

Majorana vs. Dirac Neutrino and Absolute Neutrino Mass Measurements

Liang Yang University of Illinois at Urbana-Champaign INSS 2013, Beijing, China Lecture II, 8/14/2013

Lecture Outlines

- Lecture 1: Overview
- Lecture 2: Experimental details of weak decay kinematics measurements
 - Experimental considerations
 - Brief review of historical experiments
 - Tritium experiments: KATRIN, Project 8
 - Bolometric experiments: MARE, ECHO
- Lecture 3: Experimental details of double beta decay measurements

Measuring Weak Decay Kinematics

 $m_e \sim 0.5 \text{ MeV}, m_{n,p} \sim 1 \text{GeV}$

Nuclear recoil is small, but not too small for tritium decay, ~ 3eV, is this a problem?

Your mission, if you choose to accept it, is to measure spectral shape near the end point precisely,

- Choose a system to study
- Choose a detection method
- Background and systematics, etc

Choosing a Weak Decay to Study

- Low Q values
- High decay rate
- Simple final states
- Isotope availability
- Well understood spectral shape

Choosing a Weak Decay to Study ${}^{3}H \rightarrow {}^{3}He + e^{-} + \overline{v_{e}}$

- E₀ = 18.37 keV
- t_{1/2} = 12.7 y

• Simple final state, though T₂ molecular excitation levels not negligible

• super-allowed decay $0^+ \rightarrow 0^+$, spectral shape well understood

$$^{187}\text{Re} \rightarrow ^{187}Os + e^- + v_e$$

- $E_0 = 2.47$ keV (lowest among known β decays)
- t_{1/2} = 43.2 Gy
- 63% abundance
- $5/2^+ \rightarrow 1/2^-$ first forbidden transition (shape correction needed)

$$^{163}Ho + e^{-} \rightarrow ^{163}Dy^{*} + v_{e}(E.C.)$$

- E_{E.C.} = 2.3-2.8 keV (electron capture energy)
- t_{1/2} = 4570 y
- Efficient reactor production
- spectral shape not entirely understood

Choosing a Detection Method

- High energy resolution
- Large solid angle
- Short dead time, no pile up
- Low background rate
- Two mature technologies and a few new ideas

Spectrometer	Calorimeter
Source ≠ Detector	Source = Detector

Choosing a Detection Method

$$^{187}\text{Re} \rightarrow ^{187}Os + e^- + \overline{v_e} \qquad ^{3}H \rightarrow ^{3}He + e^- + \overline{v_e}$$

	calorimeters	spectrometers	
source	metallic Re, dielectric AgReO ₄	high-purity molecular gaseous T ₂	
ß-energy	arrays of crystal bolometers	MAC-E filter: electrostatic retardation	
activity	low: <10 ⁵ ß/s	high: ~10 ¹¹ ß/s	
response	entire decay energy	(longitudinal) kinetic energy of electrons	
interval	entire ß-decay spectrum	very narrow interval close to E ₀	
method	differential spectrum	integral spectrum (ToF mode possible)	
set-up	modular, size can be upscaled	integral design, spectrometer size limits	
resolution	$\Delta E \sim few eV (FWHM)$	ΔE = 0.93 e V (100%)	

G. Drexlin, NOW 2012

Two methods complementary, different systematics. A few new ideas for ³H will be discussed later. ¹⁶³Ho will likely need to use calorimeters, why? Can we use spectrometer to measure ¹⁸⁷Re, or can we use calorimeter to measure ³H?

Tritium Measurements

Early Days: Magnetic Spectrometer

Zurich Experiment

- Toroidal magnetic spectrometer
- Source biased at HV, electrons slowed down by 15 kV retarding potential at the grid.
- Detector biased also at HV, so electrons passing the spectrometer are reaccelerated.
- Moderate resolution at 1% to reach
 FWHM 27 eV, for 2.2 keV electrons.
 0.6% transmission.

Fritschi et. al., in Neutrino 90, Nucl. Phys. B19, 205

Discovery or False Signal?

- ITEP Experiments
 - First use of toroidal magnetic spectrometer
 - Tritiated value source $(C_5H_{11}NO_2)$, thin film
 - Claimed discovery of neutrino mass at 30 eV (1980 86)
- Zurich Experiment
 - Source: tritiated hydrocarbon chain
 - $m_v < 15.4 \text{ eV}$ (86)
- Los Alamos Experiment
 - Novel gaseous source of atomic and molecular tritium
 - $m_v < 9.4 \text{ eV}$ (87)

Limitation of Magnetic Spectrometer

Why do all measurements show $m_v^2 < 0$? Systematic bias?

Need very good understanding of energy resolution!

Principle of MAC-E-Filter

Magnetic Adiabatic Collimation + Electrostatic Filter A. Picard et. al., Nucl. Instr. Meth. B 63, 345 (1992)

What is the adiabatic condition?

Principle of MAC-E-Filter

Magnetic Adiabatic Collimation + Electrostatic Filter A. Picard et. al., Nucl. Instr. Meth. B 63, 345 (1992)

• Energy analysis by electrostatic retardation

Measure integrated
 electron spectrum with
 E_e>qU₀ (High pass filter)

• Source is placed at B_s to restrict the electrons with large starting angle to enter the spectrometer.

$$\sin^2(\theta_s) \le \frac{B_s}{B_{\max}}$$

Principle of MAC-E-Filter

Magnetic Adiabatic Collimation + Electrostatic Filter

Transmission curve for KATRIN experiment G. Drexlin, arXiv: 1307.0101

Well defined Integrated transmission functions (no tail)

 $\Delta E = E \cdot B_{min} / B_{max}$

0.93 eV (KATRIN)

The Troitsk Neutrino Mass Experiment

- Spectrometer energy resolution 3.5 eV
- T_2 source column density of 10^{17} cm⁻²
- Data collection 1994 2004.
- Reanalysis of the data in 2011:

 $m(v_e) < 2.05 \text{ eV} (95\% \text{ CL})$ Aseev et al, Phys. Rev. D 84, 112003, 2011

Better source thickness estimates, and data selection, solved spurious peak problem in early analysis.

The Mainz Neutrino Mass Experiment

[&]quot;negative m²" issue solved

KATRIN Overview

(Karlsrushe TRItrium Neutrino Experiment)

Goal: Improve the current tritium neutrino mass limit around 2 eV by an order of magnitude to 200 meV. (Need to improve β spectroscopy by 2 orders of magnitude, discovery potential (5 σ) after 3 years, 350 meV)

KATRIN: Widowless gaseous T₂ source (WGTS)

G. Drexlin, arXiv: 1307.0101

- Operated as closed cycle system, throughput of 40 kg/ year.
- Tritium column density stability at 10⁻³.
- T = 30 K, 2 phase neon used for beam tube cooling. $\Delta T \approx 3mK$ achieved over 4 hr during demonstrator test.
- Dedicated Laser Raman system use to monitor Tritiated gas fraction at 0.1% level.

KATRIN: Tritium Retention System

KATRIN: Electromagnetic Field Design

• Magnetic flux conservation -> $A_{spec} / A_{source} = B_{source} / B_{spec} = 20000:1 = E/\Delta E$

- Maintain adiabatic condition through out 50 m of electron transportation.
- Use pre-spectrometer to reduce electron background and main spectrometer to perform precision measurement.

KATRIN: Pre-spectrometer

Weinhermer, NuMass 2012

- Eliminate all electrons with no m(v_e) information, about 300 eV below the end point, 10^{11} e -> 10^3 e.
- Vessel can can be set at high voltage. $\Delta E \approx 80 \text{ eV}$
- Serve as a prototype for the main spectrometer for design and background studies. Two new backgrounds: Penning trap and Rn.

KATRIN: Background from Penning Trap

- Penning trap is a great tool for precision measurements, but in this case, accidental penning trapping is not good.
- When an electric field minimum occurs along magnetic field, trapping can occur.

- Detailed electromagnet field simulation (software developed by the collaboration).
- Optimize electrode shape.
- Background reduction by 10⁴, 1000 cps to 0.1 cps

KATRIN: Background from Rn

• Non-evaporative getter (NEG) pumps are essential for reaching 10⁻¹¹ mbar.

• Radon gas emanated from the getter material can enter the spectrometer and undergo alpha decay.

• Electrons produced by the decay can be stored in the spectrometer and produce secondary electrons.

• Use liquid nitrogen cooled baffle to trap Rn gas.

• Use simulation to understand the effect of stored electrons, and active methods of cleaning stored electrons.

KATRIN: Main Spectrometer – a long way home

- Main spectrometer, 24 m long, 10 m in diameter, 200 ton
- Too large to be shipped on roads, water comes to rescue.
- 400 km journey turned into an 8000 km odyssey.

http://www.youtube.com/watch? feature=player_embedded&v=dmmVb779NP4

KATRIN: Main Spectrometer

- Superb analyzer power, $\Delta E = 0.93 \text{ eV}$. Scanning voltage varies in 0.5 1 V steps.
- Air coil to compensate for earth magnetic field, central field 3 Gauss.
- HV stability monitored by another spectrometer, using ^{83m}Kr source
- Hugh UHV vessel, (1240 m^3) , $< 10^{-11} \text{ mbar}$, vacuum baking at 300 C.
- Large surface area, A ~ 650 m², source of background electrons?

KATRIN: Wire Grid System

- >23000 wires in 250 frames
- stringent mechanical requirements
- Suppressing background electrons from the chamber wall.
- Fine shaping of the retarding potential
- reduce electrical field fluctuation and active filtering of stored electrons

KATRIN: Removal of Trapped Electrons

- Trapped electrons constitute a major background source, they can come from cosmic muons, environmental gammas or nuclear decay of detector materials.
- Trapped electrons can be trapped for hours, then ionize residual background gas, which can generate many secondary electrons
- Shown above is an electron removal scheme using RF heating.

KATRIN: Focal Plane Detector

- Silicon PIN diode, > 90% efficiency
- Good energy resolution < 1 keV
- Post-acceleration up to 30 keV possible.
- Passive and active shielding to lower background to $< 10^{-2}$ Hz
- Pinch magnet at 6 T, reflecting all electron with > 51° initial angle in the source.
- Segmented into 148 pixels, each maps to a region of the analyzing plane.

KATRIN: Systematic Uncertainties

Tritium source

- Inelastic scattering of βs inside the source
- fluctuation of source column density (required < 0.1 %)
- source charging due to remaining ions (MC: Φ <20 mV)
- final state distribution

Spectrometer

- transmission function
- High voltage stability 3ppm

2-dim scanning pulsed angular-selective UV laser photoelectron source, an example of tools to study systematics.

Weinhermer, NuMass 2012

Each contributes with $\Delta m_v^2 < 0.007 eV^2$

KATRIN: Status and Sensitivity

Weinhermer, NuMass 2013

• All major systems under testing or commissioning, data taking expected to take place in the first half of 2015

- Three years or running to reach $\sigma_{sys} \sim \sigma_{stat}$
- Sensitivity m_v < 0.2 eV (90% C.L.)
- Discovery potential: $m_v = 0.3 \text{ eV} (3\sigma)$ $m_v = 0.35 \text{ eV} (5\sigma)$

KATRIN Simulation and Fits (last 25 eV)

- If the neutrino mass is below 200 meV, is it possible to make direct measurement of them in lab?
- Scaling up KATRIN, possible?
 - Column density near maximal, source activity scales up with area
 - To improve both statistics and energy resolution, main spectrometer size will be O(100m), technically unfeasible.
 - Background dominated by main spectrometer, further reduction difficult

NEW IDEAS NEEDED!

Project 8: Measuring Electron Cyclotron Radiation

B. Monreal and J. Formaggio, PRD 80:051301, 2009

Electron cyclotron frequency

$$\omega(\gamma) = \frac{eB}{\gamma m_e} = \frac{\omega_c}{\gamma} = \frac{\omega_c m_e}{m_e + E}$$

Power emitted by the electron

$$P(\beta,\theta) = \frac{1}{4\pi\varepsilon_0} \frac{2q^2\omega_0^2}{3c} \frac{\beta^2 \sin^2(\theta)}{1-\beta^2}$$

• Relativistic electron in a uniform magnetic field undergoes cyclotron motion.

• The frequency of the cyclotron motion is independent of the pitch angle, only the Lorentz boost factor

• Can the emitted coherent, narrow band microwave be detected and used to determine the electron energy to $\Delta E < 1eV$?

Project 8: Experimental Concept

B. Monreal and J. Formaggio, PRD 80:051301, 2009

Advantage

- Target mass scales with volume
- High precision achievable with frequency measurements

Disadvantage

- Signal to noise, need long measurement time.
- New technique, need to demonstrate feasibility and control of systematic uncertainties.

Project 8: Frequency Measurement

B. Monreal and J. Formaggio, PRD 80:051301, 2009

• For frequency measurements: $\Delta \omega \simeq 1/T$

• For $\Delta E = 1 \text{ eV}$ ($\sigma = 2x10^{-6}$), one will need $t_s \sim 40 \mu s$ (>2000 m travel before collision). Maximum pressure limited at $10^{11} T_2/\text{cm}^3$

• Power emitted at 1T field ~ 10^{-15} W, while thermal noise at 20 K, ~ 10^{-19} W.

Parameter	Value	Unit
Electron energy	18.6	keV
β	0.2627	
γ	1.0364	
Field	1	Т
ω_c	27.009	GHz

measuring time

weak signal, short measuring time.

Project 8: Doppler Shift

B. Monreal and J. Formaggio, PRD 80:051301, 2009

• The axial motion of the electron causes Doppler shift of the measured frequency.

• Antenna on the side of the cell will measure a continuum of frequencies.

• Antennas at the end of cell will measure a fixed frequency, but with very limited power for high pitch electrons.

Project 8: Interferometry of Antenna Array

B. Monreal and J. Formaggio, PRD 80:051301, 2009

• Use multiple evenly spaced small antenna to observe the signal from a single electron

• Coherent sum of signal results in an amplitude modulated signal, and line splitting in the frequency space.

Project 8: Simulated Microwave Spectrum

B. Monreal and J. Formaggio, PRD 80:051301, 2009

- Simulation of $10^5 T_2$ decay: many overlapping low energy events and rare high energy events.
- Many unique signature of the high energy electrons can be used to distinguish them from background. Analysis techniques still need to be developed.

Project 8: Prototype Testing

Test dewar at UW

Proof of principle tests are under way using ^{83m}Kr source to detect microwave signal from a single electron

Trap, waveguide, NRAO amplifiers

Monreal, UW, 2011 Wilkerson, Neutrino 2012 38

Atomic traps: Kinematic Reconstruction

- With full kinematic reconstruction, β decays within 500 eV of the end point can contribute to the measurement. Atomic source with simple final states.
- \bullet Many challenges such as β momentum measurements and trapping sufficient amount of tritium atoms

Summary of Tritium Measurements

- β spectrometer techniques have been successfully used to measure the tritium decay, culminating in KATRIN, which will probe m_v ~ 200 meV region.
- Given the technical challenges, it will be difficult to scale up KATRIN type spectrometer further.
- New ideas needed: can we use cyclotron radiation as Project 8? Or full kinematic reconstruction with atomic traps? What about calorimeters? These new ideas will need time to develop and mature.

¹⁸⁷Rh and ¹⁶³Ho Measurements

Principle of Calorimetry

Heat sink ~ 100 mK

• Measure total deposited energies, no final state or excited states effect, essential for decays with complicated electronics structure.

• Measure the entire differential energy spectrum dN/dE

• high energy resolution (< 0.1 %) possible with cryo-micro-bolometers, $C \sim T^3$, phonon energy ~ meV.

Statistics and Pile-up

Event pile-up can result in background near the endpoint

 $(dN/dE)_{exp} = [(dN/dE)_{theo} + A\tau_r (dN/dE)_{theo} \otimes (dN/dE)_{theo}] \otimes R(E)$

High statistics needed for neutrino mass detection

- Even for Rh (Q~2.47keV), only 10⁻¹⁰ fraction of events in the last 1eV.
- Require large number of detector arrays
- 1mg of Re ~ 1 decay per second

Previous ¹⁸⁷Rh Experiments

MANU (Genova)

- Single metallic Rh crystal
- Neutron transmutation doped (NTD) Ge thermistor
- Measured beta environmental fine structure (BEFS)
- ΔE = 96 eV FWHM
- m(v_e) < 26 eV (90% CL)

M. Galeazzi et. al. Phys. Rev. C, 63, 014302 (2000)

MiBeta (Milan)

- ReAgO₄ crystal
- Silicon implanted thermistor
- An array of 10 detectors, total 6 x 10^6 decays
- $\Delta E \simeq 28.5 \text{ eV FWHM}$
- rise time ~ 0.5 ms
- m(v_e) < 15 eV (90% CL)

M. Sisti et. al., Nucl. Inst. and Meth. A 520, 125 (2004) 44

MARE

Microcalorimeter Arrays for a Rhenium Experiment

Requirement for a neutrino mass calorimeter experiment:

- Large number of parallel channels
- Decrease detector response time to reduce pile up.
- Improvement in energy resolution

MARE-I ($10^9-10^{10} \beta$ decays)

- Prototyping to determine optimal technology
- ~ 300 elements
- semiconductor thermistor and transition edge sensors (TES)
- $\Delta E = 20 \text{ eV}$, $T_R = 100-500 \mu s$, 0.25 Hz activity/element
- m(v_e) sensitivity ~ 2eV

MARE-II ($10^{14} \beta$ decays)

- ~ 50000 elements
- TES or magnetic calorimeters or kinetic inductance detector
- $\Delta E = 5 \text{ eV}$, $T_R = 100-500 \mu s$, 1-10 Hz activity/element
- $m(v_e)$ sensitivity ~ 0.2eV

Both energy resolution and statistics are critical, need the best technology.

Technology for MARE-I

Semiconductor Thermistors

- ReAgO₄ (Milano)
- $\Delta E \simeq 25 \text{ eV}$
- $\tau_r \simeq 250 \ \mu s$
- m = 0.5 mg, 0.27 Bq
- up to 8x8 array possible

Transition Edge Sensor (TES)

- Metallic Re (Genova)
- $\Delta E \simeq 11 \text{ eV}$
- $\tau_r \sim 160 \ \mu s$
- m = 0.2-0.3 mg, 0.25 Bq
- Ir-Au bi-layer configuration
- Multiplexed SQUID readout

R&D for MARE-II

Magnetic Micro-Calorimeter (MMC)

- Measure change in magnetization of a paramagnetic material.
- Gold absorber, $\Delta E \simeq 2$ eV, $\tau_r \simeq 90$ ns for X ray at 6keV
- Rhenium absorber, $\Delta E \simeq 44 \text{ eV}$, $\tau_r < 10 \ \mu s$
- Multiplexed SQUID readout

Microwave Kinetic Inductance Detector (MKID)

- Exploit the temperature dependence of a superconducting film
- high energy resolution and fast rise time
- Easy for multiplexing
- R&D underway

Kirkhoff Institute of Physics, Heidelberg

Al strip on Si substrate

Sensitivity of MARE-II

Systematic uncertainties such as BEFS, spectral shape, pile-up, background will need further studies.

• Only electrons from M_1 , M_2 , N_1 , N_2 , O_1 , O_2 , and P_1 shells can be captured. $E_0 = 2.3 - 2.8 \text{ keV}$?, with recommended value at 2.555 keV.

• Neutrino mass affects the ratio of capture rates, inner Bremsstrahlung, and spectrum shape near end point.

• Calorimeter measurements inspired by good results from R&D with MMC sensor.

Electron Capture on Holmium (ECHO)

Ranitzsch, et. al., J. Low Temp. Phys. 167, 1004, (2012)

• Develop magnetic micro-calorimeters (MMC) for both ¹⁸⁷Re and ¹⁶³Ho. Ho ions can be implanted in gold absorbers which has good performance, $\Delta E \simeq 2eV$ possible.

• Extracted end point Q = (2.8 ± 0.1) keV. ¹⁴⁴Pm contamination during implantation.

• Systematic uncertainties such as spectral line shapes, background, end-point location need further investigation.

Where we are going?

Sterile and Relic Neutrino Detection

Formaggio, et. al., Phys. Lett. B 706, 68 (2011)

Lazauskas, et. al., J. Phys. G, 35, 025001 (2008)

KATRIN has sensitivity to low mass sterile neutrino, hypothesized to explain the reactor anomaly

beyond end point

 $v + n \rightarrow p + e$

Need both large radioactive isotope mass (1 MCi for T), and high energy resolution $\Delta E < m_v$

Summary

- Direct neutrino mass measurement using weak decay kinematics is the most sensitive model independent method for neutrino mass determination.
- KATRIN experiment is posed to push the mass sensitivity to 200 meV in the next 5 – 10 years.
- A varieties of new techniques are under development that has the potential to go beyond the limit set by KATRIN.
- All experiments are extremely challenging but exciting. Would welcome young people and fresh ideas.