SOI Activities at IHEP

Yunpeng Lu

2013.01.31

- 2 chips with full function submitted to SOI MPW
 - FY11-1, Integrating pixel
 - FY12-2, Counting pixel

Integrating pixel

- My first try on SOI detector, aimed at going through the design process
 - TCAD simulation
 - Circuit design
 - Layout
 - Test setup
 - Chip test

TCAD Simulation

- Simulated 3 different scenarios regarding the edge structure of a chip.
- Concluded that a wider NS implant would improve the leakage.

Circuit block of the chip

Pixel Circuit

Layout

- 2.9mm*2.9mm
- 72 Pads surrounding
- 20% of total area sensitive

Single Pixel layout

Test Setup

- Keithley source meter: HV bias and I-V test.
- Major component: SEABAS (Soi EvAluation BoArd with Sitcp) from KEK. Encrypted TCP/IP firmware.
- Sub-board, FPGA coding.
- Software.

Play with the chip

- Got the chip back in March 2012.
- Power up
 - Voltage on with reasonable current, a good start.
- Check the response of digital circuit
 - Responds as expected, a piece of silicon communicating with outside world!
- Full control of the chip
 - Seems in good order.
- Bias the sensor, make a I-V curve
 - HV up to 500V can be applied, while 300V should deplete the 260um substrate completely.

- Took images with red pointer as source
 - 4um*4um window for light illumination in each pixel.

Red Light Imaging of Metallic Mesh

64um pitch

Red Light Imaging of small objects

- The tip of a pin and 30um golden wire.
- The saw-teeth is a proof of good response to light.
 - 20um*20um pixel.

Characterize the chip quantitatively

- Calibrate the circuit
 - Gain=0.7961
 - Dynamic range > 1.8V

Measure the Capacitance in pixel

- Integrating leakage current for a period of 250us results in 340mV.
- Leakage current 70nA in total for 4096 pixels.

$$Cd = \frac{\Delta Q}{\Delta V} = \frac{\frac{70nA}{4096 \ pixels} \times 250us}{340mV} = 12.6 \text{fF}$$

• Conversion Coefficient = 1/Cd = 12mV/1000e-

Noise as a function of HV Bias

- Measure the integration of leakage current for 100 times, take the standard deviation as noise.
- Noise increases with HV bias, around 150e- when fully depleted.

Outlook on this work

- Leakage current needs to be understood.
- X-ray imaging test had a problem.
- X-ray imager should be able to achieve:
 - Up to 700um thickness full depleted
 - Frame rates: 1K frame/s
 - Full well depth: 150K e- @ 20um □ pixel
 - Noise: 100e-

Counting pixel

- Counting pixel is suitable for synchrotron radiation light source, which is a major application for detector R&D at IHEP.
 - SR facility in campus.
 - 3rd generation SR facility in planning.
 - New beamlines to be built in Shanghai SR light source.

SOI pixel for X-ray imaging

Advantages:

- Monolithic, no bump bonding.
- Full depletion, direct detection of X-ray.

Problems to be solved:

- Radiation hardness, can't meet the requirements for a collider, but OK for synchrotron light source, dental imaging and mammography.
- Cross talk between circuit and sensor, digital circuit injected charge to sensor by capacitive coupling, but integrating circuit works well by far.

Counting pixel chip

- Much more complex than integrating pixel.
- Based on KEK previous design:
 - Corrected design flaw;
 - Enlarged pixel electrode.
- To check the S/N degradation due to increasing Cd.

Summary

- Have got valuable experience from the design and test a integrating pixel chip.
- Got started with counting pixel chip as it is suitable for SR application.
- Collaboration with KEK is important for us. We would like to enhance the connection and contribute to the development of SOI detector technology.