


Interactions of Neutrinos

Kevin McFarland
University of Rochester

INSS 2013, Beijing
6-8 August 2013





6-8 August 2013 Kevin McFarland: Interactions of Neutrinos 2

• Brief Motivation for and History of Measuring Interactions
 Key reactions and thresholds

• Weak interactions and neutrinos
 Elastic and quasi-elastic processes, e.g., e scattering
 Complication of Targets with Structure
 Deep inelastic scattering (q) and UHE neutrinos
 Quasielastic and nearly elastic scattering

• Special problems at accelerator energies
 Nuclear Effects
 Generators, theory and experimental data

• Conclusions

Outline
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Focus of These Lectures

• This is not a comprehensive review of all 
the interesting physics associated with 
neutrino interactions 

• Choice of topics will focus on:
 Cross-sections useful for studying neutrino 

properties
 Estimating cross-sections
 Understanding the most important effects 

qualitatively or semi-quantitatively
 Understanding how we use our knowledge of 

cross-sections in experiments
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Weak Interactions 
• Current-current interaction                       

Fermi, Z. Physik, 88, 161 (1934)

 Paper famously rejected by Nature:
“it contains speculations too remote 
from reality to be of interest to the reader”

• Prediction for neutrino interactions
 If , then
 Better yet, it is robustly predicted by Fermi theory

o Bethe and Peirels, Nature 133, 532 (1934)

 For neutrinos of a few MeV from a reactor, a typical 
cross-section was found to be 

This is wrong by a factor of two (parity violation)
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How Weak is This?

• σ~5x10-44cm2 compared with
 σγp~10-25 cm2 at similar energies, for example

• The cross-section of these few MeV neutrinos is 
such that the mean free path in steel would be 
10 light-years

“I have done something very bad today 
by proposing a particle that cannot be 
detected; it is something no theorist 
should ever do.”

Wolfgang Pauli
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Extreme Measures to Overcome 
Weakness (Reines and Cowan, 1946)

• Why inverse neutron beta 
decay?
 clean prediction of Fermi 

weak theory
 clean signature of prompt 

gammas from e+ plus 
delayed neutron signal.

o Latter not as useful with 
bomb source. 

p e n 
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Discovery of the Neutrino
• Reines and Cowan (1955)

 Chose a constant source,
nuclear reactor (Savannah River)

 1956 message to Pauli: ”We are 
happy to inform you [Pauli] that we 
have definitely detected neutrinos…”

 1995 Nobel Prize for Reines

p e n 
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Better than the Nobel Prize?

Thanks for the message.  Everything 
comes to him who knows how to wait.
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Another Neutrino
Interaction Discovery

• Neutrinos only feel the weak force
 a great way to study the weak force!

• Search for neutral current
 arguably the most famous neutrino 

interaction ever observed is shown at right


Gargamelle, event from 

neutral weak force

e e   
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An Illuminating Aside
• The “discovery signal” for the neutral current 

was really neutrino scattering from nuclei
 usually quoted as a ratio of muon-less interactions to 

events containing muons ( )
( )

N X
R

N X
 



  
  





• But this discovery was complicated for 12-

18 months by a lack of understanding of 
neutrino interactions
 backgrounds from neutrons induced by 

neutrino interactions outside the detector
 not understanding fragmentation to high 

energy hadrons which then “punched 
through” to fake muons
Great article: P. Gallison, Rev Mod Phys 55, 477 (1983)
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The Future: Interactions and 
Oscillation Experiments

• Oscillation experiments point us to a rich physics 
potential at L/E~400 km/GeV (and L/E~N·(400 km/GeV) as well)

 mass hierarchy, CP violation
• But there are difficulties
 transition probabilities as a function of energy must be 

precisely measured for mass hierarchy and CP violation
 the neutrinos must be at difficult energies of 1-few GeV for 

electron appearance experiments, few-many GeV for 
atmospheric neutrino and appearance experiments.

 or use neutrinos from a reactor 
• Our generation doesn’t have neutrino flavor measurements in 

which distinguishing 1 from 0 or 1/3 buys a ticket to Stockholm
 Difficulties are akin to neutral current experiments
 Is there a message for us here?
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Kinematics of Neutrino Reactions





Thresholds and Processes

• We detect neutrino interactions only in the final 
state, and often with poor knowledge of the 
incoming neutrinos

• Creation of that final state may require energy to 
be transferred from the neutrino

 In charged-current reactions, where the final state lepton 
is charged, this lepton has mass

 The recoil may be a higher mass object than the initial 
state, or it may be in an excited state
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ν Target
Lepton
Recoil





Thresholds and Processes
Process Considerations Threshold (typical)
νN→νN (elastic) Target nucleus is often free (recoil 

is very small)
none

νen→e-p In some nuclei (mostly metastable 
ones), this reaction is exothermic if 
proton not ejected

None for free 
neutron some 
others.

νe→νe (elastic) Most targets have atomic electrons ~ 10eV – 100 keV
anti-νep→e-n mn>mp & me.  Typically more to 

make recoil from stable nucleus.
1.8 MeV (free p).  
More for nuclei.

νℓn→ℓ-p 
(quasielastic)

Final state nucleon is ejected from 
nucleus.  Massive lepton

~ 10s MeV for νe
+~100 MeV for νμ

νℓN→ℓ-X 
(inelastic) 

Must create additional hadrons.
Massive lepton.

~ 200 MeV for νe
+~100 MeV for νμ

• Energy of neutrinos determines available 
reactions, and therefore experimental technique
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Calculating Neutrino Interactions 
from Electroweak Theory
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Weak Interactions Revisited 
• Current-current interaction                       

(Fermi 1934)

• Modern version:

• is a projection operator onto 
left-handed states for fermions and right-
handed states for anti-fermions

   5 51 . .
2
FG l cV A ff h

         weakH

 51/ 2 1LP  
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Helicity and Chirality

• Neutrinos only interact weakly 
with a (V-A) interaction
 All neutrinos are left-handed
 All antineutrinos are right-

handed
o because of production!

 Weak interaction maximally
violates parity

• However, chirality 
(“handedness”) is Lorentz-
invariant
– Only same as helicity for 

massless particles.

right-helicity left-helicity

)()()0( 2
1

2
1   JJJ 





 
 

• If neutrinos have mass then 
left-handed neutrino is:
– Mainly left-helicity
– But also small right-helicity 

component  m/E
• Only left-handed charged-leptons 

(einteract weakly  but 
mass brings in right-helicity:

• Helicity is projection of spin 
along the particles direction
 Frame dependent (if massive)
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Two Weak Interactions
• W exchange gives Charged-Current (CC) events and 

Z  exchange gives Neutral-Current (NC) events

l

l

l

l













Charge of outgoing lepton 
determines if neutrino or 
antineutrino

Flavor of outgoing lepton 
tags flavor of neutrino

In charged-current events,
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Electroweak Theory
• Standard  Model
 SU(2)  U(1) gauge theory unifying weak/EM   

 weak NC follows from EM, Weak CC
 Physical couplings related to mixing parameter for 

the interactions in the high energy theory

Charged-Current

Neutral-Current

int

0 2
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2 2
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Electroweak Theory
• Standard  Model
 SU(2)  U(1) gauge theory unifying weak/EM   

 weak NC follows from EM, Weak CC
 Measured physical parameters related to mixing 

parameter for the couplings.
Z Couplings gL gR

e ,   0

e ,  sinW sinW

u , c , t  sinW  sinW

d , s , b  sinW  sinW

• Neutrinos are special in SM
 Right-handed neutrino has NO

interactions!

W
Z

W

W
FW M

M
M

gGge  cos,
8

2,sin 2

2



Charged-Current

Neutral-Current
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Why “Weak”?
• Weak interactions are weak because of the 

massive W and Z bosons exchange 

)7.0(  /10166.1

8
2

25

2














W

W

W
F

gGeV

M
gG

At HERA see W and Z 
propagator effects 
- Also weak ~ EM strength

2222 )(
1
Mqdq

d


 q is 4-momentum carried by exchange particle
M is mass of exchange particle

• Explains dimensions of Fermi “constant”
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• Inverse decay:
 e   e

 Total spin J=0 
(Assuming massless 
muon, helicity=chirality)

 

 e   

     e  

 
Neutrino-Electron Scattering
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 e   e  

 e   
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Lecture Question #1
What is Q2

max?

 22
 eQ e  

Work in the center-of-mass 
frame and assume, for now, 
that we can neglect the masses.
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 e   e  

 e   

     e  

 

Lecture Question #1
What is Q2

max?
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Work in the center-of-mass 
frame and assume, for now, 
that we can neglect the masses.
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Neutrino-Electron (cont’d)
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• Why is it proportional to 
beam energy?

2 2 -(e rest frame)( ) 2  e e es p p m m E
    

• Proportionality to energy is a generic 
feature of point-like scattering!
 because d/dQ2 is constant (at these energies)

max
2

TOT Q s  





6-8 August 2013 Kevin McFarland: Interactions of Neutrinos 26

• Elastic scattering:
 e   e

 Recall, EW theory has 
coupling to left or right-
handed electron
 Total spin, J=0,1

Neutrino-Electron (cont’d)

• Electron-Z0 coupling
 Left-handed:  -1/2 + sin2W

 Right-handed: sin2W







  WW

F sG 
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Z Couplings gL gR

e ,   0

e ,  sinW sinW

u , c , t  sinW  sinW

d , s , b  sinW  sinW
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• What are relative 
contributions of 
scattering from left and
right-handed electrons?

Neutrino-Electron (cont’d)

const
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Neutrino-Electron (cont’d)

• Electron-Z0 coupling
 (LH, V-A):  -1/2 + sin2W

 (RH, V+A): sin2W







  WW

F sG 
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Let y denote inelasticity. 
Recoil energy is related to 

CM scattering angle by
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Lecture Question #2:
Flavors and νe Scattering

The reaction 
 e   e

has a much smaller cross-section than
e e  e e

Why?
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Lecture Question #2:
Flavors and νe Scattering

The reaction 
 e   e

has a much smaller cross-section than
e e  e e

Why?

e

e
Z

e

e

W

e

e

e

e

e e  e e

has a second contributing 
reaction, charged current
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Let’s show that this increases the rate 
(Recall from the previous pages…

)

Lecture Question #2:
Flavors and νe Scattering

RH
TOT

LH
TOT

RHLH

TOT

dy
d

dy
ddy

dy
ddy







3
1
















2LH

e-coupling totalLH
TOT

For electron… LH coupling RH coupling

Weak NC -1/2+ sin2W sin2W

Weak CC -1/2 0

We have to show the interference between CC and NC is constructive.

The total RH coupling is unchanged by addition of CC because there is no 
RH weak CC coupling

There are two LH couplings: NC coupling is -1/2+sin2W ≈ -1/4 and the CC 
coupling is -1/2.  We add the associated amplitudes… and get -1+sin2W ≈ -3/4
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• Let’s return to 
Inverse decay:

 e   e
 What changes in the presence 

of final state mass?
o pure CC so always left-handed
o BUT there must be finite Q2 to 

create muon in final state!

 see a suppression scaling with 
(mass/CM energy)2

o This can be generalized…

Lepton Mass Effects

2 2
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2

( )

1-

F
TOT

TOT

G s m

m
s










 
  


 




2
max

2
min

max min

2
2 2 2

2 2

4

1
( )

Q

TOT
WQ

W

dQ
Q M

Q Q
M

 







2 2
minQ m





6-8 August 2013 Kevin McFarland: Interactions of Neutrinos 33

What about other targets?

• Imagine now a proton target
 Neutrino-proton elastic scattering:

e p  e p
 “Inverse beta-decay” (IBD):

e p  e+ n
 and “stimulated” beta decay:

e n  e- p
 Recall that IBD

was the Reines and
Cowan discovery signal

any

p
Z

p

any

e

p
W

n

e+





6-8 August 2013 Kevin McFarland: Interactions of Neutrinos 34

Proton Structure

• How is a proton different from an electron?
 anomalous magnetic moment, 
 “form factors” related to finite size

2 1
2

g 
 

McAllister and Hofstadter 1956
188 MeV and 236 MeV electron beam
from linear accelerator at Stanford

Determined 
proton RMS 
charge radius 
to be 
(0.7±0.2)

x10-13 cm
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Final State Mass Effects

• In IBD, e p  e+ n, have to pay a mass 
penalty twice
 Mn-Mp≈1.3 MeV, Me≈0.5 MeV

• What is the threshold?
 kinematics are simple, at least to zeroth order in Me/Mn
 heavy nucleon kinetic energy is zero

• Solving…

2 2
initial  (proton rest frame)( ) 2  p p ps p p M M E    

 2 2
min 1.806 MeV

2
n e p

p

M m M
E

M

 
 

  2 2 2
final ( ) 2e n n e n n ps p p M m M E M M      

e

p
W

n

e+
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• Define E as E-E
min, then

• Remember the suppression generally goes as
 

 

 
 

 

22
final

mass 2

2

2 2

2

1 1
s 2

2
   low energy

2

2
1   high energy

2

n e

n e p

p

n ep

n e p pn e

p

M mm
M m M E

M
E

M mM E

M m M E MM m
M E











   

  



 

  
    



Final State Mass Effects 
(cont’d)
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Putting it all together…

• mass suppression is proportional to
E at low E, so quadratic near threshold

• vector and axial-vector
form factors (for IBD usually
referred to as f and g, respectively)

gV, gA ≈ 1, 1.26.
 FFs, Cabibbo, best known

from n

   
2

2 2 2
Cabibbo masscos 3F

TOT V A
G s g g  


    

e

p
W

n

e+

quark mixing! final state mass 
suppression

proton form 
factors (vector, 

axial)





6-8 August 2013 Kevin McFarland: Interactions of Neutrinos 38

Lecture Question #3:
Quantitative Lepton Mass Effect

• Which is closest to the minimum 
beam energy in which the reaction

 e   e

can be observed?

(a) 100 MeV (b) 1 GeV (c) 10 GeV

(It might help you to remember that                     
or you might just want to think about the total CM energy required 
to produce the particles in the final state.) 

2 2
minQ m





6-8 August 2013 Kevin McFarland: Interactions of Neutrinos 39

• Which is closest to the minimum 
beam energy in which the reaction

 e   e

can be observed?

(a) 100 MeV (b) 1 GeV (c) 10 GeV2 2
min

2 2

2 2 2 2

2

( )

( ,0

10.9 GeV
2

,0, ) 2
e

e e e

e

Q m
Q s p p

m E E m m
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E

E





 




 


  

  

 

 



Lecture Question #3:
Quantitative Lepton Mass Effect
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Summary… and Next Topic

• We know e- scattering and IBD cross-sections!
• In point-like weak interactions, key features are:
 d/dQ2 is ≈ constant.

o Integrating gives ∝E

 LH coupling enters w/ d/dy∝1, RH w/ d/dy∝(1-y)2

o Integrating these gives 1 and 1/3, respectively
 Lepton mass effect gives minimum Q2

o Integrating gives correction factor in  of (1-Q2
min/s)

 Structure of target can add form factors 

• Deep Inelastic Scattering is also a point-like limit 
where interaction is -quark scattering
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Neutrino-Nucleon
Deep Inelastic Scattering





6-8 August 2013 Kevin McFarland: Interactions of Neutrinos 42

Resonance Production

Linear rise with energy

Neutrino-Nucleon Scattering
• Charged - Current:  W exchange
 Quasi-elastic Scattering:

(Target changes but no break up)
 n   p

 Nuclear Resonance Production:
(Target goes to excited state)
 n   p  N* or 

n 

 Deep-Inelastic Scattering:
(Nucleon broken up)
 quark   quark’

• Neutral - Current:  Z0 exchange
 Elastic Scattering:

(Target unchanged)
 N   N

 Nuclear Resonance Production:
(Target goes to excited state)
 N   N N* or 

 Deep-Inelastic Scattering
(Nucleon broken up)
 quark   quark
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Scattering Variables

   
     

       
 

2
2 2 2 2

2 2

' '4-momentum Transfer :   4 sin ( / 2)

'Energy Transfer:     /

'Inelasticity:    / /

Fractional Momentum of Struck Quark:    / 2 / 2
R

Lab

T h T Lab
Lab

h T h
Lab

T

Q q p p EE

q P M E E E M

y q P p P E M E E

x q p q Q M







     

     

     

   
2 2 2 2 2

2 2 2

ecoil Mass :  ( ) 2
2

CM Energy :     ( )

T T

T

W q P M M Q
Qs p P M xy

    

   

Scattering variables given in 
terms of invariants

•More general than just deep 
inelastic (neutrino-quark) 
scattering, although 
interpretation may change.
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Parton Interpretation of High 
Energy Limit



q p p  

Neutrino scatters off a 
parton inside the nucleon

2 2 2 2 2
q Tm x P x M Mass of target quark

22 )(, qxPm
q


Mass of final state quark

In “infinite momentum 
frame”, xP is momentum of 
partons inside the nucleon

TM
Q

qP
Qx

22

22
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So why is cross-section so 
large?

• (at least compared to e- scattering!)
• Recall that for neutrino beam and target at rest 

2
max2 2

2

0
2 2

Q s
F F

TOT

e e

G G sdQ

s m m E


 



 

 



• But we just learned for DIS that effective mass of each 
target quark is 

• So much larger target mass means larger TOT

nucleonqm xm
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• Total spin determines 
inelasticity distribution
 Familiar from neutrino-

electron scattering

 

 

2
2

2
2

( ) ( )(1 )

( ) ( )(1 )

p
F

p
F

G sd xd x xu x y
dxdy

G sd xd x xu x y
dxdy











  

  

* 
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*



Flat in y

1/4(1+cos)2 = (1-y)2

∫(1-y)2dy=1/3

• Neutrino/Anti-neutrino CC 
each produce particular q
in scattering 

du

ud












Chirality, Charge in CC -q 
Scattering
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• Factorization Theorem of QCD allows cross-sections for 
hadronic processes to be written as:

 qh(x) is the probability of finding a parton, q, with momentum fraction x
inside the hadron, h.  It is called a parton distribution function (PDF).

 PDFs are universal
 PDFs are not (yet) calculable from first principles in QCD

• “Scaling”: parton distributions are largely independent of Q2

scale, and depend on fractional momentum, x.

Factorization and Partons

( )

( ( ) ) ( )
q

l h l X

dx l q x l X q xh





  

   


