

Higgs boson measurements in ZZ to 4 leptons channel with CMS

中國科學院為能物明納完所 Institute of High Energy Physics Chinese Academy of Sciences

On behalf of **CMS collaboration**

Internation Symposium on Higgs Physics, Beijing 12-16 August 2013

In next 15 minutes ...

- Go trough the HZZ4I, a.k.a. "Golden channel"
- See several details of the analysis
- Measure the Higgs mass ...
- ... and its Standard-Modelicity

Results briefly presented by Marco Pieri on Tuesday

All based Moriond analysis CMS PAS HIG-13-002

Excellent lepton reconstruction, ID and energy-momentum measurement

a.u.

0.09

0.08

0.07

0.01

50%

Setting the scene

Search for the narrow peak in 4l mass spectrum on top of a small flat background - excellent energy resolution channel

- Small number of events expected large initial background
- - Requires max. signal efficiency (ϵ^4) and background rejection

20

Setting the scene

Plot is shown for \sim 1/4 of 2012 CMS integrated luminosity

Analysis strategy

- Rely critically on excellent measurements of leptons down to very low pT
- Reducible background (Z+jets, tt)
 - Reduce using isolation and impact parameter requirements
 - Estimate from data in carefully selected control regions
- Irreducible background from simulation
- Use jet multiplicity categorization to enhance production mode sensitivity
- Profit from the decay kinematics with kinematic discriminant
- Perform statistical analysis using multi-dim PDFs
 - P-value, mass measurement, spin-parity

Building blocks

Muons

- pT > 5 GeV, |η| < 2.4
- Electrons
 - pT > 7 GeV, |η| < 2.5

Muons

- Using particle flow muon ID
 - Exploiting full detector information for high efficiency with maximum fake rejection
- Particle flow isolation powerfull against red. background
 - Using avarage energy density PU corrections
- Impact parameter significance(SIP)

Electrons

Inclusive selection – 4l candidates

Spectrum of m₄₁ – full mass range

Spectrum of m₄₁ – low mass range

A double Crystall ball ideogram drawn for each event including the event error.

Anatomy of the excess

Jet categories – couplings

• To gain sensitivity to VVH and ffH couplings (μ_V and μ_F) we split events into two mutually exclusive categories:

• Adding another dimension to the analysis to separate the production mechanisms

• Builded using Matrix element methods $KD = \frac{P_{sig}}{P_{sig} + P_{bkg}} = \left[1 + \frac{P_{bkg}(m_1, m_2, \vec{\Omega} \mid m_{4\ell})}{P_{sig}(m_1, m_2, \vec{\Omega} \mid m_{4\ell})}\right]$

H(126) 2D PDF

ZZ 2D PDF

m₄₁ (GeV)

Kinematic discriminant K

۲_{z'}

Z

р

m₄₁ (GeV)

International Symposium on Higgs Physics, Beijing 2013

Significance of the excess

CMS

- Build a factorized 3D model:
 - Category I: $P(m_{4}, K_{D}, V_{D}) = P(V_{D}|m_{4}) \times P(K_{D}|m_{4}) \times P(m_{4})$
 - Category II: $P(m_{4}, K_{D}, p_{T}/m_{4}) = P(p_{T}/m_{4}|m_{4}) \times P(K_{D}|m_{4}) \times P(m_{4})$

Signal strength σ/σ_{SM}

• Results around the best fit mass m_{μ} = 125.8 GeV

Event-by-event errors on 41 mass

- Added as another dimension to 3D fit when measuring mass
- Per lepton uncertainties:
 - Electron: weights from comb. momentum and the track fit for the angles
 - Muons: full covariance matrix from the track fit
- Scaled in pT/eta bins to match Z (J/ ψ) measured widths
- Propagated to the δm_{μ} using full covariance matrix

Mass measurement

Spin-parity measurements

CMS

Spin-parity measurements

_								
I	J^p	production	comment	expect (µ=1)	obs. 0+	obs. J^p	CLs	
I	0-	$gg \rightarrow X$	pseudoscalar	2.6 σ (2.8σ)	0.5σ	3.3σ	0.16%	
I	0_h^+	$gg \rightarrow X$	higher dim operators	1.7σ (1.8σ)	0.0σ	1.7σ	8.1%	
I	2^{+}_{mgg}	$gg \rightarrow X$	minimal couplings	1.8σ (1.9σ)	0.8σ	2.7σ	1.5%	
I	$2^+_{mq\bar{q}}$	$q\bar{q} ightarrow X$	minimal couplings	1.7σ (1.9σ)	τ (1.9 σ) 1.8 σ		<0.1%	
I	1- ''	$q\bar{q} \rightarrow X$	exotic vector	2.8σ (3.1 σ)	1.4σ	$>4.0\sigma$	<0.1%	
	1+	$q\bar{q} \to X$	exotic pseudovector	2.3σ (2.6 σ)	1.7σ	$>4.0\sigma$	<0.1%	

All but 0[•]_h hypothesis excluded at 95% CL

NB:Signal strength free in fits

International Symposium on Higgs Physics, Beijing 2013

20

JP fit - CP violation test

Summary

All the measurements in H→ZZ→4l indicate the high Standard-Modelicity of the observed boson

	ggH	qqH	WH	ZH	ttH	qqZZ	ggZZ		
gg partonic luminosity	7.5-10				0-10		10		
qq partonic luminosity		2.2-4.7	0-4.5	0-5		5			
QCD scale (ggH)	8.7-10								
QCD scale (qqH)		0-1.5							
QCD scale (VH)			0-0.75						
QCD scale (ttH)				0-8.3					
Uncertainty on BR(H)			2						
QCD scale for ZZ (NLO)						2.6-6.7			
QCD scale for gg							24-44		
Electron Scale	0.1-0.2								
Muon Scale	0.1								
Electron/Muon resolution	20%								
Electron Efficiency	2.5-5(4e) ,1.7-2 (2e2µ)								
Muon Efficiency	0.5-5(4µ), 0.2-2.2(2e2µ)								