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“Wimpy and Abundant”�
Neutrinos are Everywhere


•  They come from the Big Bang:

–  When the Universe was hot, neutrinos were created

 equally with any other particles

–  They are still left over: ~300 neutrinos per cm3


•  They come from the Sun:

–  Trillions of neutrinos going through your body every

 second

•  They are shy:


–  If you want to stop them, you need to stack up lead
 shield up to three light-years
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Outline


•  Introduction

•  Neutrinos in the Standard Model

•  Evidence for Neutrino Mass

•  Implications of Neutrino Mass

•  Why do we exist? 
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Puzzle with Beta Spectrum


•  Three-types of
 radioactivity: α, β, γ


•  Both α, γ discrete
 spectrum because 


 
Eα, γ = Ei – Ef


•  But β spectrum
 continuous


F. A. Scott, Phys. Rev. 48, 391 (1935)


Bohr: At the present stage of atomic theory, however, we may say
 that we have no argument, either empirical or theoretical, for
 upholding the energy principle in the case of β-ray
 disintegrations
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Desperate Idea of Pauli
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Three Kinds of Neutrinos


•  There are three
 •  And no more
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Neutrinos are Left-handed
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Neutrinos must be Massless


•  All neutrinos left-handed ⇒ massless

•  If they have mass, can’t go at speed of light.


•  Now neutrino right-handed?? 


 
⇒ contradiction ⇒ can’t have a mass
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Anti-Neutrinos are Right-handed


•  CPT theorem in
 quantum field theory

–  C: interchange

 particles & anti
-particles


–  P: parity

–  T: time-reversal


•  State obtained by CPT
 from νL must exist: νR


_

Murayama, Jinhua School, Sep 2008 



12 

Other Particles?


•  What about other particles?  Electron,
 muon, up-quark, down-quark, etc


•  We say “weak force acts only on left
-handed particles” yet they are massive.


 
Isn’t this also a contradiction?


No, because we are swimming in a


Bose-Einstein condensate in Universe
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Universe is filled with Higgs


•  “Empty” space filled with a BEC: cosmic superconductor

•  Particles bump on it, but not photon because it is neutral.

•  Can’t go at speed of light (massive), and right-handed and

 left-handed particles mix ⇒ no contradiction


But neutrinos can’t
 bump because there
 isn’t a right-handed
 one ⇒ stays
 massless


0.511 MeV/c2


105 MeV/c2


176,000 MeV/c2


Murayama, Jinhua School, Sep 2008 



14 

Standard Model


•  Therefore, neutrinos are strictly massless in
 the Standard Model of particle physics


Finite mass of neutrinos imply the Standard
 Model is incomplete!


•  Not just incomplete but probably a lot more
 profound
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Neutrinos�
from backstage to center stage


•  Pauli bet a case of
 champagne that noone
 would discover neutrinos


•  Finally discovered by
 Cowan and Reines using
 a nuclear reactor in 1958


•  Massless Neutrinos in the
 Standard Model (‘60s)


•  Evidence for neutrino
 mass from SuperK (1998)
 and SNO (2002)


•  First evidence that the
 minimal Standard Model
 of particle physics is
 incomplete! 


•  2002 Nobel to pioneers:
 Davis and Koshiba
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Lot of effort since ‘60s


Finally convincing
 evidence for “neutrino
 oscillation”


Neutrinos appear to
 have tiny but finite mass




Evidence for Neutrino Mass
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Super-Kamiokande (SuperK)


•  Kamioka Mine in
 central Japan


•  ~1000m
 underground


•  50kt water

•  Inner Detector


–  11,200 PMTs

•  Outer Detector


–  2,000 PMTs

Michael Smy
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SuperKamiokaNDE�
Nucleon Decay Experiment


•  p→e+π0, K+ν, etc

–  So far not seen

–  Atmospheric neutrino

 main background


•  Cosmic rays isotropic

–  Atmospheric neutrino

 up-down symmetric
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A half of νµ lost!
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Neutrino’s clock


•  Time-dilation: the
 clock goes slower


•  At speed of light v=c,
 clock stops


•  But something seems
 to happen to neutrinos
 on their own


Δτ = Δt 1− v
2

c2

•  Neutrinos’ clock is
 going


•  Neutrinos must be
 slower than speed of
 light


⇒Neutrinos must have a
 mass
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The Hamiltonian


•  The Hamiltonian of a freely-propagating
 massive neutrino is simply


•  But in quantum mechanics, mass is a matrix
 in general.  2×2 case:


  

H =
 p 2 + m2 ≈ p + m2

2p

M2 =
m211 m212
m221 m222

 

 
 

 

 
 

M2 1 = m1
2 1

M2 2 = m2
2 2
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Two-Neutrino Oscillation


•  When produced (e.g., π+→µ+νµ), neutrino is
 of a particular type


|νµ , t = 1 cosθ e−im1
2t / 4p + 2 sinθ e−im2

2t / 4pe−im1
2t / 4p e−im2

2t / 4p,t
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Two-Neutrino Oscillation


•  When produced (e.g., π+→µ+νµ), neutrino is
 of a particular type


•  No longer 100% νµ, partly ντ! 

•  “Survival probability” for νµ after t 


|νµ , t = 1 cosθ e−im1
2t / 4p + 2 sinθ e−im2

2t / 4p

  

P = νµ νµ , t
2

= 1− sin2 2θ sin2 1.27Δm2c4

eV2
GeV
c  p 

ct
km

 

 
 

 

 
 

e−im1
2t / 4p e−im2

2t / 4p,t
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Survival Probability


Half of the up-going
 ones get lost


p=1 GeV/c, sin2 2θ=1        
 Δm2=3×10–3(eV/c2)2
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Excellent Fit


Downwards νµ’s  
don’t disappear 

1/2 of upwards νµ’s do disappear 

Best fit:

Δm2 = 2.1×10-3 eV2


sin2 2θ = 1.02

χ2 = 830.1 / 745 d.o.f.
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Cross check with man-made ν’s


Fermilab 

Veto Shield 

Coil 
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Good consistency!


•  MINOS result 2008
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Public Interest in Neutrinos
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Implications of Neutrino Mass
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Mass Spectrum


What do we do now?
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Rare Effects from High-Energies


•  Effects of physics beyond the SM as
 effective operators


•  Can be classified systematically (Weinberg)
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Unique Role of Neutrino Mass


•  Lowest order effect of physics at short distances

•  Tiny effect (mν/Eν)2~(0.1eV/GeV)2=10–20!


•  Interferometry (i.e., Michaelson-Morley)

–  Need coherent source

–  Need interference (i.e., large mixing angles)

–  Need long baseline


Nature was kind to provide all of them!

•  “neutrino interferometry” (a.k.a. neutrino oscillation) a

 unique tool to study physics at very high scales


Murayama, Jinhua School, Sep 2008 



Neutrinos Have Mass


•  They have mass.  They can’t go at speed of
 light. 
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•  What is this right-handed particle?

–  New particle: right-handed neutrino (Dirac)

–  Old anti-particle: right-handed anti-neutrino (Majorana)
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Two ways to go


(1) Dirac Neutrinos:

–  There are new

 particles, right-handed
 neutrinos, after all


–  Why haven’t we seen
 them?


–  Right-handed neutrino
 must be very very
 weakly coupled


–  Why?
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Extra Dimension


•  All charged particles are on a 3-brane

•  Right-handed neutrinos SM gauge singlet


⇒ Can propagate in the “bulk”


•  Makes neutrino mass small


(Arkani-Hamed, Dimopoulos, Dvali, March-Russell;


Dienes, Dudas, Gherghetta; Grossman, Neubert; 


Barbieri, Strumia)


•  Or SUSY breaking


(Arkani-Hamed, Hall, HM, Smith, Weiner;



Arkani-Hamed, Kaplan, HM, Nomura) 


€ 

d 4θ S*
M (LHuN∫ )
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Two ways to go


(2) Majorana Neutrinos:

–  There are no new light

 particles

–  What if I pass a

 neutrino and look
 back?


–  Must be right-handed
 anti-neutrinos


–  No fundamental
 distinction between
 neutrinos and anti
-neutrinos!
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Seesaw Mechanism


•  Why is neutrino mass so small?

•  Need right-handed neutrinos to generate

 neutrino mass


νL νR( )
mD

mD

 

 
 

 

 
 
νL
νR

 

 
 

 

 
 νL νR( )

mD
mD M
 

 
 

 

 
 
νL
νR

 

 
 

 

 
 mν =

mD
2

M
<< mD

To obtain m3~(Δm2
atm)1/2, mD~mt, M3~1014GeV (GUT!)


, but νR SM neutral
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Grand Unification


•  electromagnetic, weak,
 and strong forces have
 very different strengths


•  But their strengths
 become the same at 1016

 GeV if supersymmetry

•  To obtain 


m3~(Δm2

atm)1/2, mD~mt


 
⇒ M3~1014GeV!


Neutrino mass may be
 probing unification:


Einstein’s dream


M3


EM


weak


strong
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