Double Beta Decay Experiments

Maura Pavan Università di Milano Bicocca Milano – Italy

M. Pavan, Sept. 2008, Beijing "DBD Experiments"

Outline

part 1. Double Beta Decay part 2. DBD experiments:	introduction DBD and neutrino mass NME decay signature detector choice experimental sensitivity background sources Ge experiments NEMO3 Cuoricino
part 3. DBD experiments: the	e new generation on-going: GERDA – CUORE – EXO proposed conclusions

M. Pavan, Sept. 2008, Beijing "DBD Experiments"

Double Beta Decay and Majorana neutrino

< There are several categories of scientists in the world; those of second or third rank do their best but never get very far. Then there is the first rank, those who make important discoveries, fundamental to scientific progress. But then there are the geniuses, like Galilei and Newton. Majorana was one of these.

Majorana had what no-one in the world had. Unfortunately he lacked what other people generally have: common sense >>

(Enrico Fermi)

Introduction: the "neutrino industry"

 $\frac{v \text{ oscillations are a reality, we have distinguishable eigenvalues for:}}{\text{neutrino matrix is not diagonal:}} \qquad \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$

we can experimentally measure the values of the matrix elements

 $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & e^{i\alpha/2 + i\beta} \end{pmatrix}$ $\theta_{23} \sim 45^{\circ} \qquad \theta_{13} < -13^{\circ} \quad \delta_{CP} = CP \text{ violation} \qquad \theta_{12} \sim 30^{\circ} \qquad \alpha,\beta: \text{ Majorana phase}$

the "neutrino industry": proves mixing and masses

"how to measure the mass?"

Cosmology

$\Sigma = m_1 + m_2 + m_3$

simple sum pure kinematic effect

Beta decay $\mathbf{m}_{ve} = (\Sigma |\mathbf{U}_{ei}|^2 \mathbf{m}_i^2)^{1/2}$

 $_{a} \equiv V_{a}$

incoherent sum real neutrino

neutrinoless **BB**

Double Beta Decay $|< m_v > | = |\Sigma U_{ei}^2 m_i|$

> coherent sum virtual neutrino Majorana phases

v contribute to the energy density of our Universe:

 $O_v h^2 \sim \Sigma / 94 \text{ (eV)}$

ΤἀιΚ

they influence various astronomical observables:

CMB (Cosmic Microwave Background) power spectrum
LSS (Large Scale Structures) matter distribution reconstructed by redshift survey of galaxies

- Ly- α (Lyman α) distant quasars light absorbed at Ly- α frequency by intervening matter

BUT

the upper bounds on Σ depend on data set included, priors and statistical treatments

Astrophysical bounds:

- (1) $\Sigma < 1:3 \text{ eV} (WMAP5)$
- (2) $\Sigma < 1:19 \text{ eV}$ (WMAP5+ACBAR+VSA+CBI+BOOMERANG)
- (3) Σ < 0:75 eV (CMB+HST+SN-Ia)
- (4) $\Sigma < 0.60 \text{ eV}$ (CMB+HST+SN-Ia+BAO)
- (5) Σ < 0:19 eV (CMB+HST+SN-Ia+BAO+Ly)

[Fogli et al., arXiv:0805.2517]

Direct measurements: deformation of Kurie plot

Tiny effect due to finite neutrino mass: $\sim (m_{\beta}c^{2}/Q)^{3}$ Mass sensitivity:

 $m_{\beta} \sim {Q^{3} \Delta E / A T}^{1/4}$

Present limit Near future Far future = 2.3 eV (Mainz, Troitzk spectrometers)

= 0.2 eV (Katreen spectrometer)

= beyond 0.1 eV with bolometers ???

Bolometers use ¹⁸⁷Re (Q=2.47 keV τ=43 Gyr) to go beyond 0.2 eV they require technological improvement <u>accurate calculation of ¹⁸⁷Re beta spectrum</u>

(A,Z) → (A,Z+2) + 2 e⁻

 $0\nu\beta\beta$ allow to study ν properties and measure n mass BUT

v mass can be extracted from $T_{1/2}$ ONLY after $|M|^2$

Tools for the investigation of the mass scale

DBD and neutrino mass

even(A)-even(Z) nuclei whose single beta decay is energetically forbidden can however "double beta decay" on a lower mass isomer

candidate nuclei with Q > 2 MeV

Candidate	Q (MeV)	Abund. (%)
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8
⁸² Se→ ⁸² Kr	2.995	9.2
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8
$^{116}Cd \rightarrow ^{116}Sn$	2.802	7.5
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9
$^{150}Nd \rightarrow ^{150}Sm$	3.367	5.6

all these nuclei decay by $\beta^-\beta^-$ emissions but also candidates decaying via $\beta^+\beta^+$ and EC EC do exist

the decay can be either on the O+ ground state or on the excited state/s

decay processes

there is one SM allowed process:

2vββ (A,Z)→(A,Z+2)+2 e⁻ +2v

two electrons sum energy $E_1 + E_2 < Q$

and various energetically allowed but <u>not standard O_V processes</u>:

 $0\nu\beta\beta$ through <m> or RH currents or

 $(A,Z) \rightarrow (A,Z+2)+2 e^{-}$ two electrons sum energy $E_1+E_2 = Q$

 $0\nu\beta\beta + Majoron$

two electrons sum energy $E_1 + E_2 < Q$

two neutrino decay

 $(A,Z) \rightarrow (A,Z+2)+2 e^{-}+2v$

this process is studied to get info concerning the NME

Isotope	Qββ (MeV)	Isotopic abundance (%)	Half life T _{1/2} ,2v (y)
48Ca	4.27	0	~ 4.0 10 ¹⁹
76Ge	2.04	7.8	~ 1.4 10 ²¹
825e	3	9.2	~ 0.9 10 ²⁰
96Zr	3.35	2,8	~ 2.1 10 ¹⁹
100Mo	3.03	9.6	~ 8.0 10 ¹⁸
116Cd	2.8	7.5	~ 3.3 10 ¹⁹
128Te	0.87	31.7	~ 2.5 10 ²⁴
130Te	2.53	34.5	~ 0.9 10 ²¹
136Xe	2.48	8.9	not observed yet
150Nd	3.37	5.6	~ 7.0 10 ¹⁸

FIG. 2. Diagram showing how any neutrinoless double- β decay process induces a $\overline{\nu}_e$ -to- ν_e transition, that is, an effective Majorana mass term.

<u>Whatever processes cause Ovßß,</u> <u>its observation</u> <u>would imply the existence of</u> <u>a Majorana mass term"</u>

> Schechter and Valle, Phys. Rev. D, Vol.25 N.11, 1982

Hence observing the $Ov\beta\beta$ decay guaranties that v are massive Majorana particles.

M. Pavan, Sept. 2008, Beijing "DBD Experiments"

neutrinoless decay: (A,Z)→(A,Z+2)+2e⁻

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

the observation of this decay proves:

- Lepton number violation
- Majorana character of neutrinos
- measurement of the Majorana mass of neutrino
- infere the absolute mass scale and hierarchy
- test existence of RH currents

M. Pavan, Sept. 2008, Beijing "DBD Experiments"

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + X$

M. Pavan, Sept. 2008, Beijing "DBD Experiments"

A partial list of processes where the lepton number would be violated:

 $Ov\beta\beta$ decay: $(Z, A) \rightarrow (Z \pm 2, A) + 2e^{(\pm)}$ $T_{1/2} \rightarrow \sim 10^{25} \gamma$ Muon conversion: $\mu^- + (Z, A) \rightarrow e^+ + (Z - 2, A)$ $BR < 10^{-12}$ Anomalous kaon decays: $K^+ \rightarrow \pi^- \mu^+ \mu^+$ $BR < 10^{-9}$ Flux of v_e from the Sun: $BR < 10^{-4}$ Flux of v_e from a nuclear reactor:BR < ?

Observing any of these processes would mean that the lepton number is not conserved, and that neutrinos are massive Majorana particles.

It turns out that the study of the $Ov\beta\beta$ decay is by far the most sensitive test of the total lepton number conservation.

 $0\nu\beta\beta$ life-time is written as:

$$T_{1/2}^{-1} = F(Q_{\beta\beta}, Z) |M|^2 < m_v > 2$$

 $F(Q_{\beta\beta}, Z)$ = phase space decay cinematic |M|² = nuclear matrix element theoretically evaluated (shell model, QRPA models ...) different results according to the nuclear model used

$$|\Sigma U_{ei}^{2} m_{i}|^{2} = \langle m_{v} \rangle^{2} = \frac{1}{T_{1/2} F(Q_{\beta\beta}, Z) |M|^{2}}$$

T_{1/2}⁻¹ is experimentally measured \rightarrow neutrino is Majorana particle

<m,>² is extracted from the experimental value > mass absolute scale

however this $(\langle m_v \rangle^2)$ result is model (NME) dependent !!!

Nuclear Matrix Element

Nuclear matrix elements are calculated using two models:

QRPA (RQRPA, SQRPA,), Shell model ...

with sometimes (particularly in the past) quite different results

Nuclear Matrix Element

suggestion from Bahcall et al. use the nuclear matrix range as an uncertainty: « Democratic approach »

BUT

does not take into account the improvements of the Models does not help in the choice of the best candidate for an experiment

TODAY

exchanges between groups to understand discrepencies and evaluate errors use of β and $2\nu\beta\beta$ decay data to fix parameters in QRPA, new results from Shell Model

new results are more similar than in the past !!!

0vββ: Nuclear Matrix Evaluation

exctracting m_{ν} from $T_{1/2}^{0\nu\beta\beta}$

but which selection of NME values should be used? my solution for these slides was to quote the more recent results of the 2 QRPA "schools" and of the SM

Decay signature

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

search for the decay looking for the 2 e-

signature = the sum energy spectrum of the 2 e- is:

the ratio between the two half-life depends on the isotope !!

other observables

further signatures:

Novel techniques under development

the signal is due to electrons = charge -1 short range particle "single site" the daughter nucleus in most experiments the signature of the decay will be rather poor, it is unlikely – but possible – that background event can mimic all the observables of $0v\beta\beta$

it is commonly accepted by the " $\beta\beta$ community" that the discovery of $0\nu\beta\beta$ would require:

the decay shows up	in more than one experiment
	for more than one isotope

the comparison of experiments studying the same isotope is trivial (so it is possible to clearly state that a certain result is confirmed or not, however this does not prove that the observed events are due to $0\nu\beta\beta$ and not to some background source)

in the case of different isotopes the comparison goes through the NME (only observing the decay in different isotopes we can be reasonably confident that $0v\beta\beta$ decay have been discovered)

Detector choice

two electrons each with a continuous spectrum and a monochromatic sum energy

Source = Detector (calorimetric technique)

semiconducting devices Ge, CdTe scintillators solid CaF₂, CdWO₄ liquid/gas Xe bolometers TeO₂, CdWO₄, CaF₂, MoWO₄ ...

Source ≠ Detector

very thin sheets containing the source ionization detectors for tracking and energy measurement

almost any candidate

no or limited event identification

Source ≠ Detector

- neat reconstruction of event topology (allow to study the decay mechanism)
- it is difficult to get large source mass
- several candidates can be studied with the same detector
- generally poor energy resolution ($2\nu\beta\beta$ could be the dominant background)

experimental sensitivity S_{0v} [years]

half-life corresponding to the minimum detectable number of events above background at a given C.L

b= background counting rate in the ROI (Region Of interest) [counts/keV/kg/y]
FWHM ~ size of the ROI [keV]

M = mass of the $\beta\beta$ isotopes in the source [kg]

fighting for sensitivity

if veto and shields are not enough the only solution is a deeper location

Radioactivity

radioactivity of the rock:

γ and n labs located in mountains with low radioactivity rock (salt mines)

radioactivity of the apparatus:

 γ , **n** and also α and β (when emitted near to the active volume)

material selection

avoid cosmic ray activation (underground storage of materials) develop active rejection technique

(pulse shape rejection, double reading, coincidences ...)

fighting background

a typical experimental apparatus is

<u>deep underground</u> <u>shielded against gamma and neutrons</u> <u>built with specially selected low activity materials</u>

tools useful for the study of background components

MonteCarlo simulation --> require several exp. inputs --> validation

 $\boldsymbol{\mu}$ and n flux measurements (or simulation)

HPGe, ICPMS, n activation ... --> material selection

Present and Past Experiments

'prehistory"

- 1948 first counter experiment (Geiger counters, $T_{1/2}(0v) > 3.1015 y$)
- 1950 first evidence for $2\beta 2\nu$ decay of ¹³⁰Te in first geochemical experiment: $T_{1/2} \sim 1.4 \cdot 10^{21} \text{ y}$
- 1950-1965 a few tens experiments with sensitivity ~ 10^{16} - 10^{19} y

- T_{1/2}(⁷⁶Ge) > 5·10²¹ y; Ge(Li) detector, 1973 (E. Fiorini et al.)
- T_{1/2}(^{48}Ca) > 2·10²¹ y; streamer chamber + magnetic field + plastic scint., 1970 (C. Wu et al.)
- T_{1/2}(82 Se) > 3.1·10²¹ y; streamer chamber + magnetic field + plastic scint., 1975 (C. Wu et al.)
- Geochemical experiments with ¹³⁰Te, ¹²⁸Te, ⁸²Se ("positive" results)

yestarday

Emitter	Experiment	$T_{1/2}^{6\nu} >$	C.L.%
⁴⁸ Ca	ELEGANT VI	$1.4 \times 10^{22} { m y}$	90
76 Ge	MPIH/KIAE	1.9×10^{25} y	90
	IGEX	$1.6 imes 10^{25}$ y	90
82 Se	UCI	$2.7 imes 10^{22} extbf{ y}$	68
	NEMO 3	$4.7 imes 10^{22} extbf{ y}$	90
96 Zr	NEMO 2	$1.3 imes 10^{21}$ y	90
100 Mo	LBL/MHC/UNM	$2.2 imes 10^{22} \mathrm{y}$	68
	UCI	$2.6 imes 10^{21} extbf{y}$	90
	Osaka	$5.5 imes 10^{22} \mathrm{y}$	90
	NEMO 3	6×10^{22} y	90
116 Cd	Kiev	1.7×10^{23} y	90
	Osaka	$2.9 imes 10^{21} \mathrm{y}$	90
	NEMO 3	$1.6 imes 10^{22} \mathrm{y}$	90
¹³⁰ Te	Milano	2.1×10^{23} y	90
	CUORICINO	1×10^{24} y	90
136 Xe	Caltech/UN/PSI	4.4×10^{23} y	90
136 Xe	Rome	$1.2 imes 10^{24} \mathrm{y}$	90
150 Nd	UCI	$1.2 imes 10^{21}$ y	90
	NEMO 3	$1.4 \times 10^{21} \text{ y}$	90

Table 1.4: Limits on Neutrinoless Decay Modes

a selection of present/past experiments:

$$S_{0n} = ln2 \cdot N \cdot ai \cdot \sqrt{\frac{time}{(bgk \cdot FWHM)}} \cdot eff$$

Why ββ searches of 76Ge have so long history?

- Germanium ha high intrinsic purity (required also by other application
- Ge diodes detector is a well established technology
- source = detector high efficiency!
- •76Ge isotopic abundance = 7.44%, but enrichment of ⁷⁶Ge possible at centrifuge up to >80%.
- Ge density = 5.3 g cm⁻³ compact setup
- Iow Atomic Weight (1 kg of ⁷⁶Ge = 13.1 Moles = 7.9 x 10²⁴ nuclei)

⁷⁶Ge: Heidelberg-Moscow experiment

The experiment is closed but can be considered the precursor (together with IGEX) of the next generation expt. GERDA and Majorana

statistics=

```
53.9 kg y, with PSA = 35.5 kg y
```

performances =

4.2 keV FWHM resolution at DBD Q-value

background in Ονββ region = 0.19 +/- 0.01 c/keV/kg/y 0.06 +/- 0.01 c/keV/kg/y with PSA

Pulse Shape Analysis, used to identify and reject multi-site events (gamma background)

⁷⁶Ge: Heidelberg-Moscow experiment a controversial result

2001: a re-analysis by part of the collaboration (4 authors): "Evidence for Neutrinoless DBD" Klapdor-K. et al. Mod. Phys. Lett. A 16 (2001) 2049

$$\tau_{1/2}^{0n} = (0.8 - 18.3) \ 10^{25} \ y @ 95\% \ C.L.$$

2004: data with higher statistics and with better quality show an increase of the statistical significance of the "peak": *Klapdor-K et al. Phys. Lett. B 586 (2004) 198-212*

 $\tau_{1/2}^{0n} = (0.69 - 4.18) \ 10^{25} \ y \ (3\sigma)$

⁷⁶Ge: Heidelberg-Moscow experiment a controversial result

comments and reanalysis:

Aalseth CE et al. , Mod. Phys. Lett. A <u>17</u> (2002) 1475 Feruglio F et al. , Nucl. Phys. B <u>637</u> (2002) 345 Zdezenko Yu G et al., Phys. Lett. B546(2002)206 replies:

Klapdor-Kleingrothaus HV hep-ph/0205228 H.L. Harney, hep-ph/0205293

- One peak not explained
- Looking at a larger range, many structures resemble the DBD "peak" and need to be explained
- The statistical significance depends on the flat component of the background

< m _v > [eV]	
0.2-0.6	QRPA Rodin Faessler Simkovic Vogel, nucl-th:0706.4304v1
0.1-0.4	QRPA Kortelainen Suhonen 2007, Phys. Rev C
0.3-0.7	QRPA Civitarese Shuonen , nucl-th/0208005
0.4-1.1	Nuclear Shell model, Caurier et al. nucl-th/0801.3760

Collaboration: (ITEP,INR,U.South Carolina; PNNL, U. of Zaragoza, Yerevan) Location: Canfranc UL (Spain) Detectors: two enriched Ge diodes

Pulse shape discrimination 117 mol . y = 8.9 kg . y

Bkg at 2 Mev ~ 0.1 (with PSA) ~ 0.2 (without PSA) [cts/(keV.y)]

 $T_{1/2} > 1.57 \ 10^{25}$ y with PSA

Figure 10: Background spectra before and after the PSD based on the counting of the number of lobes for detectors RG2 (top) and RG3 (hottom).

What if not Ge?

There are several reasons to study more than one isotope. The "Ge way" was the easiest and natural one: this detector is based on a very well known technology,with several different application justifing large efforts in its technical improvement (in purity, size, resolution).

How to choose an isotope/detector/experiment?

These are the ingredients:

NME isotopic abundance total mass Q value energy resolution

detector technology

I tell you the unusual story that gave birth to bolometers

"bolometer tale"

Once upon a time ... searching for the best DBD candidate a physicist discovered how Nature had been kind with ¹³⁰Te :

- a good F_N
- a rather high Q-value
- a high i.a. (quite relevant for the empty pockets of the experimentalist).

At that time the best DBD experiments used ⁷⁶Ge diodes, ¹³⁰Te was/is in principle better ⁷⁶Ge, the only (not negligible) point was that at that time no solid state detector - made of Te - with performances competitive with Ge diodes did exist.

The solution: JUST "INVENT" IT (this looked like a DREAM)

that is build a bolometric detector (at that time - '80 - maximum size was ~ grams) and reach energy resolution and masses as good as HPGe

bolometers

bolometers = low temperature calorimeters

the energy released by the particle interaction in the absorber (calorimetric mass) is read-out after thermalization by a temperature transducer (thermometer)

Se-

- wide choice of materials
- detectors with an energy resolution
- (comparable with that of Ge diodes)
- tech. suggested in 1985 by E. Fiorini and T.O. Niinikoski
- the first Te detector worked in 1989
- first bolometric DBD experiment in 1997
- predecessor of CUORICINO : 20 crystal array (MiDBD)
- other applications: Dark Matter detection (CDMS, Edelweiss, CRESST)

"bolometer tale"

Our physicist it well known to be a lucky man and he happened to be told during a meeting that there was a crystal producer in China that was growing beautiful TeO_2 crystals.

- easy to grow large size crystals (up to 6x6x6 cm³ = 1.2 kg)
- good intrinsic radiopurity (better than 10⁻¹³ g/g in U and Th)
- extremely good bolometric performances
 (FWHM at the ¹³⁰Te DBD transition energy ~ 7 keV)

extensively tested by the Milano group during the last 10 years standard production by SICCAS (Shanghai China)

"bolometer tale"

... AND THE REALITY OVERCAME THE DREAM ...

the detector did work very well

in the years detectors growing
 in size without showing deterioration
 of performances (resolution)

the bulk radio-purity of these crystals have always be extremely high

 our physicist is now the spokesperson of a big collaboration (CUORE)

The Moore's law of TeO, bolometers

Vass [kg]

¹³⁰ Te: Cuoricino

source=detector experiment

- tech. suggested in 1985 by E. Fiorini and T.O. Niinikoski
- first experiment in 1997

source ~ 40 kg natural TeO₂ (¹³⁰Te i.a. 33.8 % => ~ 11 kg ¹³⁰Te)

Lab. Naz. del Gran Sasso - Italy

BELA

The experiment was recently closed (June 2008). A 1 ton experiment (CUORE) is under construction

Cuoricino detector

40.7 kg TeO₂ ~ 11 kg
130
Te

44 TeO₂ crystals 5x5x5 cm³ + 18 TeO₂ crystals 3x3x6 cm³

11 modules, 4 detector each, crystal dimension 5×5×5 cm³ crystal mass 790 g

 $4 \times 11 \times 0.79 = 34.76$ kg of TeO₂

2 modules, 9 detector each, crystal dimension 3×3×6 cm³ crystal mass 330 g

 $9 \times 2 \times 0.33 = 5.94$ kg of TeO₂

two small crystals enriched in ¹³⁰Te two small crystals enriched in ¹²⁸Te

an array behaving as a single detector:

Cuoricino: sum spectra in the γ region

Cuoricino: sum spectra in the $\beta\beta$ region

Cuoricino Ovßß result:

Cuoricino background

 γ region

 α region (internal or surface contaminations)

peaks are due to

²³⁸U, ²³²Th contaminations in the cryostat

⁶⁰Co cosmogenic activation of Cu

40K ? no info on its location

continuum accounted for by

 \bullet degraded γ

peaks are due to

²³⁸U, ²³²Th surf. contam of TeO₂

crystals

- ¹⁹⁰Pt bulk contam. of TeO₂
- minor contribution form ²³⁸U, ²³²Th bulk. contam of TeO₂ crystals

continuum accounted for by

- degraded α (surf. contam. of Cu?)

Cuoricino result vs. HM claim of evidence:

NEMO3: Neutrino ettore Majorana Observatory

tracking detector He + 4% ethil alcohol + Ar 6180 vertical drift cells operated in Geiger mode

each cell has an optagonal shape and is 2.7 m long, 3D tracking is accomplished with the arrival time of the signals on the anode wires and the plasma propagation times to the ends of the drift cells

calorimeter

1940 plastic scintillators + PMTs for energy and TOF measurement magnetic field B=25 G for charge identification

provides:

- track reconstruction
- energy resolution $\sigma_{F} \ge 3\%$ at 3 MeV
- particle identification

sources are foils (30-60 mg/cm2) of different material forming a cylindrical patchwork inserted in the middle of the detector

NEMO3: detector

Cathodic rings Wire chamber

Calibration tube

NEMO3: shields

top/bottom wood shield 40 cm thick

moderates/absorbs neutrons

iron shield 18 cm thick

shields from environmental γ 's

water tank lateral, 30 cm thick

moderates/absorbs neutrons since 2004 added boron

NEMO3: a $\beta\beta$ event

Top view

NEMO3: a $\beta\beta$ event

Observables of the final state

- Trajectories of the 2 electrons
- Energies of the 2 electrons
- Time of flight
- Curvature of the tracks in a B-field (+ or -). NEMO-3 Neutrino08

6

NEMO3: background

most background sources produce events quite different from those due to a $\beta\beta$ decay

e⁺ e⁻ background event

Decay of some internal contamination producing a single electron event coming from a molybdenum source foil (sector 02) followed by a delayed alpha particle, which is the short straight track represented by open squares. Note the presence of one gamma-ray ¹⁰⁰Mo $0\nu\beta\beta$ decay - number of events in the 2.8 < $E_1 + E_2 < 3.2$ MeV window

 $m_v < (0.5 - 2.5) eV$

m, < (1- 5.9) eV

NEMO3 $2\nu\beta\beta$ results 100 Mo $2\nu\beta\beta$ results

NEMO3 $2\nu\beta\beta$ results

2νββ is important:1) Experimental input to NME calculation2) Ultimate background for 0νββ

NEMO3 result vs. HM claim of evidence:

Past/Present experiments

Bibliography

several slides adapted from talks at:

```
Neutrino 2006
http://neutrinosantafe06.com/
Neutrino 2008
http://www2.phys.canterbury.ac.nz/~jaa53/
Varenna school 2008
http://www.sif.it/SIF/en/portal/activities/fermi_school/mmviii_en
NOW 2008
```

http://www.ba.infn.it/~now2008/