  NA61/SHINE experiment took data of 31 GeV/c protons 
on C for T2K flux determination Korsenev, EPS-HEP (2013), Stockholm 
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  NA61/SHINE experiment took data of 31 GeV/c protons 
on C for T2K flux determination Korsenev, EPS-HEP (2013), Stockholm 

€ 

p +C→π + + X

€ 

p +C→π− + X
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  NA61/SHINE experiment took data of 31 GeV/c protons 
on C for T2K flux determination Korsenev, EPS-HEP (2013), Stockholm 

€ 

p +C→K + + X

€ 

p +C→K − + X
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  NA61/SHINE experiment took data of 31 GeV/c protons 
on C for T2K flux determination Korsenev, EPS-HEP (2013), Stockholm 

€ 

p +C→ p + X

€ 

p +C→Ks + X
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  Shower cascade Monte Carlo models required: MARS 
and FLUKA are tuned to data and are quite successful 

  Parametric models: 
―  Malensek: fit to Atherton et al. data but failed to fit NA56/SPY 

―  BMPT: extension of Malensek to fit NA56/SPY data 

―  Sanford-Wang: used for low energies, ie. HARP, MiniBooNE, K2K 

―  CKP: from old cosmic ray data 

€ 

d2N
dpdΩ

= Kp(1− xF )
A 1+ 5e−DxF( )
1+ pT

2 /m2( )4

€ 

E ×
d3σ
dp3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = A(1− xF )

α xR
−β 1+ a'(xR )pT + b'(xR )pT

2( )e−a'(xR )pT

€ 

d2N
dpdΩ

= ApB (1− p / p0)exp −
cpD

p0
E − Fθ p −Gp0 cos

H θ( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

€ 

d2N
dpdΩ

= Ap2(p0 − p)e
−(p−a )(b+cθ )
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  We calculate pion and kaon decay from kinematics: 
―  Momentum of daughters: 

―  Lorentz boost: 

―  In CM frame (spin=0): 

―  In LAB frame: 

―  At small angles the neutrino flux is: 
―  Without focusing, pions diverge: 

―  Neutrino angle with respect to pion ~1/γ, less than π angle   

€ 

p'= mπ

2
1−

mµ
2

mπ
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

E = γ E '+βp'z( )
pz = γ p'z +βE '( )

p'T = p'T

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

€ 

dP
dΩ'

=
1
4π

€ 

φν =
A
4πz2

2γ
1+ γ 2θ 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2
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€ 

dP
dΩ

=
1
4π

4γ 2 1+ tan2θ( )3 / 2

1+ γ 2 tan2θ( )2

€ 

θπ ≈
pT
p

=
280 MeV
γmπ

=
2
γ
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  Perfect pion focusing could increase flux by factor of 25 
  Simon van der Meer invented “magnetic conical horn” in 

1961 to increase collection of secondary pions and kaons  
―  Two conductors produce toroidal field: 
―  Focuses pions of one sign and defocuses the other sign. 
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€ 

B =
µ0I
2πr

€ 

θ in =
r
l

€ 

Δθ =
Bx
p

=
µ0I
2πr

x
p

€ 

Δθ = θ in ≈
pT
p

€ 

⇒ x = pT
2π
µ0I

r

Conical geometry  removes p dependence 
Broad-band beam! 
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  Parabolic horn developed by Budker for e+e- machine at 
Novosibirsk, adapted to Serpukhov neutrino beam 1967: 
―  Focuses a given momentum at all possible  angles 

―  Focuses all angles, but focal length depends on momentum 
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€ 

z = ar2 ⇒ x = 2ar2

€ 

Δθ =
Bx
p

=
µ0I
2πr

x
p

€ 

Δθ = θout −θ in = θout − r / l

€ 

θout = 0⇒ f =
π

µ0aI
p

Choose focal point: 

€ 

f = l
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  More sophisticated horns have been designed 
―  Ellipsoid horn: similar to parabolic horn but achieves an exact 

momentum focus across wider angular range (no aberrations) 
―  Magnetic fingers (Palmer): adopted at BNL, KEK, MiniBooNE and 

JPARC: achieves perfectly linear focusing without approximations 

―  Multi-horn systems (Palmer): a second horn can half any residual 
divergence from first horn 

Most facilities 
now have two  
horn systems: 
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  Effect of focusing at NuMI Beam at FNAL: 
―  Three tunes: low, medium and high energy beam 

Accelerator-based Neutrinos, Paul Soler 
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  Quadrupole focused beams are less efficient but are 
useful at high energies since aperture smaller 
―  Quadrupole triplet: focuses one momentum at a given distance 
―  Only suitable for short baseline: wide band and double peak 

structure due to under focusing and over focusing of π and K 

Quadrupoles focus 
both signs 
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  Quadrupole focused beams are less efficient but are 
useful at high energies since aperture smaller 
―  Sign-selected quadrupole triplet: used for NuTeV experiment 
―  Add dipole to select only one of the signs of the beam 
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  Di-chromatic neutrino beam 
―  Dipoles after target sweep 

wrong-sign secondaries and two 
quarupoles focus beam 

―  Pioneered at FNAL but then 
used by CERN for CDHS and 
CHARM experiments at SPS 

€ 

Eν =
1− (mµ /mπ ,K )

2( )
1+ γ 2θ 2( )

Eπ ,K
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  Horn beam with plug 
―  Beam plugs stop unwanted pion trajectories 

  Horn beam with dipole 
―  Dipole between two horns has better momentum and sign selection 
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  Off-axis beam 
―  At θ=0o neutrino energy linear with pion energy, but at off-axis 

angle, energy  narrows  

―  Can select energy by choosing  
 off-axis angle 

―  Now being used by T2K and NoVA 

€ 

Eν =
1− (mµ /mπ ,K )

2( )
1+ γ 2θ 2( )

Eπ ,K
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2. History of accelerator-based neutrino experiments 
 2.1 The two neutrino experiment 
 2.2 Discovery of neutral currents 
 2.3 Neutrino interaction experiments, nuclear 
structure, charm production 
 2.4 Discovery of the tau neutrino 
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  It was thought that νµ and νe must be different since certain reactions 
not observed: conservation of lepton number (for each family).   

  Search for “second” (muon) neutrino carried out in 1962 by Schwartz, 
Lederman, Steinberger et al. at Alternating Gradient Storage ring (AGS) 
at Brookhaven National Laboratory: 

Shielding steel 
from US WWII battleship 
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Experimental signature 

  Used spark chambers to observe muons 
  Exposure of 3.48x1017 POT:  

–  113 events observed: 56 single muon and vertex events 
consistent with muons, 49 short events and 8 showers 

Schwartz, Lederman, Steinberger et al.PRL 9, 36 (1962) 

Discovery muon neutrino 
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  Until 1973, the neutral currents (NC) predicted by the electroweak theory 
of Glashow, Weinberg and Salam had remained elusive 

  The neutrino beam came from the CERN PS 
  The Gargamelle bubble chamber was 4.8 m long and 2 m in diameter,  

weighed 1000 tons and had 12 m3 of freon (CF3Br) 
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  First example of NC observed in 1973, inside the Gargamelle bubble 
chamber filled with freon (CF3Br): no muons! 

  Gargamelle observed both: 
  Hadronic neutral current 
  Neutral current scattering  

 off an electron 

Accelerator-based Neutrinos, Paul Soler 

Phys. Lett. 46, 121 (1973) Phys. Lett. 46, 138  (1973) € 

e−

€ 

e−

€ 

νµ + e− →νµ + e−
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  Neutrino experiments at accelerators in the 70s to 90s were 
mainly dedicated to the study of neutrino interactions, nuclear 
structure and charm production 
–  Bubble chambers: Gargamelle, BEBC and 15 foot chamber 
–  Emulsion experiments: ie. E531 
–  Calorimetric experiments: HPWF, CDHS, CHARM, CHARM-II, CCFR 

and NuTeV 

BEBC 

Accelerator-based Neutrinos, Paul Soler 

CHARM-II 

CCFR/NuTeV 
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  Some highlights: 
–  Structure functions, including unique for neutrino experiments: xF3 

–  Standard model interactions, ie. 
–  Standard model parameters: sin2θW ….. 

Accelerator-based Neutrinos, Paul Soler 

Neutrino experiments played a crucial role 
in establishing the Standard Model 

€ 

νµ + e− →νµ + e−
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  Also, charm production from neutrino interactions: 
–  First evidence of charm particles in HPWF:  
–  Opposite sign dimuon production is evidence of charm production, and 

probes strange sea content of nucleons, charm quark mass and Vcd 

–  Emulsion detectors can distinguish amongst charm states: can 
determine charm production fractions   

 D0 (0.59±0.06), D+ (0.14±0.04), Ds
+ (0.11±0.04), Λc

+ (0.15±0.04) 
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Phys. Rev. Lett. 34 (1975) 419 

Phys. Rept. 399 (2004) 227 
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  First direct evidence for tau neutrino ντ in year 2000 by DONUT 
collaboration at Fermilab: 

  Protons hitting tungsten target produce Ds mesons (                   ). 

Phys. Rev. D 78, 052002 (2008) 
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  Detection of tau neutrino in emulsion targets. Triggered by 
spectrometer: 1 mm long track ending in a kink 
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Phys. Rev. D 78, 052002 (2008) 

  Total of 866 neutrino candidate events in the emulsion 
  After analysis: 
  Extracted cross-section:  

  

€ 

9 events (7.5ντ , 1.26 charm, 0.22 hadronic)

€ 

σ const (ντ ) = (0.39 ± 0.13 ± 0.13) ×10−38 cm2GeV −1

Compatible with lepton universality 
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  First tau event: 
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