Higgs Boson Studies at the Tevatron

Weiming Yao (LBNL)

On behalf of the CDF and D0 Collaborations

ISHP2013, IHEP Beijing, August 12-16 2013

Outline

- Introduction
- Overview the Higgs search strategies at the Tevatron
- Tevatron final results with full dataset
- Studies of the Higgs coupling and spin measurements
- •Tevatron non-SM Higgs Searches
- Conclusion

- More Details:
- Tevatron Combination accepted by PRD arXiv:1303.6346
- •CDF combination accepted by PRD arXiv:1301.6668
- D0 combination accepted by PRD arXiv: 1303.0823

Introduction

•ATLAS & CMS discovered a new boson at 125 GeV/c2 last July

•The results consistent with the expectation of a Higgs boson. –Most sensitivity channels at LHC are $H\rightarrow ZZ$, $\gamma\gamma$, WW. –Evidence of $H\rightarrow bb$ from Tevatron

Since the discovery

•LHC focus on studying new boson coupling and spin properties.
•Tevatron complementary as exploiting primary on H→bb decay.

The Tevatron

- •Tevatron: p-pbar collision@1.96TeV, L_{peak}=4.3x10³² cm⁻²s⁻¹
- •Delivered ~12 fb⁻¹ data before shutdown on 9/30/2011.
- •The final results presented are based on the full dataset (~10 fb⁻¹)

Collider Run II Integrated Luminosity

A remarkable discovery machine

- •1995 Top quark
- •1998 Bc meson
- •2006 Bs oscillations
- •2006 Sigma-b baryon
- •2007 Cascade-b baryon
- •2008 Omega-b baryon
- •2009 Single top quark production
- •2011 Xi-b baryon
- •2012 World's best W and top mass measurements
- •2012 Evidence of the H→bb

CDF & D0 General-purpose Detectors

- •Provides excellent lepton id, tracking, vertexing, jets, and missing Et
- •Multi-level triggers to select interesting events with combination of signatures.
- •Tevatron experience has been a major contributor to the sussess of LHC.

Higgs Production

•Higgs predominately produced via ggF & VH production at Tevatron.

•Energy & initial state very different than LHC: unique for $H \rightarrow bb$ search.

Standard Model Higgs Decays

- •Decay modes change as a function of m_{μ} .
- •Divide into low, intermediate, and high mass regions.
- •Low mass: dominant decay (bb) is difficult due to QCD: —Tevatron:VH \rightarrow bb, H \rightarrow WW
 - -LHC: $H \rightarrow \gamma \gamma, ZZ, WW$.

- •For m_{H} =125 GeV/c², there are about 50 Higgs events produced per inverse femtobarn per experiment at the Tevatron.
- •With 10/fb per experiment, over 1000 total higgs events to find.

10

The Challenge

- The challenge is to separate the tiny Higgs signal from the huge background of SM processes with the same final states.
- Search strategy has evolved over years:
 - -Maximizing signal acceptances using efficient triggers, lepton ID, and b-tagging that improves S/B to ~1/100.
- -Using multivariate analysis (MVA) to exploit kinematic differences of S and B that improves S/B to ~1/10.
- The procedures are iterated until the best sensitivity is achieved.

Higgs Sensitivity at the Tevatron

•Higgs sensitivity, $R^{\text{med}}_{95} = \sigma x B / (\sigma x B)^{\text{SM}}$ at 95% CL, by channels.

Sensitivity Improvement

- •We constantly introduced and improved analysis techniques that boost sensitivity beyond expectation from increased luminosity.
- •Orange band corresponds to our conservative and aggressive sensitivity projection based on 2007 summer results.

13

Search for H→bb

•Search for $H \rightarrow bb$ resonance in association with W or Z in three main channels.

- •Most sensitivity channels is WH→lvbb: one lepton + MET+bb
- •Requiring b-tagging and use advanced multivariate analysis (MVA) to further suppress the background with gain of 25% in sensitivity.

High Mass Signatures

- •Search for $H \rightarrow WW$ that leads to many interesting final states.
- •Most sensitive channel is H→WW→lvlv: OS dilepton+met+0,1,2jets
- •Requiring MVA to separate signal from main backgrounds (WW, ttbar)

Validation of Search Strategies

- •Looking for known SM processes with same signatures and analysis tools. $-H\rightarrow$ bb search: look for Z \rightarrow bb in WZ/ZZ \rightarrow lvbb, llbb, and vvbb with measured $\sigma_{_{WW+WZ}}$ =(3.0+-0.9) pb, in good agreement with SM prediction of 4.4±0.3 pb.
 - $-H\rightarrow W+W$ search: look for SM WW production in WW \rightarrow lvlv decay.

Combined Limits on SM Higgs Boson Production

- •In order to combine searches in many different production/decays, cross section limits are given with respect to nominal SM predictions.
- •This requires to incorporate latest theoretical predictions and careful treatment of systematic, correlations cross channels & experiments.
 - -Luminosity (6%), trigger and lepton ID(2-5%)
 - -B-tagging (3.9-7.8%) and mistag (10-20%)
 - -Jet energy scale (JES) shape and rate
 - -Theoretical uncertainties (PDF, Q2, ISR/FSR)
 - -W/Z + jets modeling
- •Interpreting data using Bayesian and Cls statistical tools to set limits or measure the production cross section.
- •Most systematic parameters are constrained by the data in the background dominated region.

List of Input Channels

DØ	Luminosity (fb ⁻¹)	M_H (GeV)	Reference
$WH \rightarrow \ell \nu bb$	9.7	90-150	Phys. Rev. Lett. 109, 121804 (2012); Sub to PRD arXiv:1301.6122
$ZH \rightarrow \ell\ell b\bar{b}$	9.7	90-150	Phys. Rev. Lett. 109, 121803 (2012)
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.5	100-150	Phys. Lett. B 716, 285 (2012)
$H \to W^+ W^- \to \ell^+ \nu \ell^- \bar{\nu}$	9.7	100-200	Acc to PRD arXiv:1301.1243
$H + X \to WW \to \mu^{\pm} \tau_h^{\mp} + \leq 1$ jet	7.3	155-200	Phys. Lett. B 714, 237 (2012)
$H \rightarrow W^+W^- \rightarrow \ell \nu q' \bar{q}$	9.7	100-200	Sub to PRD arXiv:1301.6122
$VH \rightarrow ee\mu/\mu\mu e+X$	9.7	100-200	Sub to PRD arXiv:1302.5723
$VH \rightarrow e^{\pm}\mu^{\pm} + X$	9.7	100-200	Sub to PRD arXiv:1302.5723
$VH \rightarrow \ell \nu q' \bar{q} q' \bar{q}$	9.7	100-200	Sub to PRD arXiv:1301.6122
$VH \rightarrow \tau_h \tau_h \mu + X$	8.6	100-150	Sub to PRD arXiv:1302.5723
$H + X \rightarrow \ell \tau_h j j$	9.7	105-150	Acc. by PRD arXiv:1211.6993
$H \rightarrow \gamma \gamma$	9.7	100-150	Submitted to PRD, arXiv:1301.5358
CDF	1915.11	10.0	COMPANY AND A STREET THE REPORT
$WH \rightarrow \ell \nu bb$	9.45	90-150	Phys. Rev. Lett. 109, 111804 (2012)
$ZH \rightarrow \ell\ell b\bar{b}$	9.45	90-150	Phys. Rev. Lett. 109, 111803 (2012)
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.45	90-150	Phys. Rev. Lett. 109, 111805 (2012); Acc. by PRD arXiv: 1301.4440
$H \to W^+ W^- \to \ell^+ \nu \ell^- \bar{\nu}$	9.7	110-200	FERMILAB-PUB-13-029-E, For submission to PRD
$H \to WW \to e\tau_h \mu \tau_h$	9.7	130-200	FERMILAB-PUB-13-029-E, For submission to PRD
$VH \rightarrow ee\mu/\mu\mu e+X$	9.7	110-200	FERMILAB-PUB-13-029-E, For submission to PRD
$H \rightarrow ZZ \rightarrow llll$	9.7	120-200	Phys. Rev. D 86 (2012) 072012
$H \rightarrow \tau \tau$	6.0	100-150	Phys. Rev. Lett. 108, 181804 (2012)
$VH \rightarrow jjb\bar{b}$	9.45	100-150	JHEP 1302 (2013) 004
$H \rightarrow \gamma \gamma$	10.0	100-150	Phys. Lett. B 717, 173 (2012)
$t\bar{t}H \rightarrow WWb\bar{b}b\bar{b}$	9.45	100-150	Phys. Rev. Lett. 109 (2012) 181802

18

Visualizing Data at M_{H} =125 GeV

Display cumulative discriminant from >100 channels, ordered by S/B.
Expect to find an excess in high score region if there is a signal.

What's new

- There are no major changes in the analyses since HCP2012.
 Both collaboration have done many checks and all results have been submitted to the publication.
- •The final Tevatron paper has been accepted by PRD recently.

Tevatron Combination

•Exclusion regions at 95% CL:

- -High mass: 149-182 with exp. of 140-184 GeV/c²
- -Low mass: 90-107 with exp. of 90-121 GeV/ c^2 .
- •Broad excess(> 2σ) observed between 115-140 GeV/c².

Tevatron Combination by Channel

Quantifying the Excess

•Calculating local p-value for background-only hypothesis. •The minimum p-value is found to be 3.1σ at m_H = 125GeV.

23

Compatible with SM Higgs at 125 GeV

- •Compared LLR by injecting a signal of 125 to backgrnd pesudo-experiments. The distribution is broad due to MVA not optimized for mass, but for S/B.
- •The shape including a 125 GeV Higgs is consistent with observed in the data.

Tevatron Cross Section Fits

- •The fitted signal strength is (1.4 ± 0.6) @125 GeV, consistent with SM prediction.
- •Separate fits to $H \rightarrow \gamma \gamma$, WW, $\tau \tau$, bb, consistent across channels.

Studies of Higgs Boson Properties

- •Studies of the coupling will help to understand what the new particle is and they can be parameterized through coupling factors respect to SM:
- $-K_{f}$ is for Hff fermion coupling,

–K_w, K_z, K_v for HWW, HZZ, HVV boson coupling ($\lambda_{wz} = K_w/K_z$).

•Most searches at the Tevatron are sensitive to the product of fermion and boson couplings , for example: $-\mu^{ggH}_{vv} = \sigma(gg \rightarrow H) * B(H \rightarrow VV) / (\sigma^*B)_{SM} = (0.95K_f^2 + 0.05K_fK_v) * K_v^2$.

$$-\mu_{bb}^{VH} = \sigma(VH) * B(H \rightarrow bb) / (\sigma * B)_{SM} = K_V^2 * K_f^2.$$

- •We follow the procedures of LHC Higgs cross section WG (arXiv:1209.0040).
- Assuming uniform prior for all K's.

1-D Higgs Boson Coupling

•Vary K_w , K_z and K_f independently and measure each coupling: •Results are consistent with SM predictions.

2

κ,

0.1

0

-2

-1

0

1

•Negative values of K_w and K_f are

preferred due to H→γγ excess

Constraining Higgs Boson Coupling

•Constraining custodial symmetry: $\lambda_{wz} = K_w/K_z$ by assuming $K_f = 1$ •Constraining K_f and K_v simultaneously by assuming $\lambda_{wz} = 1$. •Results are consistent with SM predictions.

New Higgs Spin Measurement from D0

- •SM predicts Higgs JP= 0^+ , but 0^- and 2^+ possible
- •LHC confirms 0⁺ with bosonic decay modes
- •Tevatron sensitive in VH final states where invariant mass of VH depends on J^P assignment, Ellis et al. JHEP 1211 134(2012).

Spin Strategy

- •Re-use published VH \rightarrow Vbb analyses with same selections •Use RS graviton as 2⁺ from madgraph, normalized to $(\sigma xB)_{SM}$.
- •Use dijet mass or SM MVA to improve s/b •Fit the final discriminate VH visible mass.

Spin Results

•Test LLR=-2log(L(2⁺)/L(0⁺)) assuming μ =1.

•2⁺ is excluded at 99.2% (exp. 99.95%)CL with μ =1 in the data.

31

Spin Results

- Consider both 2⁺ and 0⁺ signal in data
 Vary fraction of 2⁺ from 0 to 1
- •Excluding at 95% CL: f_{2+} >0.56 (exp. 0.65) for μ =1.0
- •Work is on going to combine with CDF data.

Fermiophobic Higgs Search

•Couplings to fermions highly suppressed •Only VH and VBF production, a large enhancement in $B(H\rightarrow\gamma\gamma)$. •Exclusion at 95% CL: obs. (100,116) with exp. (100,135) GeV

4th Generation Quark Search

A sequential 4th generation of fermions could enhance ggH coupling by a factor 3 while providing new source of CP violation to explain matter-antimatter asymmetry.
 4th gen. hypothesis seems excluded for observed m₁=125 GeV.

MSSM Higgs Search at the Tevatron

Conclusion

- •Latest Tevatron results are presented based on full Run II dataset.
- •Tevatron has achieved SM sensitivity over its expected accessible mass region(90-190 GeV).
- Observed a broad excess in $115 < M_{H} < 140$ GeV relative to bckgrnd-
- only hypothesis with a local p-value of 3.1σ consistent with LHC discovery.
- •Studies of Higgs boson coupling at Tevatron are consistent with SM prediction and provide complementary information to LHC.

BACKUP

Tevatron H→bb Results, PRL 109,071804(2012)

-We find no significant issues with the previous metbb analysis and stay firmly behind last summer published results.

130

135

140

145

 m_{μ} (GeV/c²)

-CL_b Observed

1σ

2σ

1-CL_b Expected

±1 s.d.

±2 s.d.