

Search for bb decay of Higgs associated with a vector boson at ATLAS

Lei Zhang on behalf of ATLAS collaboration

International Symposium on Higgs Physics, IHEP, Beijing, 12-16, Aug. 2013

Introduction

- Higgs→bb is important for directly testing the Higgs mechanism in the quark sector.
- Due to the large multi-jet background at LHC, the inclusive search of H->bb is almost impossible.
- The Higgs associated production with W/Z boson is one of the most promising channels for H->bb search.
- Three distinct channels, i.g. 0 lepton, 1 lepton and 2 lepton, have been explored mainly aiming to Z->vv, W->lv and Z->ll.

Introduction

- Higgs→bb is important for directly testing the Higgs mechanism in the quark sector.
- Due to the large multi-jet background at LHC, the inclusive search of H->bb is almost impossible.
- The Higgs associated production with W/Z boson is one of the most promising channels for H->bb search.
- Three distinct channels, i.g. 0 lepton, 1 lepton and 2 lepton, have been explored mainly aiming to Z->vv, W->lv and Z->ll.

HCP2012: (ATLAS-CONF-2012-161)

Using combined 7TeV and partial 8TeV datasets, the observed (expected) limit is 1.8 (1.9) times the Standard Model prediction.

Introduction

- Higgs→bb is important for directly testing the Higgs mechanism in the quark sector.
- Due to the large multi-jet background at LHC, the inclusive search of H->bb is almost impossible.
- The Higgs associated production with W/Z boson is one of the most promising channels for H->bb search.
- Three distinct channels, i.g. 0 lepton, 1 lepton and 2 lepton, have been explored mainly aiming to Z->vv, W->lv and Z->ll.

HCP2012: (ATLAS-CONF-2012-161)

Using combined 7TeV and partial 8TeV datasets, the observed (expected) limit is 1.8 (1.9) times the Standard Model prediction.

In this talk, the latest ATLAS full run-I data result (ATLAS-CONF-2013-079) will be presented.

Event Selection

- Common selections :
 - At least two jets with $P_T^1>45$ GeV, P_T^2 (or P_T^3)>20GeV and $|\eta|<2.5$
 - $\Delta R(jet, jet)$ cut has been optimized as a function of P_T^V

Background composition:

post fit signal region (SR)

Control region(CR) following the same color convention.

Background composition: post fit signal region (SR)

2-tag region plots

1-lepton:

top and W+jets.

Some MJ at low P_T^W bin.

Background composition: post fit signal region (SR)

2-tag region plots

1-lepton:

top and W+jets.

Some **MJ** at low P_T^W bin.

2-lepton:

Z+jets

some top at low P_T^z regions₈

Background modeling (I)

Important corrections:

- tt sample (POWHEG+PYTHIA):
 - Top p_T correction applied at the level of generated top quarks.
- V+jets sample (LO SHERPA):
 - $\Delta \phi$ (jet, jet) correction applied due to NLO effect (arXiv: 1207.5030v1).
 - The P_T^V modeling greatly improved after correction.

Background modeling (II)

Multijet: (Data driven method)

- Source: 0 lepton(mis-measured jets); 1 / 2 lepton (the jets faking leptons)
- The amount: 0 lepton (1%); 1 lepton (15% <1%); 2-lepton (negligible).

Non-multijet backgrounds: (M_{bb} shape from MC)

- Fixed to MC: Diboson, single-top, V+light-jets
- Float in fit: V+cl, V+bl, V+bb/cc, and tt

		2jets, 1-tags	3jets, 1-tags	2jets, 2-tags	3jets, 2-tags	Тор еµ
3 P _T ^V bins	0-lepton	CR	CR	SR	SR	-
5 P _T ^v bins	1-lepton	CR	CR	SR	SR	-
5 P _T ^v bins	2-lepton	CR	CR	SR	SR	CR

Inputs to Global fit

Control Region(CR) : Normalization

Signal Region (SR) : Shape

- Adjust the normalization by simultaneous fit
 - Normalization floated: V+cl, V+bl/bb/cc(HF) and $t\bar{t}$
 - Background scale factors have been correlated among regions.

- Adjust the normalization by simultaneous fit
 - Normalization floated: V+cl, V+bl/bb/cc(HF) and $t\bar{t}$
 - Background scale factors have been correlated among regions.

- Adjust the normalization by simultaneous fit
 - Normalization floated: V+cl, V+bl/bb/cc(HF) and $t\bar{t}$
 - Background scale factors have been correlated among regions.

- Adjust the normalization by simultaneous fit
 - Normalization floated: V+cl, V+bl/bb/cc(HF) and $t\bar{t}$
 - Background scale factors have been correlated among regions.

- Adjust the normalization by simultaneous fit
 - Normalization floated: V+cl, V+bl/bb/cc(HF) and $t\bar{t}$
 - Background scale factors have been correlated among regions.

- Experimental:
- JER/JES
- B-tagging
- Lepton ID
- E_{T}^{miss}
- Modeling:
- M_{bb} shape
- $P_{T}^{\ \ V}$ and Top pt
- Jet multiplicity

Global fit Model: Constrain Systematic Uncertainties

PT'

mьь

Fitted results: Diboson

- VZ(bb): a similar signature with 5 times larger cross section than VH(bb)
- Diboson fit: a validation of the Higgs analysis.
- The obs. (exp.) significance of VZ is 4.8 (5.1) σ.

 $\mu_{VZ} = \sigma_{meas}^{(VZ)} / \sigma_{SM}^{(VZ)} = 0.9 \pm 0.2.$

Fitted results:

μ_{Higgs} for each year and channel

For $m_H = 125 \text{ GeV}$:

- 7TeV:
 - 2 sigma deficit w.r.t. SM expectation.
- 8TeV:
 - Consistent with both S+B and B only hypothesis in 1σ.
- Combined fit result:

 $rac{\sigma_{VH o b ar{b}}}{\sigma_{
m SM}} = 0.2^{+0.7}_{-0.6}$

Results still dominated by statistical uncertainties.

Fitted results: Upper limit

- 1 sigma excess in 8TeV data at m_H=125GeV, as well as higher masses.
- Deficit in 7TeV data which makes the combined results a small excess at m_H=125 GeV.
- At m_H=125GeV, The observed (expected) upper limit at 95 C.L. is 1.4(1.3) times SM prediction.

Summary

- A search for H->bb has been performed via the Higgs associated production with a vector boson by using full ATLAS run-I data.
- Diboson(VZ) result is consistent with the SM expectation, with 4.8 σ significance.
- For $m_{H}=125 \text{ GeV}$, $VH \rightarrow b\overline{b}$ cross section combined fit results is:

$$\frac{\sigma_{VH \rightarrow b\bar{b}}}{\sigma_{\rm SM}} = 0.2^{+0.7}_{-0.6}$$

The observed (expected) 95% C.L. limit for m_H=125 GeV is 1.4 (1.3) times the SM expectation. Respect to the previous analysis, a 35% improvement in significance on top of luminosity due to the optimization and reduced systematics.

With run-I data, we are close to the critical region, and it will be very exciting to look the first bunch of data at 2015.

Thank you

Trigger and Evt. selection

Zero lepton: E _T ^{miss} trigger		er One le trigger	One lepton: 1-Lepton trigger + <u>E_T^{miss} trigger (for</u>			Two lepton: 1-Lepton trigg		
		muon	<u>muon channel)</u>			+ 2-	lepton trigge	
	Object	0-lepton		1-16	epton	2-le	pton	
	Leptons	0 loose leptons		1 tigh + 0 loos	t lepton se leptons	1 mediu + 1 loos	m lepton e lepton	
	Jets		$2 b\text{-tags}$ $p_{T}^{\text{jet}_{1}} > 45 \text{ GeV}$ $p_{T}^{\text{jet}_{2}} > 20 \text{ GeV}$ $+ < 1 \text{ extra jets}$					
	Missing E_T	$E_{\rm T}^{\rm miss} > 120$ $p_{\rm T}^{\rm miss} > 30$ $\Delta \phi(E_{\rm T}^{\rm miss}, p_{\rm T}^{\rm miss})$ $\min[\Delta \phi(E_{\rm T}^{\rm miss}, j_{\rm T})]$ $\Delta \phi(E_{\rm T}^{\rm miss}, j_{\rm T})$	GeV GeV $(s) < \pi/2$ et)] > 1.5 (s) > 2.8	$E_{\rm T}^{\rm miss} >$	• 25 Gev	$E_{\rm T}^{\rm miss} <$	60 GeV	
	Vector Boson -			$m_{\rm T}^W < 120 { m GeV}$		$83 < m_{\ell\ell}$	< 99 GeV	
		$p_{\rm T}^V$ [GeV]	0-90	90-120	120-160	160-200	>200	
	All Channels	$\Delta R(b, \bar{b})$	0.7-3.4	0.7-3.0	0.7-2.3	0.7-1.8	<1.4	
	1-lepton	$\frac{E_{\rm T}^{\rm miss} [{\rm GeV}]}{m_{\rm T}^W [{\rm GeV}]}$		40-120	>25	<12	>50	
						120		

Xsec*Br and acceptance

$m_H = 125 \text{ GeV} \text{ at } 7 \text{ TeV}$				
$(W/Z)(H \rightarrow h\overline{h})$	Cross section × BR [fb]	Acceptance [%]		
$(W/Z)(\Pi \rightarrow bb)$		0-lepton	1-lepton	2-lepton
$Z \to \ell \ell$	12.3	0.0	0.7	8.2
$W \to \ell \nu$	107.1	0.2	3.5	-
$Z \rightarrow \nu \nu$	36.4	2.2	-	-
$m_H = 125 \text{ GeV} \text{ at } 8 \text{ TeV}$				
$(\mathbf{W}/\mathbf{Z})(\mathbf{H} + 1)$	Cross section × BP [fb]	Acceptance [%]		
$(W/Z)(\Pi \rightarrow bb)$		0-lepton	1-lepton	2-lepton
$Z \to \ell \ell$	15.3	0.0	0.9	8.4
$W \to \ell \nu$	130.2	0.2	3.3	-
$Z \rightarrow \nu \nu$	45.5	2.5	-	-

250

250

p^v [GeV]6

p^v [GeV]

1-lepton: data-MC plots

2-lepton: data-MC plots

Background modeling (II): V+jets before $\Delta \phi$ (jet, jet) correction

- V+jets: modeled by Leading order(LO) generator.
- Mismodeling found in $\Delta \phi$ (jet, jet) and P_T^V distribution.
- Interprated as Next Leading Order(NLO) effect--arxiv: 1207.5030v1

Background modeling (II): V+jets after $\Delta \phi$ (jet, jet) correction

- After $\Delta \phi$ (jet, jet) correction:
 - The modeling of the P_T^W distribution greatly improved.
 - This correction has been applied in all channels and all regions.
- Z+jets : similar correction applied

The similar reweighting has been performed in Z+jets processes.

$\Delta \phi$ (jet, jet) mismodeling: NLO effect

Modeling Sys. summary

	т _{ьь}	Δφ	Ρτ ^ν	3-to-2-jet ratio	Normalization	
tt	-Herwig++/Pyt -ISR/FSR -Alpgen/MC@NLO/Powheg	-	-50% of corr. applied	-Herwig++/Pyt -ISR/FSR -Alpgen/MC@NLO/Powheg	-Freely floating	
W+jets	-Sherpa/Powheg/ MC@NLO	-50% of corr. applied	-Residual data systematic	MC	-Wcl/Wbb freely floating -Relative ratios to others: 30% (NLO/	
Z+jets	-Extrapolation from sidebands	-50% of corr. applied	^۱ -50% of corr applied	-	MC MC	Sherpa) -Zcl/Zbb freely floating -Relative ratios to others: 30% (NLO/
single top	-Herwig++/Pyt -ISR/FSR -Alpgen/MC@NLO/Powheg	-	-Herwig++/Pyt -ISR/FSR -Alpgen/MC@NLO/ Powbeg	MC	Sherpa) -Approx. NNLO uncertainties	
Diboson	-Pythia/Herwig	-	-LO/MCFM		-NLO calculation uncertainties	

- Trigger: neglable except the 0-lepton (120-160GeV) which is about 5%.
- JES: from 4% to 1% depending on the jet p_{T} .
- B-tag: 2-3% over most of the jet p_T range. Due to the sample dependence, a 2% and 5% extra uncertainties have been applied for b and c jet, respectively.
- Lumi : 2.8% for 2012, 1.8% for 2011.

Fitted BKG scale factor

Process	Scale factor
$t\overline{t}$	1.13 ± 0.05
Wb	0.89 ± 0.15
Wcl	1.05 ± 0.14
Zb	1.30 ± 0.07
Zcl	0.89 ± 0.48

ATLAS Higgs mu summary

Mbb resolution: Bukin fit

