

SUSY Higgs Searches in CMS

Roberval Walsh DESY for the CMS Collaboration

IHEP, Beijing, August 12-16, 2013

MSSM Higgs bosons

The MSSM features two Higgs doublets.

- Symmetry spontaneously broken twice
- Higgs sector: Five Higgs particles
 - Three neutral: $\phi = h$, H, A
 - Two charged: H[±]
 - Observed 126 GeV state often identified as the lightest Higgs (h)
- At tree level, two independent parameters:
 - m_A or $m_{H\pm}$ (mass of the CP-odd or of the charged boson)
 - tan β (ratio of v.e.v. of the two Higgs doublets)
- The mass of the CP-odd Higgs boson A is usually ~degenerate with one of the CP-even bosons

MSSM Higgs searches in CMS

Mode	Production	Channels	Luminosity		Decumente
			7 TeV	8 TeV	Documents
φ → ττ	gg→φ	4	10fb-1	12.1 fb ⁻¹	CMS PAS HIG-12-050
	bbφ	4	4.910		
φ → pp	bbφ	2	4.8 fb ⁻¹	—	Phys. Lett. B 722 (2013) 207
φ → μμ	gg→φ	1	10 fb-1	—	CMS PAS HIG-12-011
	bbφ	2	4.9 10		
$H^{\pm} \rightarrow \tau^{\pm} v$	t → H⁺b	4	4.9 fb ⁻¹	—	JHEP 07 (2012) 143 CMS PAS HIG-12-052

MSSM $\phi \rightarrow \tau \tau$ search

φ → ττ Search

 Good compromise between relatively large BR also at high masses and manageable backgrounds.

channels → included in CMS MSSM analysis

Production mechanisms & event categories

b-tag category

 \geq 1 b-tagged jet with p_T > 20 GeV \leq 1 jet with p_T < 30 GeV

no b-tag category NO b

NO b-tagged jet with $p_T > 20 \text{ GeV}$

$\phi \rightarrow \tau \tau$: Trigger and selection

• Triggers

- $\tau + \mu$, $\tau + e$: cross triggers τ + lepton;
- $e+\mu$: cross trigger $e + \mu$;
- µ+µ: single- or di-muon triggers
- Lepton selection
 - muons: isolated; p_T > 17 20 GeV; | η | < 2.1
 - electrons: isolated; $p_T > 20 24$ GeV; $|\eta| < 2.1$, or 2.3 in eµ channel
 - **taus**: isolated ; $p_T > 20$ GeV, $|\eta| < 2.3$

$ightarrow \tau \tau$: Reconstruction of τ -pair mass

- Invariant mass of ττ determined using a maximum likelihood fit.
- Estimated on event-by-event basis using fourmomenta of visible decay products, E_x^{miss} , E_y^{miss} , expected E_T^{miss} resolution

Roberval Walsh (DESY)

$\phi \rightarrow \tau \tau$: $m_{\tau\tau}$ distributions

- No excess observed.
- All distributions well described by background-only hypothesis.
- Same conclusions for b-tag category.

 \rightarrow TT : channels and categories sensitivity

- Sensitivity driven by semileptonic channels : $e{+}\tau$, $\mu{+}\tau$
- At low probed masses (< 200 GeV) sensitivity of no-btag category is higher.
- At higher masses sensitivity of the two categories are comparable.

$\phi \rightarrow \tau \tau$: MSSM limits

- Interpretation in the m_h^{max} scenario
- 95% CL exclusion limit in m_A-tanβ parameter space
 - $tan\beta < 5$ for $m_A \le 250$ GeV
 - Touching LEP constraint at low m_A.

MSSM $\phi \rightarrow$ bb search

MSSM $\phi \rightarrow$ bb searches

- MSSM neutral Higgs boson decaying to b quakrs and produced in association with b quark(s)
 - Enhancement wrt SM for tan $\beta > 1$
 - Large BR($\phi \rightarrow$ bb) even at large masses
- Only b-jets (and radiation) in the final state:
 - Challenging triggers at the LHC
- Two complementary approaches:
 - "All-hadronic" trigger: requiring up to 3 jets; \geq 2 b-tags (3 offline b-tags)
 - "Semileptonic" trigger: requiring 2 jets; ≥ 1 or 2 b-tags (3 offline b-tags);
 ≥ 1 muon from B-hadron decay
 - Almost independent samples (2–3% overlap)
- Data: 2.7 fb⁻¹ 4.8 fb⁻¹ at 7 TeV (2011)
- Background: heavy flavour multi-jet, derived from the data.
- Signal would appear as a peak in the di-jet mass distribution in triple-btag sample.

associated with b quarks

MSSM $\phi \rightarrow bb$: Signal templates

• Pythia in the 4-flavour scheme.

(all-hadronic)

- Invariant mass M₁₂ of the two leading jets.
- Variable X_{123} computed from the secondary vertex mass of the three leading jets, reflects the b-tag content of the event \rightarrow further signal / background separation.

MSSM $\phi \rightarrow bb$: Background model

(all-hadronic)

- Data-driven background modelling from double b-tag sample.
- Untagged jet is weighted according to the b-tag probability and the corresponding SV mass index probability of assumed flavour.
- Almost identical templates merged
 - bbX = bbC + bbQ
 - (Fb)b = Fbb+bFb, where F=B,C,Q
- X₁₂₃ gives further distinction between different flavour compositions.
- Five 2D templates: M₁₂ vs. X₁₂₃
- Normalisation from fit to data spectrum.

Roberval Walsh (DESY)

MSSM $\Phi \rightarrow bb$: Fit to data

(all-hadronic)

- Fit with background only templates with shapes obtained with double b-tag sample.
- About 73% contribution of real triple b jets.
- Excellent agreement with triple b-tag data

MSSM $\Phi \rightarrow bb$: Fit to data

(all-hadronic)

- Signal + background templates fits
 - Mass range 90 350 GeV
 - No significant excess observed at any mass

MSSM $\Phi \rightarrow bb$: Semileptonic analysis

Background normalisation and shape

MSSM $\Phi \rightarrow bb$: Limits

- All-hadronic and semileptonic analysis are almost orthogonal, 2-3% overlap (removed from all-hadronic dataset)
- Upper limits for $\sigma \times BR$ and tan β vs m_A (NNLO 5-flavour scheme cross sections Higgs XS WG)
- CMS convention: SUSY parameter $\mu = +200$ GeV

• For comparison with Tevatron, we also give results for $\mu = -200$ GeV (next slide)

MSSM $\phi \rightarrow bb$: Comparison with Tevatron

- CDF–D0 +2 σ excess at low mass not confirmed.
- First time done at the LHC!
- World's best sensitivity in the bb channel, with 2011 data alone.

Roberval Walsh (DESY)

ISHP 2013, Beijing, SUSY Higgs in CMS

MSSM $\phi \rightarrow \mu\mu$ search

$\phi \rightarrow \mu\mu$ Search

- Excellent mass resolution and manageable backgrounds, but low BR.
- Signature: two oppositely charged, isolated muons with $p_{T1(2)} > 30$ (20) GeV, $|\eta| < 2.1$; missing $E_T < 30$ GeV.
- Background estimated from data, dominated by Drell-Yan.

 $\phi \rightarrow \mu\mu$: Strategy

• Background:

- Largest contribution Drell-Yan.
- Linear combination of:
 - Breit-Wigner around the Z peak
 - Photon propagator contribution
- Multiplied by the exponential part of the PDF
- Signal:
 - Linear combination of three Breit-Wigner; detector resolution taken into account
- Unbinned likelihood fit of S + B hypothesis to data

 $\phi \rightarrow \mu\mu$: Results

95% CL upper limits on

- Combined result from 3 categories.
- No excess observed.

- Combined result from the three categories.
- 95% CL limits on tan β in the range 20 – 60.

Light MSSM H[±] search

Light H[±] search in top decays

- Basic process: top pair production
 - Assuming $M_{H\pm} < M_{top} m_{bottom}$: t \rightarrow bH[±] is allowed
- Dominant decay mode (tan $\beta > 5$) H⁺ $\rightarrow \tau^+ v_{\tau}$
 - Assume BR(H⁺ $\rightarrow \tau^+ v_\tau$) = 100%
- Channels:
 - e + τ ; e + μ ; τ + jets (2.0 2.3 fb⁻¹)
 - μ + τ (4.9 fb⁻¹)

Light H[±] search : Results

- Signal extraction:
 - τ + jets: fit transverse mass distribution of τ and E_T^{miss}
 - $\mu + \tau$: fit of $R = p^{lead.track}/E_{\tau}$
 - Other channels: event counting

• No excess observed

Light H[±] search : Limits

- Combined all channels
- 95% CL limits on BR(t \rightarrow bH[±]) on the 2.3 4.9 fb⁻¹ data sample
- 95% CL limits on tan β on the 2.3 fb⁻¹ data sample.

Summary

350

- Direct searches of MSSM Higgs in 4 major production/decay modes:
 - $\phi \rightarrow \tau\tau$: most stringent exclusion limits
 - $\phi \rightarrow$ bb: novel at the LHC, do not confirm Tevatron excess
 - $\phi \rightarrow \mu\mu$: best mass resolution; high sensitivity even with low BR
 - t \rightarrow H[±]: very stringent limits on branching fraction.
- No excess observed in MSSM Higgs searches.
- Further improvements in the analyses are possible.

back up

How CMS detects particles

H→TT : Embedding

- $Z \rightarrow \tau \tau$ is the main irreducible background.
- Estimated from embedded sample: μ in Z \rightarrow $\mu\mu$ events replaced by simulated τ .
- Normalised from $Z \rightarrow \mu \mu$ events.

 $\mathsf{MSSM}\,\Phi \twoheadrightarrow \mathsf{bb}$

Event selection	All-hadronic	Semi-leptonic
Triggers	≥ 2 or 3 Jets ≥ 2 b-tagged Jets	 ≥ 1 Muon ≥ 1 or 2 Jets ≥ 1 or 2 b-tagged Jets
Jets	≥ 3 Jets p_T^{1st} > 46 (60) GeV p_T^{2nd} > 38 (53) GeV p_T^{3rd} > 20 GeV 3 leading Jets b-tagged	≥ 3 Jets $p_T^{1st,2nd}$ > 30 GeV p_T^{3rd} > 20 GeV 3 leading Jets b-tagged
Muon	_	≥ 1 Muon, p⊤ > 15 GeV

- Background estimation semi-leptonic
- BTagMatrix
 - B-tag probability matrices (*bbj* sample).
 - B-tag eff from MC, flavour fractions from data
 - $F(x; bbb) = F(x; bbj) \otimes P_{b-tag}^{3^{rd}jet}(\ldots)$
- Hyperball (nearest neighbour)
 - Sample *bjj* (excl *bbj* sample)
 - Compute the fraction *f* of similar events passing full selection.
 - $F(x; bbb) = F(x; bjj) \otimes f$
- The two methods are combined
 - Use bin-per-bin weighted average of B-tag Matrix and Hyperball prediction to get background shape.

MSSM $\phi \rightarrow$ bb Systematics

• Systematic uncertainties on the signal yield

Source	All-hadronic	Semileptonic	Туре
Trigger efficiency	10%	3 - 5%	rate
Online b-tagging efficiency	32%	-	rate
Offline b-tagging efficiency	10–13%†	12%	shape/rate
b-tagging efficiency dependence on topology	6%	-	rate
Jet energy scale	1.4-6.8%	3.1%	shape/rate
Jet energy resolution	0.6–1.3%	1.9%	shape/rate
Muon momentum scale and resolution	-	1%	rate
Signal Monte Carlo statistics	1.1–2.6%		rate
Integrated luminosity	2.2%		rate
PDF and α_s uncertainties	3-6%*	2.7–4.7%*	rate
Factorization and renormalization QCD scale	6–28%*		rate
Underlying event and parton showering	$4\%^{\star}$		rate

MSSM $\phi \rightarrow$ bb Limits

Semileptonic

All-hadronic

$\phi \rightarrow bb$ Tevatron

Light H± search

Limits individual channels

MSSM & the H(126) state

- Is the observed H(126) state consistent with the MSSM?
- Exemplary study: P. Bechtle et al; Eur. Phys. J. C 73:2354 (2013)
 - Phenomenological MSSM with seven free parameters (pMSSM-7).
 - Fit various rates of cross section times BR measured at LHC and Tevatron, as well as low energy measurements under hypotheses: "light", h = H(126); "heavy", H = H(126)

- MSSM and SM fit well the data. MSSM "light" hypothesis fits better the data than the "heavy" hypothesis.
- Important to search at large Higgs masses at large tan β .

MSSM Benchmark Scenarios after the Discovery of a Higgs-like Particle

• M. Carena et al, arXiv:1302.7033

• mhmax scenario:

- compatibility with the new H(126) observed state achieved only in a relatively small region of the parameter space.
- nevertheless still useful
 - conservative lower bounds for tree level parameters of Higgs sector
 - widely used in the past

MSSM Benchmark Scenarios after the Discovery of a Higgs-like Particle

- M. Carena et al, arXiv:1302.7033
- m_h^{mod} scenarios:
 - proposal follow m_h^{max} design: maximise the lightest CP-even Higgs mass at large values of M_A for a given value of tanβ
 - reduce |X_t/M_{SUSY}| that gives rise to the largest positive contribution to M_h from the radiative corrections
 - two scenarios possible: different signs and values for Xt/Msusy
 - (+) sign: better agreement with (g-2) measurements
 - (–) sign: better agreement with BR(b \rightarrow sy) measurements

m_h^{mod}+

MSSM Benchmark Scenarios after the Discovery of a Higgs-like Particle

- M. Carena et al, arXiv:1302.7033
- light stop scenario
 - gives sizeable contribution to the gg \rightarrow h production rate
- light stau scenario
 - can enhance the Γ ($h \rightarrow \gamma \gamma$) significantly at high tan β
- τ-phobic Higgs scenario
 - produces sizeable variations of Γ (h \rightarrow bb) and Γ (h \rightarrow $\tau\tau$) wrt SM values

• low-M_H scenario

- identifies the observed H(126) state with the heavy CP-even MSSM Higgs boson with SM-like properties;
- low value of the mass of the CP-odd Higgs boson;
- mass of the light CP-even below LEP limits;
- useful benchmark for light charged Higgs bosons.