

Search for a SM-like Higgs boson decaying into $WW \rightarrow l\nu q \bar{q}'$ in CMS

Zijun Xu Peking University ISHP, Beijing Aug 15, 2013

- Introduction
 - $H \rightarrow WW \rightarrow Lep + MET + 2 jets^{[1]}$: 160-600 GeV
 - $H \rightarrow WW \rightarrow Lep + MET + Fat-Jet^{[2]}: 600-1000 \text{ GeV}$
- Event Selection, and Optimization
 - Ivjj: Kinematic Fit, MVA
 - Ivj : Jet Grooming, Jet Substructure
- Analysis Strategy
- Statistical interpretation on SM and BSM
- Summary

[1]: CMS PAS HIG-12-046(HCP 2012), PAS HIG-12-021, PAS HIG-12-003, PAS HIG-12-034, Eur. Phys. J. C 73 (2013) 2469
 [2]: CMS PAS HIG-13-008

•

 $H \rightarrow WW \rightarrow l \nu q \bar{q}'$ ^[1,2]

<2>: $q\bar{q}' \rightarrow$ a Fat-Jet

High branching ratio

and missing energy

Normal $W \rightarrow 2$ jets search loses statistics at

high mass regime (~>600GeV).

Full Higgs mass reconstruction

Only one lepton: huge W+jets

background, QCD contamination

Broad detector resolution from jets

Neutrino p_7 from m_W constraint

<1>: $q\bar{q}' \rightarrow 2$ jets

PROs:

CONs:

- 600GeV 160GeV <1> <2: 10_F BR [pb] ∖s = 8TeV WW $\rightarrow f^{\pm}va\overline{a}$ хb $WW \rightarrow l^{+}v[\bar{\chi}]$ 10-1 10-2 $ZZ \rightarrow I^{\dagger}V\overline{V}$ 10-3 $= e, \mu$ $V = V_e, V_u, V_\tau$ q = udscb→ T bb 10 200 300 1000 100 M_H [GeV]
- [1] Han, Tao et al. Phys.Rev.Lett. 82 (1999) 25-28 hep-ph/9807424 MADPH-98-1067 ;
 [2] B. A. et al. JHEP 1004 (2010) 083, doi:10.1007/JHEP04(2010)083, arXiv:0912.3543.

It's important to keep searching for the SM Higgs boson in the high mass regime:

- Higgs boson is one of the most essential particles in SM, need to check everything.
- It's possible that the 126GeV particle is not fully responsible for the electroweak symmetry breaking mechanism.
- Several popular BSM scenarios predict additional resonances at high mass.

This analysis is a benchmark for future di-boson final state searches and measurements in the high mass region

- Di-boson scattering measurement is meaningful: TGC, unitarization of the WW scattering ...
- Jet substructure techniques are studied, which will be more widely used with LHC CM energy increasing.

An isolated, high-pT lepton: pT > 30 (30) [30 (35)] GeV/c for electrons (muons) High E_T^{miss} from a neutrino: $E_T^{miss} > 30 (25) [50 (70)]$ GeV for electrons (muons) Leptonic W: mT(lepton+ E_T^{miss}) > 30 GeV *: Red number is for heavy higgs search

Two high pT jets with m_{jj} ~ 80
 GeV

pT > 30 GeV/c,

 $|\eta| < 2.4,$

 $\Delta R(\text{jet-lepton}) > 0.3$

#extra-jets = 0,1

- A highly boosted leptonic W: pTw > 200 GeV
- A High pT fat-jet: CA8 jet with pT > 200 GeV
- A back-to-back topology:

 $\Delta R_{l,j}$ > 1.57 = $\pi/2$, $\Delta \Phi_{\text{MET},j}$ > 2.0, $\Delta \Phi_{V,j}$ > 2.0

Top events veto: none b-tagged jet

lvjj Optimization: KF+MVA

Unit Area 0.32 0.3 **Kinematic Fit** on lepton, E_T^{miss} , 2 jets to efor Kl improve Higgs mass resolution 0.25 0.2 0.15 0.1 **MVA** to improve significance: a simple 0.05 likelihood discriminator: 170 180 190 200 210 220 230 240 250 a different likelihood is built for each Invariant Mass of Ivjj [GeV] different final state $\{\theta_1, \theta_2, \theta^*, \phi, \phi_1, (p_T)_{WW}, y_{WW}, \text{ lepton charge}\}$ q ×z' The lepton charge is a good variable since signals are W θ_1 charge-symmetric, while W+jets production is not. р Ζ **W**- Φ_1 $\sqrt{\nu}e$ e- θ_2 Φ

• W+jets is dominant background. Jet mass is correlated with jet pt and R, and easily be effected by soft QCD and pile-up.

[1] Butterworth, Jonathan M. et al. Phys.Rev.Lett. 100 (2008) 242001 arXiv:0802.2470
[2] David, Jesse, Lian-Tao Wang. JHEP 1002 (2010) 084 arXiv:0912.1342
[3] Ellis, Stephen D. et al. Phys.Rev. D80 (2009) 051501 arXiv:0903.5081

lvj Optimization: Jet substructure

Jet substructure:

- Variables: Mass drop, N-subjettiness, Qjets, Cores and planar flow, Subjets kinematics...
- **N-subjettiness** is the most sensitive variable, MVA is a small improvement in performance.

$$\tau_{N} = \frac{1}{d_{0}} \sum_{i} p_{T,i} \min\{(\Delta R_{1,i})^{\beta}, (\Delta R_{2,i})^{\beta}, ..., (\Delta R_{N,i})^{\beta}\}$$

$$d_{0} = \sum_{i} p_{T,i} (R_{0})^{\beta} \qquad \mathsf{R}_{0} = 0.8, \beta = 1$$

 τ_{N} tends to be zero as the jet becomes more consistent with N Subjets.

Wtagger: identify the W-jet from Huge QCD
 CA8 jet Pt cut before grooming +
 pruned jet mass cut + N-subjettiness T₂/T₁ cut
 (cut value depends on desired signal efficiency and background fake rate)

W-jet MC Correction

Selecting Top-enriched samples with a merged W

- inverting the Top veto: #bjets >0
- not requiring a back-to-back topology
- W-tagger efficiency SF:
 - Fit background subtracted W-jet peak for W-tagging efficiency SF;
 - Use signal window scale factor for top events.

Jet mass scale corrections:

- Gaus-like function for describing the peak;
- · Corrections on the mean and sigma value.

TTbar, passed wtagger

Main steps for signal and Bkg estimation:

- The m_{jj} or m_{fat-jet} distribution used to get the bkg normalization
- The m_{Ivii} or m_{Ivi} distribution used to extract the limit

Analysis of L+v+JJ

Analysis of L+v+Fat-Jet

12

Systematic Uncertainties List

normalization uncertainty	<= 2 %	
W+jets fit uncertainty	shape	
inclusive cross-section	13-15%	
scale uncertainties from jet binning	4-28%	
acceptance uncertainty due to pdfs	1-2%	
luminosity	4.4%	
jet energy scale and MET	1%	
lepton efficiencies	2%	
lepton trigger efficiencies	1%	
pile-up	<1%	
likelihood selection	10%	
interference	shape	

background systematics

signal systematics

				4		$\langle \rangle$
Syst. uncertainty	sig, ggH	sig, VBF	W+jets	tī	single <i>t</i>	WW/WZ
lumi	4.4%	4.4%	- \ _	4.4%	4.4%	4.4%
Higgs cross-section	13.7% †	0.7% †	<u> </u>	-	-	-
Higgs PDF/scale	9.9% †	3.6% †		-	-	-
Intf (sig/bkg)	10.0%	50.0%	> - \	\langle	-	-
Bkg cross-section	-	- \		<u>~</u>	30.0%	30.0%
W+jets norm.	-)) - \	8%	-	-	-
W-tagging	10.0%	10.0%	-	-	-	10.0%
tī norm.		$\langle \mathcal{I} \rangle$	-	6.0%	6.0%	-
Jet mass/energy scale	2%	2%	-	2%	2%	2%
W+jets shape	$\left(\begin{array}{c} f \\ f \end{array} \right)$		see Section. 6	-	-	-
b-tagging	2.5%	2.5%	-	-	2.5%	2.5%
Trigger (e & μ)	1%	1%	-	-	1%	1%
Selection Eff. (e & μ)	2%	2%	-	-	2%	2%

Table 1: Summary of systematic uncertainties related to normalization of expected signal and background yields. The symbol † denotes a mass-dependent uncertainty.

 $H \rightarrow WW \rightarrow Lep + MET + 2 jets:$

- observed exclusion 95% CL: 215–490 GeV and 525–600 GeV
- $H \rightarrow WW \rightarrow Lep + MET + Fat-Jet$
- No significant excess is observed: exclude at 1.1 (4.1) times the SM Higgs cross-section for a mass of 600 (1000) GeV hypothesis.

 $H \rightarrow WW \rightarrow Lep$ + MET + 2 jets:

- observed exclusion 95% CL: 215–490 GeV and 525–600 GeV
- $H \rightarrow WW \rightarrow Lep + MET + Fat-Jet$
- No significant excess is observed: exclude at 1.1 (4.1) times the SM Higgs cross-section for a mass of 600 (1000) GeV hypothesis.

Lvjj and lvj have same sensitivity at 600 point!

A simple model for BSM: A heavy Higgs mixes with the new boson at 126GeV:

The heavy Higgs, coupling scaled by C', completes unitarization with H(126), coupling scaled by C, such that $C'^2 + C^2 = 1$;

The heavy Higgs has a non-SM-like decay modes: BRnew

The cross-section and width are modified in the following way:

 $\mu' = C'^2 x (1 - BR_{new})$, $\Gamma' = (C'^2/(1-BR_{new})) x \Gamma_{SM}$

The typical upper limit on the $\sigma_{95\%} \times BR_{WW}$ ranges from ~60 to 400 fb when BR_{new} =0 and C'² ranges from 0.3 to1.0.

*more plots in additional materials

Summary

• $H \rightarrow WW \rightarrow Lep + MET + 2 jets:$

The SM higgs mass ranges 215-490 GeV and 525-600 GeV be excluded at 95% confidence level;

- $H \rightarrow WW \rightarrow Lep + MET + Fat-Jet$
 - No significant excess is observed in 600-1000GeV,
 - Upper limit on the $\sigma_{95\%} \times BR_{WW}$ be set for a simple BSM scenario;
- Jet grooming and substructure will be important for searches in high mass region in the future.

EXO-12-021(EXO->WW (800GeV-2.5TeV)) and JME-13-006(detailed W tagging study) just be approved by CMS this week, see talk by **John Paul Chou**

additional material

SM limits

 $H \rightarrow WW \rightarrow Lep + v + 2 \text{ or } 3 \text{ jets:}$

- observed exclusion 95% CL: 225–485 GeV and 550–600 GeV
- $H \rightarrow WW \rightarrow Lep + v + Fat-Jet$
- No significant excess is observed: exclude at 1.1 (4.1) times the SM Higgs cross-section for a mass of 600 (1000) GeV hypothesis.

Control Plots

Grooming algorithms can be used to remove soft QCD and pileup contributions to the jet

Data: Full 2012 8 TeV sample, 19.2-19.3 fb⁻¹(A,B,C,D) Trigger: SingleElectron PD SingleMu PD

Monte Carlo:

Signal SM ggH and qqH, Powheg [mH = 600-1000 GeV]

Background W+jets (GEN W pT > 100 GeV), Herwig W+jets (GEN W pT > 100 GeV), MG + Pythia TTbar, Powheg + Pythia WW/WZ/ZZ, Pythia single top, Powheg Z+jets, MG + Pythia

* Dataset names and run ranges given in additional material

Signal Reweighting: SM and BSM

- SM Higgs lineshape at high mass (mH > 400 GeV) requires reweighting from Powheg fixed width BW to complex pole scheme (CPS)
- Additional reweighting is needed for the interference effects between the gg→H→WW with SM continuum background gg→WW
- No LHC XS WG recommendation exists for the interference effects reweighting of the VBF signal, currently assign large uncertainty
- A simple benchmark model for BSM*:
 - A heavy Higgs mixes with the new boson at 125GeV: The heavy Higgs, coupling scaled by C', completes unitarization with H(125), coupling scaled by C, such that C'² + C² = 1;
 - 2) The heavy Higgs has a non-SM-like decay modes: BR_{new}

The cross-section and width are modified in the following way:

 $\mu' = C'^2 x (1 - BR_{new})$

 $\Gamma' = (C'^2/(1-BR_{new})) \times \Gamma_{SM}$

Two steps for signal reweighting in this BSM scenario:

- 1) Reweighting the CPS lineshape, before the inclusion of interference reweighting with $gg \rightarrow WW$, to a narrower width:
- 2) Applying the interference reweighting which has been modified to include effects from a narrower width resonance with modified couplings.

Nhan Tran: https://indico.cern.ch/getFile.py/access?contribId=1&resId=0&materialId=slides&confId=230465

BSM Lineshapes

BSM model lineshapes at GEN (top) and RECO (bottom)

Final m_{ww} spectra

Final Distributions: mH = 600, 800 GeV

BR_{new} vs. C²

Obs

28

BR_{new} vs. C'²

Obs

29