VBF Analysis in H->γγ Channel at ATLAS

Jin Wang On behalf of ATLAS Collaboration

IHEP, China

2013-08-14 International Symposium on Higgs Physics

Outline

- Introduction
- Samples and Event Selection
- Multivariate Analysis (MVA) Training and Validation
- Categorization and Results
- Summary

Introduction

Introduction

The best fit value (+) of $\mu_{ggF+ttH} \times B/B_{SM}$ and $\mu_{VBF+VH} \times B/B_{SM}$, from public results in December 2012. *B* is the branching ratio for *H*-> $\gamma\gamma$.

- Higgs-like boson properties: its couplings to fermions and bosons are of particular relevance
- Gluon fusion and Vector Boson Fusion (VBF) are two main mechanisms how Higgs is produced
 - VBF production is of primary importance in determining Higgs coupling to gauge bosons
- Higgs->γγ is the main channel with sensitivity to VBF production
- VBF is also important in Spin-CP studies

Vector Boson Fusion Higgs Production

- Two tagging jets in the forward regions with high transverse momentum and large rapidity separation
 - large invariant mass of the two leading jets
 - large jets pseudorapidity separation
 - forward jets eta distribution
- Decay products of the vector bosons lying in the central-rapidity region between jets.
 - photons/jets angular correlations
- A peak in the diphoton invariant mass distribution

Backgrounds

- Non-resonant processes
 - γγ pairs produced in association with at least two jets
 - direct single γ events with at least three jets (with one jet faking a photon)
 - multi-jet events where two jets are misidentified as photons

- Resonant backgrounds
 - Higgs bosons production via gluon fusion and in association with at least two jets

Variable	Description				
$m_{ m jj}$	the invariant mass of the two leading jets				
$\Delta \eta_{jj}$	pseudorapidity separation between the leading				
	two jets				
$\eta_{ m jet1}$	pseudorapidity of the leading jet				
$\eta_{ m jet2}$	pseudorapidity of the subleading jet				
p_{Tt}	diphoton $p_{\rm T}$ projected perpendicular to the				
	diphoton thrust axis				
$\Delta \phi_{\gamma\gamma,jj}$	azimuthal angle difference between the dipho-				
	ton and dijet systems				
Δy_{jj}	rapidity separation between the leading two				
	jets				
$p_{\mathrm{T}\gamma\gamma\mathrm{jj}}$	$p_{\rm T}$ of the $\gamma\gamma jj$ system				
$\Delta p_{\mathrm{T}\gamma\gamma}$	$p_{\rm T}$ difference between the the two photons				
η^*	the diphoton system pseudorapidity in the				
	frame of the tagging jet pseudorapidity, define				
	as $\eta^* = \eta_{\gamma\gamma} - \frac{\eta_{j1} + \eta_{j2}}{2}$				
$\min(\Delta \mathbf{R}_{j\gamma})$	minimum ΔR between either lead-				
	ing/subleading jet and leading/subleading				
	photon				

Strategies in VBF Analysis

- To increase the significance of VBF signal events
 - Strategy 1: sequential cuts on discriminating variables
 - easy understanding of different steps of the VBF separation
 - not able to capture the details of the correlations between the different variables
 - do not analyze the full-shape of variables
 - complex in optimization when dealing with many variables
 - Strategy 2: Multivariate Analysis (MVA)
 - use the full event topology
 - exploits the correlations of jets and photons kinematic quantities
 - "black-box": less transparent how the variables are combined

VBF in Higgs->yy Analysis

In previous results of December 2012, the cut-based analysis is used: • m_{jj} >400GeV, $\Delta \eta_{jj}$ >2.8, $\Delta \Phi_{\gamma\gamma,jj}$ >2.6

Presently focus on MVA VBF analysis since March 2013: •Moriond Note: ATLAS-CONF-2013-012, Paper: arXiv:1307.1427

Samples and Event Selection

Data and MC Samples

Data samples

- 2012 ATLAS data collected at a center-of-mass $\sqrt{s} = 8 \text{ TeV}$
 - diphoton trigger with 35 GeV and 25 GeV on leading and subleading photons
 - total integral luminosity: 20.7 ± 0.7 fb⁻¹

• MC Samples

- full simulated POWEHEG MC for gluon fusion and VBF signal
- other signal processes are produced with PYTHIA
- irreducible γγ backgrounds are produced with Sherpa MC

• Control regions from data

- for the modeling of reducible backgrounds
 - one or two photons fail the isolation criteria (RevISO)

Event Selection

Inclusive event selection

- leading photon $p_T > 40$ GeV, subleading photon $p_T > 30$ GeV
- require photon track and calorimetric isolation
- invariant mass of two photons: 100GeV<m_{γγ}<160GeV
 see ATLAS-CONF-2013-012 for more detailed selections

Two jet event selection

- fail the VH category selection
 - where requiring the presence of a lepton or missing energy or a di-jet system with invariant mass consistent with gauge boson
- at least two jets in the event
 - $p_T > 25 \text{GeV}$ for $|\eta| < 2.4$, $p_T > 30 \text{GeV}$ for $2.4 < |\eta| < 4.5$

• Pre-selection for MVA analysis

- Δη_{ij}>2, |η*|<5
 not use ΔΦ_{γγ,jj} shape information for events with ΔΦ_{γγ,jj}>2.94
 avoid divergences in the predicted gluon fusion cross section

 - in MVA training, set $\Delta \Phi_{yy,ij} = 2.94$ for such events

MVA Training and Validation

MVA Method and Samples

• MVA Method: Boosted Decision Trees

MVA Training and Test Samples

- Signal: VBF MC events \odot
 - Wegithed to event yields of 20.7fb-1 \bigcirc
- Background: Sherpa for γγ and RevISO for rj+jj
 - weighted according to the background composition measured in data ۲
- Separated into two parts with event entry

MVA Variables and Training

• 8 Variables are used in BDT training:

- $p_{\text{Tt}}, m_{jj}, \Delta \eta_{jj}, \Delta \Phi_{\gamma\gamma, jj}, \eta_{jet1}, \eta_{jet2}, \eta^*, \Delta R(\gamma\gamma jj)_{\min}$
 - little to no correlation to $m_{\gamma\gamma}$
 - high signal/background separating power
 - low susceptibility to systematic uncertainties

MVA training options are optimized:

- maximum integral of the background rejection v.s signal efficiency curve (ROC curve)
- overtraining K-S test to be greater than 0.1

Backgrounds BDT Response Validation

• The response of the VBF BDT to the data excluding the signal region $(m_{YY} \in [120-130] \text{ GeV})$ and to the background model used in training

BDT Validation

 Validate that BDT gives reliable and reproducible answer that does not depend on the specific details of the data to MC difference

BDT response for $Z \rightarrow ee+jet$ events in data and SHERPA MC and their ratio. Events are required to have $84 < m_{ee} < 96$ GeV and at least two jets. Electrons are taken as photons for the BDT input variables.

Categorization and Results

VBF Category Optimization

- VBF categories are selected by cutting on event BDT response
 - optimized by maximizing the VBF signal significance against ggF and non-resonant backgrounds

$$\sigma_{VBF} = \sqrt{2 \times \left(\left(N_{VBF} + N_{ggH} + N_{Background} \right) \times \ln \left(1 + \frac{N_{VBF}}{N_{ggH} + N_{Background}} \right) - N_{VBF} \right)}$$

- use sherpa+RevISO backgrounds in optimization
- two categories are selected: loose/tight VBF category

Event Yields

Number of events in the data (N_D) and expected number of SM Higgs signal events (N_S) for $m_H = 126.5$ GeV from the $H \rightarrow \gamma \gamma$ analysis, for each category in the mass range 100-160 GeV at $\sqrt{s} = 8$ TeV. The fractions of expected signal events from the $gg \rightarrow H$, VBF, WH, ZH, ttH processes are detailed.

\sqrt{s}	8 TeV						
Category	N_D	N_S	$gg \to H [\%]$	VBF [%]	WH [%]	ZH [%]	ttH [%]
Unconv. central, low p_{Tt}	10900	51.8	93.7	4.0	1.4	0.8	0.2
Unconv. central, high p_{Tt}	553	7.9	79.3	12.6	4.1	2.5	1.4
Unconv. rest, low p_{Tt}	41236	107.9	93.2	4.0	1.6	1.0	0.1
Unconv. rest, high p_{Tt}	2558	16.0	78.1	13.3	4.7	2.8	1.1
Conv. central, low p_{Tt}	7109	33.1	93.6	4.0	1.3	0.9	0.2
Conv. central, high p_{Tt}	363	5.1	78.9	12.6	4.3	2.7	1.5
Conv. rest, low p_{Tt}	38156	97.8	93.2	4.1	1.6	1.0	0.1
Conv. rest, high p_{Tt}	2360	14.4	77.7	13.0	5.2	3.0	1.1
Conv. transition	14864	40.1	90.7	5.5	2.2	1.3	0.2
Loose high-mass two-jet	276	5.3	45.0	54.1	0.5	0.3	0.1
Tight high-mass two-jet	136	8.1	23.8	76.0	0.1	0.1	0.0
Low-mass two-jet	210	3.3	48.1	3.0	29.7	17.2	1.9
$E_{\rm T}^{\rm miss}$ significance	49	1.3	4.1	0.5	35.7	47.6	12.1
One-lepton	123	2.9	2.2	0.6	63.2	15.4	18.6
All categories (inclusive)	118893	395.0	88.0	7.3	2.7	1.5	0.5

Background Fit in Two VBF Categories

- Background-only fits to the diphoton invariant mass spectra for categories.
- The bottom inset displays the residual of the data with respect to the background fit.
- The Higgs boson expectation for a mass hypothesis of 126.8 GeV corresponding to the SM cross section is also shown.

Systematics

- The uncertainties associated with the MC prediction of the SM Higgs yields in the two categories
 - Detector modelling systematics
 - jet energy scale and resolution
 - jet vertex fraction selection
 - Theoretical systematics
 - higher order perturbative correction for gg->H
 - modelling of η^*
 - modelling of $\Delta \Phi_{vv,ii}$
 - underlying event uncertainty
- The uncertainties related to the choice of the functional form used to model
 - the m_{vv} background spectra
 - Spurious signal studies

VBF Signal Strength Measurement in H-> $\gamma\gamma$

- Signal strength $\mu_{VBF} = N_{obs}(VBF)/N_{exp}(VBF)$
- Moriond MVA VBF analysis:

 $\mu_{\text{VBF}} \times B/B_{\text{SM}} = 1.7^{+0.8}_{-0.8}(\text{stat})^{+0.5}_{-0.4}(\text{syst})$

Cross check of refined cut-based analysis shows consistency.

Compare to December results, improvements on expected uncertainty are:

$\mu_{ m VBF}$	$\mu_{ m VH}$		
32%	27%		

Note that only 13 fb⁻¹ 2012 data is used in December results

Combined Coupling Measurement

(arXiv:1307.1427)

Measurements of the $\mu_{\text{VBF}}/\mu_{ggF+ttH}$ ratios for diboson final states and their combination

Likelihood curve for the ratio $\mu_{\text{VBF}}/\mu_{\text{ggF+ttH}}$ for the combination

- The result provides evidence at the 3.3σ level for VBF production
 - main sensitivity comes from H->γγ channel

24

Summary

Summary

- The VBF analysis in Higgs-> $\gamma\gamma$ channel is presented
- A multivariate BDT approach is implemented to enhance VBF signal significance
 - used 8 variables in Moriond MVA VBF analysis
 - two VBF categories are selected based on event MVA response
- An improvement of 32% on expected μ_{VBF} is reached comparing to previous public results
- Combination result gives 3.3σ evidence for VBF production
- Future possible improvements:
 - update with larger statistics of training samples
 - improve the variable modeling in background training samples by reweighting
 - explore more potential variables in VBF MVA analysis
- Spin-CP analysis in VBF is another interesting direction especially with larger statistics in future
 - VBF is rich of discriminating variables for spin analysis
 - VBF is an important component in *CP*-mixing studies.

Back Up

backgrounds

• Box gg $\rightarrow \gamma\gamma (\alpha_s^2 \alpha_{QED}^2)$

• γ +jet Partons \rightarrow hadrons (« jets »)

q

q

• jet+jet

58 % jet gluon

20/00

Results from refined cut-based analysis

The observed local p_0^{VBF} value for VBF production as a function of m_H for the combination of $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV data (solid line) and the corresponding expected local p_0^{VBF} values for the SM Higgs boson signal plus background hypothesis (dashed line). In parallel to the baseline MVA analysis, the cut based selection was re-optimised: two categories are defined, with more or less stringent cuts. The "tight high-mass two-jets" category is defined by $\Delta \eta_{jj} > 2.4$, $m_{jj} >$ 520 GeV, $\Delta \phi_{\gamma\gamma;jj} > 2.6$, $\eta^* < 2.4$ and $\Delta R_{\min}^{\gamma j} > 2$. Events failing those cuts but passing the ones used in Ref. [6] enter into the "loose high-mass two-jets" category. Both the baseline MVA analysis and the reoptimised cut based analysis are shown.