THE HIGGS FACTORIES & BEYOND --- VIEWS & NEWS FROM ABROAD Tao Han (韩涛) 清华大学 / Univ. of Pittsburgh Kickoff Meeting for the CEPC/SppC Program Sept. 13-14, 2013, Beijing

THE MILESTONE DISCOVERY:

The second second second second second

July 4th, 2012:

m_H ≈ 126 GeV ATLAS: 5.9σ ; CMS: 5.0σ

aic of the CMS and ATLAS detectors (as in 2007), part of the Large Hadron Collider at CERN. In 2012, research s used these detectors to fingerprint decay products from the long-sought Higgs boson and determine its mass espluit) testing a key prediction of the standard model of particle physics.

Photos: Maximilien Brice and Claudia Marcelloni/CERN

FABIOLA Gianotti

HALF CENTURY'S DISCOVERIES:

- Hadron spectroscopy: 1960 and on
- CP violation: 1964 (Nobel 1980)
- DIS for parton model: 1967 (Nobel 1990)
- Neutral currents: 1973
- charm quark: 1974 (Nobel 1976)
- tau lepton: 1975 (Nobel 1995)
- bottom quark: 1977
- gluon (jets): 1979
- W[±], Z⁰: 1983 (Nobel 1984)
- top quark: 1995
- CKM in B system: 1999 and on (Nobel 2008)
- Neutrino oscillations: 1998 and on The Higgs discovery: Most exciting since the charm in 1974!

WHY IS IT EXCITING? (1) The Higgs boson does NOT have to exist! **3** Nambu-Goldstone bosons were all we need The pole at $p^2 = 0$ is shifted to a non-zero value if: "Eaten" Goldstone Boson $\omega_1, \ \omega_2, \ \omega_3 \to W^+, \ W^-, \ Z^0 \quad \Pi(p^2) \underset{p^2 \to 0}{\simeq} \frac{-g^2 v^2}{p^2}. \qquad Z^0 \quad \text{MM--MV} \quad Z^0$ Then $p^2[1 + \Pi(p^2)] = p^2 - g^2v^2$, yielding a gauge boson mass of gv. Non-linear realization of the gauge symmetry: $U = \exp\{i\omega^i\}^i/v\}, \quad D_{\mu}U = \partial_{\mu}U + igW^i_{\mu}\frac{\tau^i}{2}U - ig'UB_{\mu}\frac{\tau^3}{2}$ $\mathcal{L} = \frac{v^2}{2} [D^{\mu} U^{\dagger} D_{\mu} U] \to \frac{v^2}{4} (\sum g^2 W_i^2 + g'^2 B^2)$ The theory is valid to a unitarity bound ~ 2 TeV The fact that a Higgs boson shows $up_{(1)}^{1}$ charge $y_{0} = \frac{1}{2}$ carries important information: Linearly realized by a doublet, unlike QCD.

(2) The Higgs boson is a new class It carries a *vacuum quantum* #: J^{CP} = 0⁺⁺ so that it couples to ANYTHING (quantum mechanically) Need to understand vacuum properties. It is unlike a SM-singlet (not arbitrary) Need to measure couplings to great precisions. It is very narrow, $\Gamma/m \approx 3 \times 10^{-5}$, thus weakly coupled (unlike hadrons in QCD, e.g. σ) Too heavy to be light (for SUSY); too light to be heavy (Composite)!

It must have a dynamical reason for that.

(3) The Higgs boson couples to massesa. Electro-Weak Symmetry Breaking:Consider the massive gauge boson scattering:

Need to continue on WW scattering

Muchⁿ more difficult: b. Fermion masses & mixing: $y_f(\bar{f}_1, f_2)_L\begin{pmatrix}\phi_1\\\phi_2\end{pmatrix}_I f_R$

7

Masses

All elementary particle masses.

Neutrino masses $m_v \sim v^2/M$

Flavor physics Will reveal!

(4) The Higgs boson connects to high scale $V = (-\mu^2)|\phi|^2 + \lambda |\phi|^4$

the only dimensional parameter allowed by SM symmetry. **The "large hierarchy":** $m_h^2 - m_{h^0}^2 \sim -\frac{3}{8\pi^2} y_t^2 \Lambda^2$ ala, QED: $m_e \sim m_e^0 [1 + 3\alpha/4\pi \ln(\Lambda/m_e)]$ **Michael Dine's cancelation at Planck scale:** $m_H^2 = 36,127,890,984,789,307,394,520,932,878,928,933,023$ -36,127,890,984,789,307,394,520,932,878,928,917,398 $= (125 \text{ GeV})^2 ! ?$

> "Naturalness" at 10⁻³ level? → TeV scale new physics.

$\mathbf{V} = -\mu^2 |\mathbf{\phi}|^2 + \mathbf{\lambda} \mathbf{\phi}|^4$

A weakly coupled new force (the 5th force):

- In the SM, λ is a free parameter, now measured $\lambda \approx 0.13$
- In SUSY, it is related to the gauge couplings tree-level: $\lambda_{SUSY} = (g_L^2 + g_Y^2)/8 \approx 0.3/4 \leftarrow a bit too small$

λ is small (m_H = √2λ v) → Top-Yukawa drags the vacuum meta-stable, or new physics below 10⁷⁻¹¹ GeV.

(5) THE HIGGS PORTALS TO COSMOS? (a). Dark Matter

 $H^{\dagger}H$ is the only bi-linear SM gauge singlet. <u>**Bad:</u>** May lead to hierarchy problem with high-scale physics; <u>**Good:**</u> May readily serve as a portal to the dark sector: $k_s H^{\dagger}H S^*S, \quad \frac{k_{\chi}}{\Lambda}H^{\dagger}H \bar{\chi}\chi.$ </u>

Missing energy at LHC

Direct detection

Indirect detection

OTHER POTENTIAL CONSEQUENCES (b). Baryon – anti-baryon Asymmetry For $M_{\rm H}$ = 126 GeV, EW baryogenesis needs light sparticles: $m_{stop} \approx 150 \text{ GeV},$ plus a light neutralino, singlets ... (c). Higgs as an inflaton? (d). Higgs field & Dark Energy?

The existence of a fundamental scalar encourages the consideration of scalar fields in cosmological applications.

So, we want to know LOTS more about the Higgs.

THE NEED FOR A HIGGS FACTORY For any discovery of a new **HIGGS BOSON** HIGGS BOSON elementary particle, a theoretical particle of we need a factory for it! follider in Genera The Z factories: LEP1, SLC: shr. will defeat to shaive block Precision EW; neutrino counting ... 0.49 10000 Wool fell, fleece with gravel fill The B factories: KEKB, PEP2, LHCb CKM, rare decays

The tau-charm factories: CESR, BEPCProperties, rare decays, QCD, spectroscopy ...Top quark factory: LHCMass, couplings etc.The Higgs is NO exemption!Especially when no sign for new physics yet ...

(1) Current Status(A). HL-LHC will be a Higgs factory:

<i>p</i>	$p \to H + X$ at	$\sqrt{s} = 14 \text{ TeV}$	I for $m_H = 1$	$125 { m ~GeV}$	
	ggF	VBF	VH	$t\bar{t}H$	Total
Cross section (pb)	49.9	4.18	2.38	0.611	57.1
		Numbers	of events in	3000 fb^{-1}	
$H \rightarrow \gamma \gamma$	344,310	28,842	16,422	4,216	393,790
$H ightarrow ZZ^* ightarrow 4\ell$	17,847	1,495	851	219	20,412
$H o WW^* o \ell u \ell u$	$1,\!501,\!647$	125,789	$71,\!622$	$18,\!387$	1,717,445
H ightarrow au au	$9,\!461,\!040$	$792,\!528$	451,248	$115,\!846$	10,820,662
$H ightarrow b \overline{b}$	$86,\!376,\!900$	$7,\!235,\!580$	$4,\!119,\!780$	$1,\!057,\!641$	98,789,901
					\frown
$H ightarrow \mu \mu$	32,934	2,759	1,570	403	37,667
$H o Z \gamma o \ell \ell \gamma$	15,090	1,264	720	185	17,258
$H ightarrow ext{all}$	149,700,000	12,540,000	7,140,000	1,833,000	171,213,000

Coupling measurements with 2-10% precision. Model-dependent!

$L (fb^{-1})$	κy	κw	κ _Z	ĸg	κ _b	κ _t	κτ	KZY	BRinv
300	[5,7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[14, 18]
3000	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7, 10]	[2, 5]	[10, 12]	[7, 11]

"Europe's **top priority** should be the exploitation of the full potential of the LHC, including the **high-luminosity upgrade** of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030." ¹³

(B). ILC as a Higgs factory

	250 GeV	500 GeV
$\sigma(e^+e^- \rightarrow ZH)$	303 fb	100 fb
σ(e⁺e⁻ → vvH)	16 fb	150 fb
Int. Luminosity	250 fb ⁻¹	500 fb ⁻¹
# ZH events	76,000	50,000
# vvH events	4,000	75,000

Typically,

$$N_{\rm sig}^{pp} > N_{\rm sig}^{e^+e^-}$$
$$N_{\rm bkg}^{pp} \gg N_{\rm bkg}^{e^+e^-}$$

	ILC500	ILC500-up	ILC1000	ILC1000-up
$\sqrt{s} \; ({\rm GeV})$	500	500	500/1000	500/1000
$\int \mathcal{L} dt \; (\mathrm{fb}^{-1})$	500	1600^{\ddagger}	500 + 1000	$1600 + 2500^{\ddagger}$
$P(e^-,e^+)$	(-0.8, 0.3)	(-0.8, 0.3)	(-0.8, 0.3/0.2)	(-0.8, 0.3/0.2)
$\sigma\left(ZHH ight)$	42.7%	?	42.7%	23.7%
$\sigma\left(u ar{ u} H H ight)$	—	_	26.3%	16.7%
λ	83%	46%	21%	13%

Reconstruct $Z \rightarrow l^+l^$ independent of Higgs decay sensitive to invisible Higgs decays e^+ Z^* **g_{HZZ}** e^{-} $m_{\rm recoil}^2 = (\sqrt{s} - E_{\ell\ell})^2 - |\vec{p}_{\ell\ell}|^2$ Model-independent, absolute measurements $(Z \rightarrow e^+e^-, \mu^+\mu^- \text{ combined})$: √s=250 GeV, L=250 fb-1 $\Delta m_H \leq 32 \text{ MeV}$ $\sigma_{ZH} \leq 2.5\%$

g_{HZZ} ≤ 1.2%

ILC marching toward the reality

ILC is a genuine global project: most important key to its realization

- Global governance of the project
- Global cooperation
- Global design, construction, and operation

IIL

Realization of ILC requires t

Possible Timeline

End 2013 Japanese government announces intent to bid

Inter-governmental negotiations
 Engineering design for ILC
 Preparation of ILC laboratory

Input from LHC 14 TeV, decision to proceed

Tohok 2015-201

Begin construction (including bidding)

- Iwate and Miyagi F
 - Local governments 2026-2027 the disaster recovery effort.
- Tohoku University
- Tohoku Economic Federation

Commissioning

(2) Future Perspective(C). Circular e+e- Higgs factory

LHC

Geneva

- A study has been commissioned for an 80-km tunnel in the Geneva area. For TLEP we fix the radius (conservatively 9000m) the power (100MW) and try to have beams as flat at possible to reduce beamstrahlung.
- Our arc optics design (work in progress) conservatively uses a cell length of 50m, which still gives a horizontal emittance of 2nm at 120GeV
- We assume that we can achieve a horizontal to vertical emittance ratio of 500-1000 (LEP was 200)

LEGEND

HE_LHC 80km option potential shaft location Lake Geneva

TLEP : Possible Physics Programme

- □ Higgs Factory mode at √s = 240 GeV: 5+ years
 - Higgs boson properties, WW and ZZ production. *Exciting!*
 - Periodic returns at the Z peak for detector and beam energy calibration
- □ Top Threshold scan at \sqrt{s} ~ 350 GeV: 5+ years
 - Top quark mass, width, Yukawa coupling; top quark physics; more Higgs boson studies.

TLFF

- Periodic returns at the Z peak for detector and beam energy calibration
- Z resonance scan at √s ~ 91 GeV: 1-2 years Exciting!
 - Get 10¹² Z decays @ 15 kHz/IP. Repeat the LEP1 Physics Programme every 15 minutes.
 - Continuous transverse polarization of some bunches for precise E_{beam} calibration
- □ WW threshold scan at √s ~ 161 GeV: 1-2 years
 - Get 10⁸ W decays; Measure the W mass; Precise W studies.
 - Continuous transverse polarization of some bunches and returns to the Z peak.
- □ Longitudinally polarized beams at $\sqrt{s} = m_z$: 1 year
 - Get 10¹¹ Z decays, and measure A_{LR}, A_{FB}^{pol}, etc.
 - Polarization wigglers, spin rotators
- Luminosity, Energy, Polarization upgrades
 - If justified by scientific arguments (with respect to the upgrade to VHE-LHC)

	ILC-250	TLEP-240	ILC-350	TLEP-350
Lumi / 5 yrs	250 fb ⁻¹	10 ab ⁻¹	350 fb ⁻¹	2.6 ab ^{−1}
Beam Polarization	80%, 30%	-	80%,30%	-
# of HZ events	70,000	2,000,000	65,000	325,000
# of WW→H events	3,000	50,000	20,000	65,000
TLEP: 10 tin	nes more lu	minosity/IP		

TLEP: 6 times better accuracy.

	ILC TDR	From P. Azzi et al. arXiV:1208.166
	ILC-250	TLEP-240
s _{HZ}	2.5%	0.4%
s _{HZ} ∗BR(H→bb)	1.1%	0.2%
s _{HZ} ∗BR(H→cc)	7.4%	1.2%
s _{HZ} ∗BR(H→gg)	9.1%	1.4% •
s _{HZ} ∗BR(H→WW)	6.4%	0.9%
s _{HZ} ∗BR(H→tt)	4.2%	o.8%
s _{HZ} ∗BR(H→ZZ)	19%	3.1%
s _{HZ} ∗BR(H→gg)	35%	3.0%
s _{HZ} ∗BR(H→mm)	100%	13%
G _{INV} / G _H	<1%	< 0.2%
m _H	40 MeV	8 MeV

TLEP is a 3-in-1 package:

- It is a powerful Higgs factory
- It is a high-intensity EW parameter buster
- It offers the path to a 100TeV pp Eatociting!
- TLEP is based on solid technology and offers little risk, has a price tag which is expensive but not out of reach, has reasonable consumption, offers multiple interaction points an d might even have an upgrade potential.

18

(D). A Muon Collider

Direct width measurement! $(0.5 - 1 \text{ fb}^{-1})$

$\Gamma_h = 4.21 \text{ MeV}$	L_{step} (fb ⁻¹)	$\delta\Gamma_h \ ({ m MeV})$	δB	$\delta m_h (MeV)$
Case A	0.005	1.5	13%	0.51
R = 0.01%	0.025	0.85	6.1%	0.32
	0.2	0.34	2.2%	0.13
Case B	0.01	0.61	8.3%	0.40
R = 0.003%	0.05	0.30	3.8%	0.13
	0.2	0.17	2.0%	0.10

TABLE II: Fitting accuracies for one standard deviation range of $\delta\Gamma_h$, δB and δm_h of the SM Higgs with the scanning scheme as specified in Eq. (7) for three representative luminosities per step.

Fermilab S

Parameter	Symbol	Unit			
Centre-of-mass energy	\sqrt{s}	GeV	500	1400	3000
Repetition frequency	frep	Hz	50	50	50
Number of bunches per train	n _b		354	312	312
Bunch separation	Δ_t	ns	0.5	0.5	0.5
Accelerating gradient	G	MV/m	80	80/100	100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}$	2.3	3.2	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.4	1.3	2
Main tunnel length		km	13.2	27.2	48.3

PHYSICS AT 100-200 TeV

Tao Han, Univ. of Wisconsin-Madison

999 VLHC Annual Meeting, June. 28

in the light of future hadron colliders

Tao Han Univ. of Wisconsin - Madison

Top Reasons For The VLHC:

 There are important issues to learn after the LHC/LC. (in any scenarios, pretty much!)

(Bill Foster invited me for dinner, It is exciting to think about a physics program at a Very-Large machine. later quitted job at FNAL.)

- while the LHC is to study the "Large Hierarchy", VLHC is to explore the "Little Hierarchy".
- There must be things out there we have never thought about!

Go for the energy frontier!

_			
	ГКЛ	INI	C.
88 B.S.			E

LHC 100/fb	LHC 300/fb	LHC 3/ab	ILC 250- 500GeV	ILC 1TeV	CLIC >1TeV	МС	TLEP	VLHC
years beyond TDR	TDR	LOI	TDR	TDR	CDR			

Timelines of Higgs Factory projects

Approximate dates, uncertainty increases with time

LHC HC HC <t< th=""><th></th><th></th><th>20</th><th>012</th><th>2</th><th>2</th><th>015</th><th>j</th><th></th><th></th><th>2</th><th>202</th><th>20</th><th></th><th></th><th>2</th><th>02</th><th>5</th><th></th><th></th><th colspan="6">2030</th><th colspan="5">2035</th></t<>			20	012	2	2	015	j			2	202	20			2	02	5			2030						2035				
LHC HL-LHC I<		LHC											Ι		3(00	fl	o -1	1				ſ					Γ			
HE-LHC I I I I I I I I I I I I I I I I I I I	LHC	HL-LHC						Ø	V	V	V	ľ					V	V				3	30	00	fk) ⁻¹	Γ				
Linear Colliders ILC Higgs factory ILC ILC Higgs factory ILC ILC ILC Higgs factory ILC		HE-LHC																V				V	V	V	V	V	V	Ø			
Linear Colliders CLIC klystrons PWFA LC PWFA LC LEP3 Image: Colliders TLEP- SuperTristan - FNAL site filler FNAL site filler IHEP - SLAC/LBNL Image: Colliders Gamma- Gamma Colliders ILC based Colliders SAPPHiRE		ILC Higgs factory						Ø	V	V		ł					V	V													
PWFA LC LEP3 Image: Constraint of the second s	Linear	CLIC klystrons								V							V	V				V									
LEP3 Image: Circular Colliders TLEP- SuperTristan – FNAL site filler IHEP – SLAC/LBNL Image: Colliders	Coniders	PWFA LC										X					V	V	X			V	V	V	V	V	V	V			
Circular Colliders TLEP- SuperTristan – FNAL site filler IHEP – SLAC/LBNL ILEP - SLAC/LBNL Gamma- Gamma Colliders ILC based ILC based SAPPHiRE ILEP - SLAC - SUPER		LEP3							V	V							V	V													
Gamma-Gamma ILC based ILC based <th>Circular Colliders</th> <th>TLEP- SuperTristan – FNAL site filler IHEP – SLAC/LBNL</th> <th></th>	Circular Colliders	TLEP- SuperTristan – FNAL site filler IHEP – SLAC/LBNL																													
Gamma CLIC based Colliders SAPPHiRE MUON COLLIDER	Gamma-	ILC based							V		T	Ĭ	1				V	ľ				V	V	V		T	T	Γ	Γ		
Colliders SAPPHIRE	Gamma	CLIC based						V	V	V	V						V	V				V	V	V							
MUON COLLIDER	Colliders	SAPPHIRE						V	V	V		V					V	V				V	V	V							
	MUON CO	LLIDER										X	A				V	V						V	V						

RDR (CDR) R&D TDR/Preparation Construction Operation

J.P.Delahaye @ UCLA March 21,2013

ACTIVITIES, MENTALITY (1) International energy frontier The discovery of the Higgs boson has tremendously inspired the field to consider future Higgs factories.

CERN is in a strong position: LHC, HL-LHC; CLIC, TLEP-VHE-LHC etc.

Japan is in a good position: ILC, etc. (SuerpKEKb/Belle2; Hyper-K)

The US is in a difficult position: Crucial participation in LHC, HL-LHC; ILC etc.

DOE: "We are the leaders, but not the drivers."

The US exploration

The Community Summer Study (Snowmass) just concluded:

The Snowmass Report will be presented in such a way that it can be read at various levels. An Executive Summary lays out the broad topics treated in more detail in a summary chapter. Each Frontier (Intensity, Energy, Cosmic, Theory, Capabilities, Instrumentation, Computing, and Communication) has its own chapter containing further details. Reference is made to submissions by each Frontier's subgroups, and to contributed White Papers.

- Report to be ready November 1.
- Provides a detailed resource to P5.

The P5 has just announced: (Particle Physics Project Prioritization Panel)

- "...develop an updated strategic plan for U.S. high energy physics that can be executed over a 10-year timescale, in the context of a 20-year global vision for the field."
- "…an assessment of the current and future scientific opportunities over the next 20 year period."
- "…a critical examination of the investments…to ensure the vitality, scientific productivity, and discovery potential of U.S. high energy physics research…"
 - Preliminary comments by 1 March 2014
 - Final report by 1 May 2014

Some theory activities:

Started organizing ourselves to explore, to motivate, to coordinate relevant physics issues.

Motivations Jor a

100 TeVpp-collider

* It's the OBVIOUS FUTURE Nima Arkani Hamed * BIG physics ideas, BIG ambitions and BIG machines are the lifeblood of our field. It's how we've This is a new initiative attracted the best minds on the planet with Nima's drive: to work on the hardest most fundamental, Please join bands and move! most long-term prodems in all of Science.

(2) Personal Views

The Higgs factory is a Must, and will be done.

VHE-LHC is the obvious future, and will be carried out.

China is a strong record for international collaborations: LEP-I,II, BES, SuperK, Belle, AMS, LHC, Daya Bay, ...

Needs more and improvement/adjustment.

Since many years ago ... 雄心壮志远大: Dream Big!

我国高能物理的成就和地位, 仍与我们的经济实力, 国际政治地位不相匹配!

如果参与成功,地位稳固显赫, 为什么不竞争主导地位? 不是我们梦寐以求的吗?

竞争 host country: 双赢方案 (win-win)!

29

Let's get together, and roll!

美国威斯康星大学 (清华大学;科学院理论物理所) 2006年12月5日,香山会议

12/05/06

Backups:

In a pessimistic scenario, the LHC does not see a new particle associated with the Higgs sector, then the effects of a heavy state on g_i at the scale M: $\Delta_i \equiv \frac{g_i}{g_{SM}} - 1 \sim \mathcal{O}(v^2/M^2) \approx \text{a few \% for } M \approx 1 \text{ TeV}$ Higgs coupling deviations: Δ: VVH $b\bar{b}H+\tau\bar{\tau}H$ ggH,γγH **Composite** (3-9)% (1 TeV/f)² H^0 , A^0 $6\% (500 \text{ GeV/M}_{A})^2$ Τ' $-10\% (1 \text{ TeV/M}_{T})^2$

> Agashe et al.; Haber, Carena; TH, Logan, Wang

1. LHC: $\sigma_{obs} \propto g_{in}^2 \frac{\Gamma_{final}}{\Gamma_{tot}}$

- σ_{obs}/σ_{SM} measured at <10% level.
- $Br(h \rightarrow \bar{N}N, \chi\chi, ...)$ sensitive to <20% level.
- No model-independent measure for Γ_i , Γ_{tot}
- 2. e⁺e⁻ Higgs factory:
- model-independent for g_{ZZh} at 1.5% level
- Extraction for $\Gamma_{tot} \equiv \Gamma_{ZZ}/BR_{ZZ}$
- 3. $\mu^+\mu^-$ Higgs factory:
- Direct measurement of Γ_{tot} by scanning.
- 4. VHE-LHC: opens up the new energy territory!

Summary: - The Higgs boson is a new class, at a pivotal point of energy, intensity intensity, cosmic frontiers. "Naturally speaking": - It should not be a lonely solitary particle; has an "interactive friend circle": t, W^{\pm}, Z "relatives": $\tilde{H}^{0,\pm}$, \tilde{t} , \tilde{b} , (\tilde{g}) ; S, \tilde{S} ... "siblings": $H^0, A^0, H^{\pm}, H^{\pm\pm}, S...$ - LHC lights the way for the searches. - Higgs factory may reveal their properties from Higgs coupling measurements at 1%-level. An exciting journey ahead!