Scope for New Physics in the Higgs Data

Biswarup Mukhopadhyaya Regional Centre for Accelerator-based Particle Physics Harish-Chandra Research Institute Allahabad, India

August 12, 2013

• We seem to have found a scalar around 125 - 126 GeV

- We seem to have found a scalar around 125 -126 GeV
- It is perhaps 'a Higgs', but is it 'the Higgs'?

- We seem to have found a scalar around 125 -126 GeV
- It is perhaps 'a Higgs', but is it 'the Higgs'?
- If it is 'the Higgs', its mass has fixed the SM

- We seem to have found a scalar around 125 126 GeV
- It is perhaps 'a Higgs', but is it 'the Higgs'?
- If it is 'the Higgs', its mass has fixed the SM
- Crucial check: independent measurement of self-coupling

- We seem to have found a scalar around 125 126 GeV
- It is perhaps 'a Higgs', but is it 'the Higgs'?
- If it is 'the Higgs', its mass has fixed the SM
- Crucial check: independent measurement of self-coupling
- Till a reliable measurement of self-coupling is available, how to attempt an answer?

Essentially

- We seem to have found a scalar around 125 -126 GeV
- It is perhaps 'a Higgs', but is it 'the Higgs'?
- If it is 'the Higgs', its mass has fixed the SM
- Crucial check: independent measurement of self-coupling
- Till a reliable measurement of self-coupling is available, how to attempt an answer?
- Carefully analyse various other final states which reflect Higgs couplings

Data are becoming available on various Higgs channels

$$pp \longrightarrow HX \longrightarrow \gamma\gamma, ZZ^*, WW^*, \tau^+\tau^-, b\bar{b}$$

Also, various production channels:

$$gg \longrightarrow HX, q\bar{q} \longrightarrow q^{(\prime)}\bar{q}^{(\prime)}H, q\bar{q} \longrightarrow VH,$$

 $q\bar{q}(gg) \longrightarrow t\bar{t}H$

Some of these provide useful 'tags' $(ii, 2\ell, \ell + MET, ...)$

All result from Higgs coupling to particle pairs

Probing the various interactions ⇒ information on deviation from SM predictions

Different angles...

Careful examination of uncertainties in SM prediction:

.....

- I. Stewart, F. J. Tackmann (2011)
- A. Denner, S. Heinmeyer, I. Puljak, D. Rebuzi, P. Spira (2011)
- F. Richardson, D. Winn (2012)
- J. Baglio, A. Djouadi, R. M. Godbole (2012)
- A. Djouadi (2012)

Different angles...

• Examination of the data in view of specific BSM scenarios:

Different angles...

- Examination of the data in view of specific BSM scenarios:
- Model-independent analysis of data how much room is there for departure from SM?

A huge mass of studies

- A. Arbey, M. Battaglia, A. Djouadi (2011, 2012)
- D. Alves, P. Fox, N. Weiner (2012)
- N. Desai, BM, S. Niyogi (2012)
- B. Grzadkowski, J. Gunion (2012)
- J. de Sandes, R. Rosenfeld (2012)
- H. Kubota, M. Nojiri (2012)
- I. Low, J. Lykken, G. Shaughnessy (2012)
- J. Gunion, Y. Jiang, S. Kraml (2012)
- N. Desai, U. Maitra, BM(2013)

.....

- J. Ellis, T. You (2012,2013)
- P. Giradino et al (2012,2013)
- S. Banerjee, S. Mukhopadhyaya, BM (2012, 2013)
- A. Azatov, Contino, J. Galloway (2012)
- J. Espinosa, C. Grojean, M. Muhlleitner, M. Trott (2012)
- T. Plehn, M. Rauch (2012)
- T. Corbett, O. Eboli, J. Gonalez-Fraile, M. C. Gonzalez-Garcia (2012)

.......

To be covered in the present discussion.....

 An updated model-independent analysis: including invisible decay and a phase in the Htt effective amplitude S. Banerjee, S. Mukhopadhyaya, BM, JHEP 1210, 062 (2012)

To be covered in the present discussion.....

- An updated model-independent analysis: including invisible decay and a phase in the Htt effective amplitude S. Banerjee, S. Mukhopadhyaya, BM, JHEP 1210, 062 (2012)
- A study including the sensitivity of additional HVV operators to cuts: S. Banerjee, S. Mukhopadhyaya, BM, in preperation

To be covered in the present discussion.....

- An updated model-independent analysis: including invisible decay and a phase in the Htt effective amplitude S. Banerjee, S. Mukhopadhyaya, BM, JHEP 1210, 062 (2012)
- A study including the sensitivity of additional HVV operators to cuts: S. Banerjee, S. Mukhopadhyaya, BM, in preperation
- A cut-based analysis constraining radion-Higgs mixing in the Randall-Sundrum scenario N. Desai, U. Maitra, BM, arXiv:1307.3018

Case - 1 :

When the Higgs amplitudes are modified by multiplicative factors....

S. Banerjee, S. Mukhopadhyay, BM, (2012, updated 2013)

Parameterization of modified fermion couplings...

BSM effects

 \Rightarrow Higgs couplings to \Rightarrow $T_3 = +1/2$ and -1/2 fermions can have different deviations from SM values

Example: SUSY, 2HD models....

$$\begin{split} \mathcal{A}_{H\overline{t}t}^{\mathrm{eff}} &= \mathrm{e}^{\mathrm{i}\delta}\alpha_{\mathrm{u}}\mathcal{A}^{\mathrm{SM}} \\ \mathcal{A}_{H\overline{b}b}^{\mathrm{eff}} &= \alpha_{\mathrm{d}}\mathcal{A}^{\mathrm{SM}} \end{split}$$

Modification in SM Yukawa couplings,

+

A phase in the top quark effective amplitude (shows up in the interference between the fermion-and W-loops in $H \longrightarrow \gamma \gamma$)

Modified gauge boson pair couplings...

$$\mathcal{L}_{HWW} = \beta_W \frac{2m_W^2}{v} H W_{\mu}^+ W^{\mu-}$$
 $\mathcal{L}_{HZZ} = \beta_Z \frac{m_Z^2}{v} H Z_{\mu} Z^{\mu}$

 $\beta_W \neq \beta_Z$ can arise, for example, from gauge invariant effective operators of higher dimension *EW* precision constraints less severe, if there are more than one higher-dim. operators

Modified gluon-gluon and photon-photon couplings...

$$\mathcal{L}_{gg}^{eff} = -x_{g} f(\alpha_{u}) \frac{\alpha_{s}}{12\pi v} H G_{\mu\nu}^{a} G^{a\mu\nu}$$

$$\mathcal{L}_{\gamma\gamma}^{eff} = -x_{\gamma} g(\alpha_{u}, \alpha_{d}, \beta_{W}, \delta) \frac{\alpha_{em}}{8\pi v} H F_{\mu\nu} F^{\mu\nu}$$

f,g: Effects of modified fermion and gauge boson couplings

 x_g , x_γ : Effects of additional states participating in loops

Invisible width...

Possible effect of the Higgs serving as light dark matter portal

 ϵ = Invisible branching ratio

$$\Gamma_{\mathit{inv}} = rac{\epsilon}{1-\epsilon} \sum \Gamma_{\mathit{vis}}$$

All coupling modifications affect ϵ

Task: to find the best fit in

 $\alpha_{\it u},\alpha_{\it d},\beta_{\it W},\beta_{\it Z},x_{\it g},x_{\it \gamma},\delta,\Gamma_{\it inv}$ via $\chi^2\text{-minimization}$

Locate the 95% C.L. spreads of individual parameters about the minimum in χ^2

Input data used: Best fit values for $\hat{\mu} = \sigma_{obs}/\sigma_{SM}$ with the corresponding errors, for

$$\gamma\gamma, ZZ^* \to 4\ell, WW^* \to \ell\nu\ell\nu, \tau\tau, b\bar{b}$$
 from CMS and ATLAS (both 7 and 8 TeV) and

 WW^* , $b\bar{b}$, $\gamma\gamma$ from Tevatron

No additional operators ⇒ cut efficiencies unaffected (more on this later)

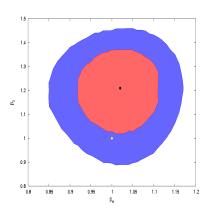
To minimize
$$\chi^2 = \sum_i \frac{(\mu_i - \hat{\mu_i})^2}{\sigma^2}$$

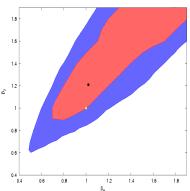
where $\mu_i = \sigma/\sigma_{SM}$ in the *i*th channel For combining input data,

$$\begin{split} \frac{1}{\bar{\sigma}^2} &= \sum_i \frac{1}{\sigma_i^2} \\ \frac{\bar{\hat{\mu}}}{\bar{\sigma}^2} &= \sum_i \frac{\hat{\mu}_i}{\sigma_i^2} \end{split}$$

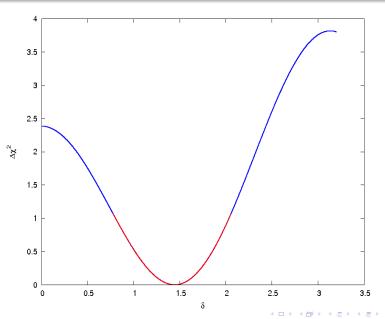
$$\mu_i = R_i^{prod} \times R_i^{decay} / R^{width}$$

R= modification due to BSM effects All R's and μ 's are determined by the free parameters

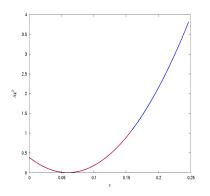


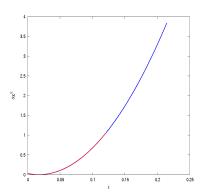

Best fit values...

Case	$\alpha_{\it u}$	$\alpha_{\sf d}$	$\beta_{\mathbf{w}}$	β_z	δ	Xg	x_{γ}	ϵ
Case A	0.93	1.15	1.02	1.21	0.0*	1.05	1.18	0.06
Case B	0.76	1.19	1.12	1.12	1.44	1.24	0.89	0.02


Best fit table for Case A ($\beta_w \neq \beta_z$ and $\delta = 0$) and Case B ($\beta_w = \beta_z$ and $\delta \neq 0$). * in Case A $\Rightarrow \delta$ not varied.

95% C.L. contours—case B (left: non-marginalised, right:marginalised)





Case B: δ at 2σ ...

Invisible BR at 2σ (left: Case A, right: Case B)...

Case - 2 :

Going beyond multiplicative modifications in HVV couplings....

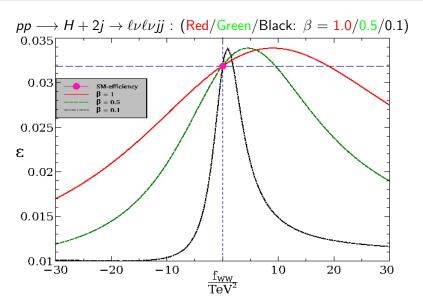
Where cuts can affect the new operators differently

S. Banerjee, S. Mukhopadhyay, BM (2013)

Gauge invariant higher-dim. HVV operators....

- $\frac{f_{\Phi,1}}{\Lambda^2}(D_\mu\phi)^\dagger\phi\phi^\dagger(D^\mu\phi)$
- $\frac{f_{BW}}{\Lambda^2} \phi^{\dagger} \hat{B}_{\mu\nu} \hat{W}^{\mu\nu} \phi$
- ullet $rac{f_{DW}}{\Lambda^2} \, Trig(ig[D_\mu, \hat{W}_{
 u
 ho} ig] ig[D^\mu, \hat{W}^{
 u
 ho} ig] ig)$
- $\frac{f_{DB}}{\Lambda^2} \frac{g^{\prime 2}}{2} (\partial_{\mu} B_{\nu\rho}) (\partial^{\mu} B^{\nu\rho})$
- $\frac{f_{\Phi,2}}{\Lambda^2} \frac{1}{2} \partial^{\mu} (\phi^{\dagger} \phi) \partial_{\mu} (\phi^{\dagger} \phi)$
- $\frac{f_{\Phi,3}}{\Lambda^2} \frac{1}{3} (\phi^{\dagger} \phi)^3$
- $\frac{f_{WWW}}{\Lambda^2} Tr[\hat{W}_{\mu\nu}\hat{W}^{\nu\rho}\hat{W}^{\mu}_{\rho}]$
- $\frac{f_{WW}}{\Lambda^2} \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$
- $\frac{f_{BB}}{\Lambda^2} \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi$
- $\frac{f_W}{\Lambda^2}(D_\mu\Phi)^\dagger \hat{W}^{\mu\nu}(D_\nu\Phi)$
- $\frac{f_B}{\Lambda^2}(D_\mu\Phi)^\dagger \hat{B}^{\mu\nu}(D_\nu\Phi)$

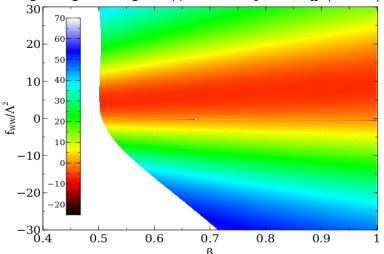
f_{WW}, f_{BB}: Relatively less constrained by EWPT/TGV

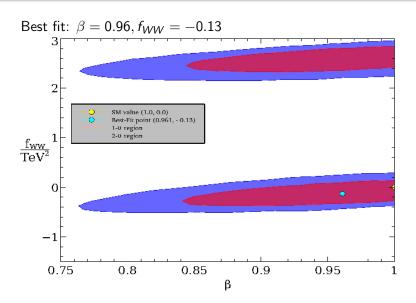

Studies of Higgs data with higher-dim operators......

```
....
E. Masso and V. Sanz (2013),
A. Falkowski, F. Riva, A. Urbano(2013),
T. Corbett et al. (2013),
B. Dumont, S. Fichet, G. v. Gersdorff
.....
```

Studies of Higgs data with higher-dim operators.....

- Some angular distributions etc. studied, but no clear demonstration of how cuts affect different operators
- The f's and $\beta_{W(Z)}$ mostly not varied simultaneously
- A detailed study attempted.... S. Banerjee, S. Mukhopadhyay, BM


Cut efficiency against f_{WW}/Λ^2 (TeV^{-2})



Colour-codes for $(Eff_{SM} - Eff)/Eff_{SM}$

Using 2σ signal strength in $pp \longrightarrow H + 2j \rightarrow \ell \nu \ell \nu jj$ (ATLAS):

Global fit: 2σ region

General conclusions...

• In general, the efficiencies can differ considerably on including additional operators, for channels such as WW*

General conclusions...

- In general, the efficiencies can differ considerably on including additional operators, for channels such as WW*
- If we confine ourselves to 2σ contours around the global best fits, the cut sensitivities for these operators rarely differ by more than 5%

General conclusions...

- In general, the efficiencies can differ considerably on including additional operators, for channels such as WW*
- If we confine ourselves to 2σ contours around the global best fits, the cut sensitivities for these operators rarely differ by more than 5%
- Some distributions can still make a difference....

• • • •

Case - 3 :

A specific scenario: an extra dimension with warped geometry

Constraining radion-Higgs mixing in a Randall-Sundrum model

N. Desai, U. Maitra, BM (2013)

Purpose....

• To see if the present data allows contribution from an additional scalar with the same decay channels.

Purpose....

- To see if the present data allows contribution from an additional scalar with the same decay channels.
- The RS scenario: Warped 5D geometry with an extra compact spacelike dimension:

$$ds^2=e^{-2kr_c\phi}\eta_{\mu\nu}dx^\mu dx^\nu-r_c^2d\phi^2$$
 [Orbifold fixed points with branes at $\phi=0$ and $\phi=\pi$]

Purpose....

- To see if the present data allows contribution from an additional scalar with the same decay channels.
- The RS scenario: Warped 5D geometry with an extra compact spacelike dimension:

$$ds^2=e^{-2kr_c\phi}\eta_{\mu\nu}dx^\mu dx^\nu-r_c^2d\phi^2$$
 [Orbifold fixed points with branes at $\phi=0$ and $\phi=\pi$]

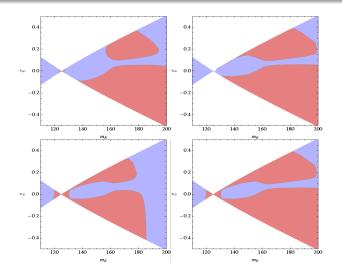
• Stabilization of r_c via the Goldberger-Wise mechanism

• A 'radion' field on the 'visible brane' at $\phi=\pi$: $\varphi(x)=\Lambda_{\varphi}e^{-k(T(x)-r_c)\pi}:\Lambda_{\varphi}=$ radion vev

- A 'radion' field on the 'visible brane' at $\phi = \pi$: $\varphi(x) = \Lambda_{\varphi} e^{-k(T(x)-r_c)\pi}$: $\Lambda_{\varphi} = radion \ vev$
- The radion can in general mix with the Higgs via $S = -\xi \int d^4x \sqrt{-g_{ind}} R(g_{ind}) H^{\dagger} H$

- A 'radion' field on the 'visible brane' at $\phi = \pi$: $\varphi(x) = \Lambda_{\varphi} e^{-k(T(x)-r_c)\pi}$: $\Lambda_{\varphi} = radion \ vev$
- The radion can in general mix with the Higgs via $S = -\xi \int d^4x \sqrt{-g_{ind}} R(g_{ind}) H^{\dagger} H$
- Result: ϕ h mixing, leading to two mass eigenstates H (Higgs-dominated) and R (radion-dominated)

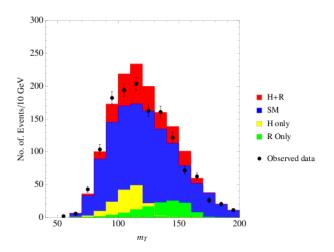
- A 'radion' field on the 'visible brane' at $\phi = \pi$: $\varphi(x) = \Lambda_{\varphi} e^{-k(T(x)-r_c)\pi}$: $\Lambda_{\varphi} = radion \ vev$
- The radion can in general mix with the Higgs via $S = -\xi \int d^4x \sqrt{-g_{ind}} R(g_{ind}) H^{\dagger} H$
- Result: ϕ h mixing, leading to two mass eigenstates H (Higgs-dominated) and R (radion-dominated)
- One of them (say, m_H) is at 125 GeV Free parameters: m_R, Λ_{ϕ}, ξ



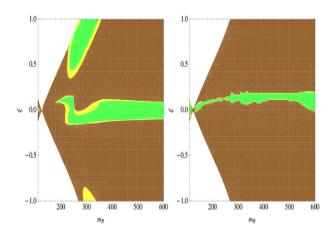
• Exclusions used for both 125 GeV an the varying mass, and, in each case, signals from both physical states taken into account, with the appropriate sensitivity to the cuts estimated

- Exclusions used for both 125 GeV an the varying mass, and, in each case, signals from both physical states taken into account, with the appropriate sensitivity to the cuts estimated
- Interference effects included when the states are close in mass

- Exclusions used for both 125 GeV an the varying mass, and, in each case, signals from both physical states taken into account, with the appropriate sensitivity to the cuts estimated
- Interference effects included when the states are close in mass
- ullet Global fits and 2σ regions obtained


Exclusion modification on inclusion of cuts and interference....

Red: excluded; Light blue: allowed; White: theoretically_disallowed


$2\ell + \mathsf{MET}\ M_T$ distributions....

 $\Lambda_\phi=3$ TeV An additional scalar ($M_R=164$ GeV, $\xi=.065$) not ruled out

Best fit regions....

Left: m_R exclusions not used; Right: m_R exclusions used Green: 68% C.L.; Yellow: 95% C.L.; $\Lambda_\phi = 3$ TeV

• Present data leave room for new physics, including invisible Higgs decays.

- Present data leave room for new physics, including invisible Higgs decays.
- New operators in general have different cut-sensitivities, but they differ moderately within 2σ fits

- Present data leave room for new physics, including invisible Higgs decays.
- New operators in general have different cut-sensitivities, but they differ moderately within 2σ fits
- The data allow contributions from another scalar, e.g. the radion in the RS model.