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Current experimental data on quark masses and its parameterizations

• The up type quark masses

mu ' 1.5− 3MeV
mc ' 1.16− 1.34GeV
mt ' 170.9.1− 177.5GeV

• The down type quark masses

md ' 3− 7MeV
ms ' 70− 120MeV
mb ' 4.13− 4.27GeV

• Parameterization of the masses hierarchies in terms of λ ' 0.22(including
renormalization evolution)

mt : mc : mu ∼ 1 : λ4 : λ8

mb : ms : md ∼ 1 : λ2 : λ4

mt : mb ∼ 1 : λ3



Quark mixing and CKM matrix

• Recent precise measurements(Babar and Belle) have greatly im-
proved the knowledge of the CKM matrix, the experimental con-
straints on the CKM mixing parameters are

|V Exp
CKM| '




0.97377± 0.00027 0.2257± 0.0021 (4.31± 0.30)× 10−3

0.230± 0.011 0.957± 0.095 (41.6± 0.6)× 10−3

(7.4± 0.8)× 10−3 (40.6± 2.7)× 10−3 > 0.78 at 95% CL




• Wolfenstein’s parameterization of the CKM matrix to O(λ4)

VCKM '




1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1




where

λ = 0.2272± 0.0010, A = 0.818+0.007
−0.017

ρ̄ = 0.221+0.064
−0.028 , η̄ = 0.340+0.017

−0.045
Therefore the magnitudes of the CKM matrix elements are

|Vus| ∼ λ , |Vcb| ∼ λ2 , |Vtd| ∼ λ3, |Vub| ∼ λ4



Lepton mass hierarchies and neutrino mixing

• Charged lepton mass hierarchies and its parameterization

me ' 0.511MeV

mµ ' 105.7MeV

mτ ' 1777MeV

mτ : mµ : me ∼ 1 : λ2 : λ4

• Current knowledge about neutrino mainly comes from neutrino

oscillation, and the neutrino mass spectrum can be normal hi-

erarchical, inverted hierarchical or degenerate. Best-fit values,

2σ and 3σ intervals for the three–flavour neutrino oscillation pa-

rameters from global data including solar, atmospheric, reactor

(KamLAND and CHOOZ) and accelerator (K2K and MINOS) ex-

periments (From T.Schwetz, arXiv:0710.5027 and G.L. Fogli et

al, arXiv:0806.2649.)



parameter best fit 2σ 3σ
∆m2

21 [10−5eV2] 7.6 7.3–8.1 7.1–8.3
∆m2

31 [10−3eV2] 2.4 2.1–2.7 2.0–2.8
sin2 θ12 0.32 0.28–0.37 0.26–0.40
sin2 θ23 0.50 0.38–0.63 0.34–0.67
sin2 θ13 0.007 ≤ 0.033 ≤ 0.050

• The current data within 1σ is well approximated by the so-called

Tri-Bimaximal mixing

UTB =




√
2
3

1√
3

0

− 1√
6

1√
3
− 1√

2
− 1√

6
1√
3

1√
2




TB mixing predicts sin2 θ12,TB = 1
3, sin2 θ23,TB = 1

2 and sin2 θ13,TB =

0. TB mixing seems to indicate an underlying symmetry.



Family symmetry, fermion mass hierarchies and flavor mixing

• Family symmetry is a well-known mechanism to understanding the

hierarchies in fermion masses and flavor mixing, it assumes that

the patterns in fermion mass and flavor mixing come from certain

family symmetry between generations and its spontaneous broken.

• Many models with family symmetries gauged or global, continuous

or discrete, Abelian or non-Abelian, have been suggested so far.

E.g. U(2) flavor symmetry model by L.J. Hall et al successfully

accounts for the quark masses and CKM mixing angles.

• Discrete family symmetries(S3, S4 and A4 etc) seem suitable to

produce the Tri-Bimaximal mixing in the lepton sector, especially

the A4 symmetry.

• It is challenging to build a family symmetry model,
which can naturally produce the masses and mixing
angles in both the quark and the lepton sectors.



Short review on A4 model by Altarelli and Feruglio

• A4 assignments of the matter fields

li(i = 1,2,3) −−−−−− 3

ec, µc, τ c −−−−−− 1, 1′′, 1′

• Flavon fields and A4 spontaneous breaking

ϕT −−−− 〈ϕT 〉 ∝ (1,0,0)−−− Z3 in the charged lepton sector

ϕS −−−− 〈ϕS〉 ∝ (1,1,1)−−− Z2 in the neutrino sector

• Mass matrices of charged lepton and neutrino at the leading order

Ml = vd
vT

Λ

(
ye 0 0
0 yµ 0
0 0 yτ

)

Mν =
v2
u

Λ




a + 2b/3 −b/3 −b/3
−b/3 2b/3 a− b/3
−b/3 a− b/3 2b/3






• TB mixing is derived naturally, and the subleading corrections

don’t spoil the successful leading order results

UT
TBMνUTB =

v2
u

Λ
diag(a + b, a,−a + b)

• (Challenge)If the same classification scheme in A4 is extended

from leptons to quarks, the CKM matrix is a unit matrix at leading

order, and the non-leading corrections in the up and down quark

sector almost cancel in the mixing matrix. It seems difficult to

derive the observed quark mixing via A4 flavor symmetry.



Basic properties of T ′ group

• Geometrically, T ′ are proper rotations leaving a regular tetrahedron

invariant in the SU(2) space.

• From group theory, T ′ is the double cover of A4, which is the even

permutation of 4 objects, and the order of T ′ is 24. It is by two

generators S and T with the multiplication rules

S4 = T3 = 1, TS2 = S2T, ST−1S = TST

• Character table of the group T ′, ω is the third root of unity,

i.e. ω = e
2πi
3 = −1

2 + i
√

3
2 . Ci are the classes of the group, ◦Ci

is the order of the ith class, i.e. the number of distinct elements

contained in this class, ◦hCi
is the order of the elements A in the

class Ci, i.e. the smallest integer (> 0) for which the equation

A
◦hCi = 1 holds.



C1 C2 C3 C4 C5 C6 C7◦Ci 1 1 6 4 4 4 4◦hCi
1 2 4 6 3 3 6

1 1 1 1 1 1 1 1
1′ 1 1 1 ω ω2 ω ω2

1′′ 1 1 1 ω2 ω ω2 ω
2 2 -2 0 1 -1 -1 1
2′ 2 -2 0 ω −ω2 −ω ω2

2′′ 2 -2 0 ω2 −ω −ω2 ω
3 3 3 -1 0 0 0 0

• In addition to the singlet representations and triplet representa-

tion, T ′ has three doublet representations. T ′ can replicate the

success of A4 model building, and it allows us to treat the first

two generation quarks and the third generation quark differently.



SUSY model based on T ′ ⊗ Z3 ⊗ Z9 flavor symmetry

• Symmetry of the model

SU(3)c ⊗ SU(2)L ⊗ U(1)Y −−−− > gauge symmetry

T ′ ⊗ Z3 ⊗ Z9 −−−− > global flavor symmetry

• Auxiliary symmetry Z3 and Z9

Z3 −−−− > distinguishing ϕT from ϕS

Z9 −−−− > hierarchies in the fermion masses and mixing angles

• (MSSM)Matter fields and their transformation rules

Fields ` ec µc τc QL Uc Dc Q3 tc bc hu,d
T ′ 3 1 1′′ 1′ 2′ 2 2 1′′ 1′ 1′ 1
Z3 α α2 α2 α2 α α2 α2 α α2 α2 1
Z9 1 1 β6 β8 β3 β3 β 1 1 β7 1

with α = exp[i2π/3] and β = exp[i2π/9]
Comment: The above assignments are free from discrete anom-
aly(communication with C.Luhn. )



Flavor symmetry spontaneous breaking

• Flavon fields which are responsible for flavor symmetry breaking,
and their transformation properties under the global flavor sym-
metry

Fields ϕT ϕS ξ, ξ̃ φ θ′′ θ′ ∆ ∆̄ χ
T ′ 3 3 1 2′ 1′′ 1′ 1 1 1
Z3 1 α α 1 1 1 1 1 1
Z9 β 1 1 β6 β β β2 β4 β

• The vacuum expectation values(VEV) of the flavon fields

〈ϕT 〉 = (vT ,0,0), 〈ϕS〉 = (vS, vS, vS), 〈φ〉 = (v1,0),

〈ξ〉 = uξ, 〈ξ̃〉 = 0, 〈θ′〉 = u′θ, 〈θ′′〉 = u′′θ ,

〈∆〉 = u∆, 〈∆̄〉 = ū∆, 〈χ〉 = uχ

• The magnitudes of VEVs

|vT

Λ
| ' |vS

Λ
| ' |v1

Λ
| ∼ λ2, |u

′′
θ

Λ
| ' |u∆

Λ
| ' |ū∆

Λ
| ∼ λ3

where Λ is the cut off scale of the theory.



Charged lepton sector

• The leading order ( 1
Λ3) Yukawa interactions responsible for the

charged lepton masses, which are invariant under the gauge sym-
metry of the standard model and the flavor symmetry T ′⊗Z3⊗Z9

we = yee
c(`ϕT )∆̄2Hd/Λ

3 + he1ec(`ϕS)(ϕSϕS)Hd/Λ
3

+he2ec(`ϕs)
′(ϕSϕS)′′Hd/Λ

3 + he3ec(`ϕS)′′(ϕSϕS)′Hd/Λ
3

+he4ec(`ϕS)ξ2Hd/Λ
3 + yµ1µc(`φφ)′Hd/Λ

2 + yµ2µc(`ϕT )′∆Hd/Λ
2

+hµ1µc(`ϕT )′(ϕTϕT )Hd/Λ
3 + hµ2µc((`ϕT )3S

(ϕTϕT )3S
)′Hd/Λ

3

+hµ3µc((`ϕT )3A
(ϕTϕT )3S

)′Hd/Λ
3 + hµ4µc(`ϕTϕT )′χHd/Λ

3

+hµ5µc(`ϕTϕT )θ′Hd/Λ
3 + hµ6µc(`ϕTϕT )′′θ′′Hd/Λ

3

+hµ7µc(`ϕT )′χ2Hd/Λ
3 + hµ8µc(`ϕT )′θ′θ′′Hd/Λ

3 + hµ9µc(`ϕT )χθ′Hd/Λ
3

+hµ10µc(`ϕT )θ′′θ′′Hd/Λ
3 + hµ11µc(`ϕT )′′χθ′′Hd/Λ

3

+hµ12µc(`ϕT )′′θ′θ′Hd/Λ
3 + yττc(`ϕT )′′Hd/Λ

• After electroweak(EW) symmetry breaking and flavor symmetry
breaking, the charged leptons obtain mass. The mass matrix is



Me =




ye
ū2
∆vT

Λ3 + y′e
v3
S

Λ3 y′e
v3
S

Λ3 y′e
v3
S

Λ3

yµe
u′θv

2
T

Λ3 yµ
v2
1

Λ2 yµτ
u′′θv2

T
Λ3

0 0 yτ
vT
Λ




vd

where y′e = 3(he1 + he2 + he3) + he4
u2

ξ

v2
S

, yµ ' iyµ1 + yµ2
u∆vT

v2
1

, yµe =

2
3hµ5 + hµ9

uχ
vT

+ hµ10
u′′2θ
u′θvT

and yµτ = 2
3hµ6 + hµ11

uχ
vT

+ hµ12
u′2θ

u′′θvT
.

• The above charged lepton mass matrix Me can be diagonalized
through biunitary transformation V

e†
R MeV e

L = diag(me, mµ, mτ), stan-
dard perturbation diagonalization procedure gives

V e
L '

(
1 se

12 0
−se∗

12 1 0
0 0 1

)

with se
12 = (

yµe
yµ

u′θv
2
T

v2
1Λ

)∗ + |y′e|2
|yµ|2

|vS|6
|v1|4Λ2 ∼ λ3.



The charged lepton masses are,

me ' |(ye
ū2
∆vT

Λ3
+ y′e

v3
S

Λ3
)vd|

mµ ' |yµ
v2
1

Λ2
vd|

mτ ' |yτ
vT

Λ
vd|

• Realistic hierarchies among the charged lepton masses are gener-

ated

me

mτ
' |ye

yτ

ū∆

Λ2
+

y′e
yτ

v3
S

vTΛ2
| ' |y

′
e

yτ

v3
S

vTΛ2
| ∼ λ4

mµ

mτ
' |yµ

yτ

v2
1

vTΛ
| ∼ λ2



Neutrino sector

• The Yukawa interactions for the neutrino masses are

wν = (yξξ + ỹξξ̃)(``)huhu/Λ2 + yS(ϕS``)huhu/Λ2 + ...

Here the neutrino mass comes from 5-dimensional operators, and

the see-saw mechanism can be implemented as well.

• The neutrino mass matrix at the leading order is

Mν =




2yξ
uξ
Λ + 4

3yS
vS
Λ −2

3yS
vS
Λ −2

3yS
vS
Λ

−2
3yS

vS
Λ

4
3yS

vS
Λ 2yξ

uξ
Λ − 2

3yS
vS
Λ

−2
3yS

vS
Λ 2yξ

uξ
Λ − 2

3yS
vS
Λ

4
3yS

vS
Λ




v2
u

Λ

which is exactly diagonalized by the TB mixing matrix

V νT
L MνV ν

L = diag(2yξ
uξ

Λ
+ 2yS

vS

Λ
,2yξ

uξ

Λ
,−2yξ

uξ

Λ
+ 2yS

vS

Λ
)
v2
u

Λ
with V ν

L = UTB, and the neutrino mass spectrum is normal hierar-

chical



MNSP matrix and comparision with A4 model

• The lepton mixing matrix(MNS matrix)

VMNS = V
e †
L V ν

L '




√
2
3 + 1√

6
se
12

1√
3
− 1√

3
se
12

1√
2
se
12

− 1√
6
+

√
2
3se∗

12
1√
3
+ 1√

3
se∗
12 − 1√

2
− 1√

6
1√
3

1√
2




MNS matrix deviates from the TB mixing pattern because of
the corrections from the charged lepton sector, which is of or-
der O(λ3).

• As for the lepton sector, the difference between our model and A4
model are mainly in the symmetry broken chain and the origin of
mass hierarchies in the charged lepton.

Symmetry broken chain Source of mass hierarchies
A4 model A4 → Z3 → nothing FN mechanism
our model T ′ → nothing Z9



Quark sector

• Yukawa interactions in the up and down quark sector

wq = yu1(ϕTQLUc)∆Hu/Λ2 + yu2((QLUc)3(φφ)3)Hu/Λ2

+yu3(QLUc)′θ′′∆Hu/Λ2 + yu4(QLφ)′′tcHu/Λ + yu5Q3(U
cφ)′Hu/Λ

+ytQ3tcHu + yd1(ϕTQLDc)∆̄Hd/Λ
2 + yd2(QLDc)′θ′′∆̄Hd/Λ

2

+yd3(QLφ)′′bc∆Hd/Λ
2 + yd4Q3(D

cφ)′∆Hd/Λ
2 + +yb1Q3bc∆Hd/Λ

+yb2Q3bc(ϕTϕT )hd/Λ
2 + yb3Q3bcχ2hd/Λ

2 + yb4Q3bcθ′θ′′/Λ2...

• After electroweak and flavor symmetry breaking, quark acquire
mass

wq = yu1
u∆vT

Λ2
vuccc + iyu2

v2
1

Λ2
vuccc + yu3

u′′θu∆

Λ2
vu(ucc − cuc) + yu4

v1

Λ
vuctc

+yu5
v1

Λ
vutcc + ytvuttc+yd1

ū∆vT

Λ2
vdss

c + yd2
u′′θū∆

Λ2
vd(dsc − sdc)

+yd3
u∆v1

Λ2
vdsb

c + yd4
u∆v1

Λ2
vdbs

c + yb
u∆

Λ
vdbb

c

with yb = yb1 + yb2
v2
T

u∆Λ + yb3
u2

χ
u∆Λ + yb4

u′θu
′′
θ

u∆Λ.



Textures of quark mass matrices

Mu =




0 −yu3
u′′θu∆

Λ2 0

yu3
u′′θu∆

Λ2 yu1
u∆vT
Λ2 + iyu2

v2
1

Λ2 yu5
v1
Λ

0 yu4
v1
Λ yt


 vu

Md =




0 −yd2
u′′θ ū∆

Λ2 0

yd2
u′′θ ū∆

Λ2 yd1
ū∆vT
Λ2 yd4

u∆v1
Λ2

0 yd3
u∆v1
Λ2 yb

u∆
Λ




vd

• The above mass matrices exactly have the same textures as those

in the well-known U(2) flavor model.



• Predictions for quark masses

mu ' | y2
u3ytu

′′2
θ u2

∆

(iyu2yt − yu4yu5)v
2
1Λ

2
vu| ∼ λ8vu

mc ' |(iyu2 −
yu4yu5

yt
)
v2
1

Λ2
vu| ∼ λ4vu

mt ' |ytvu| ∼ 1vu

md ' |y
2
d2u′′2θ ū∆

yd1vTΛ2
vd| ∼λ7vd

ms ' |yd1
ū∆vT

Λ2
vd| ∼λ5vd

mb ' |yb
u∆

Λ
vd| ∼λ3vd

with tan β ≡ vu
vd
∼ 1



• Predictions for the CKM matrix

Vud ' Vcs ' Vtb ' 1

V ∗us ' −Vcd '
yd2

yd1

u′′θ
vT
− yu3ytu

′′
θu∆

(iyu2yt − yu4yu5)v
2
1

∼ λ

V ∗cb ' −Vts ' (
yd3

yb
− yu4

yt
)
v1

Λ
∼ λ2

V ∗ub ' − yu3yt

iyu2yt − yu4yu5
(
yd3

yb
− yu4

yt
)
u′′θu∆

v1Λ
+

yd2y∗d4
|yb|2

u′′θū∆v∗1
u∆Λ2

∼ λ4

Vtd '
yd2

yd1
(
yd3

yb
− yu4

yt
)
u′′θv1

vTΛ
− yd2y∗d4

|yb|2
u′′θū∆v∗1
u∆Λ2

∼ λ3

• Two interesting relations between the quark masses and CKM

elements

|Vtd

Vts
| '

√
md

ms
, |Vub

Vcb
| '

√
mu

mc



Vacuum alignment

• Following Altarelli and Feruglio, we exploit a global continuous
U(1)R symmetry to simplify the vacuum alignment problem. +1
R-charge is assigned to the matter fields, and 0 R-charge to the
Higgs and flavon supermultiplets. Driving fields carrying +2 R-
charge are introduced.

Fields ϕR
T ϕR

S ξR φR θ′′R ∆R ∆̄R χR

T ′ 3 3 1 2′′ 1′′ 1 1 1
Z3 1 α α 1 1 1 1 1
Z9 β6 1 1 β2 β7 β7 β5 β7

• At the leading order, the superpotential depending on the driving
fields is

wv = g1(ϕ
R
T φφ) + g2(ϕ

R
T ϕT )∆ + g3(φ

Rφ)χ + g4(ϕTφRφ) + g5χRχ2

+g6χRθ′θ′′ + g7χR(ϕTϕT ) + g8θ′′Rθ′′2 + g9θ′′Rθ′χ + g10θ′′R(ϕTϕT )′
+M∆∆R∆ + g11∆

Rχ2 + g12∆
Rθ′θ′′ + g13∆

R(ϕTϕT ) + M̄∆∆̄R∆̄
+g14∆̄

R∆2 + g15(ϕ
R
S ϕSϕS) + g16(ϕ

R
S ϕS)ξ̃ + g17ξR(ϕSϕS) + g18ξRξ2

+g19ξRξξ̃ + g20ξRξ̃2



• The scalar potential of the model is

V =
∑

i

|∂wv

∂Si
|2 +

∑

i

m2
Si
|Si|2 + ...

• The driving fields have zero VEV. In the SUSY limit, the mini-
mization is

∂wv

∂ϕR
T1

= ig1φ2
1 + g2ϕT1∆ = 0

∂wv

∂ϕR
T2

= (1− i)g1φ1φ2 + g2ϕT3∆ = 0

∂wv

∂ϕR
T3

= g1φ2
2 + g2ϕT2∆ = 0

∂wv

∂φR
1

= g3φ2χ + g′4(ϕT1φ2 − (1− i)ϕT3φ1) = 0

∂wv

∂φR
2

= −g3φ1χ + g′4(ϕT1φ1 + (1 + i)ϕT2φ2) = 0

∂wv

∂χR
= g5χ2 + g6θ′θ′′ + g7(ϕ

2
T1 + 2ϕT2ϕT3) = 0



∂wv

∂θ′′R
= g8θ′′2 + g9θ′χ + g10(ϕ

2
T3 + 2ϕT1ϕT2) = 0

∂wv

∂∆R
= M∆∆ + g11χ2 + g12θ′θ′′ + g13(ϕ

2
T1 + 2ϕT2ϕT3) = 0

∂wv

∂∆̄R
= M̄∆∆̄ + g14∆

2 = 0

∂wv

∂ϕR
S1

=
2

3
g15(ϕ

2
S1 − 2ϕS2ϕS3) + g16ϕS1ξ̃ = 0

∂wv

∂ϕR
S2

=
2

3
g15(ϕ

2
S2 − ϕS1ϕS2) + g16ϕS3ξ̃ = 0

∂wv

∂ϕR
S3

=
2

3
g15(ϕ

2
S3 − ϕS1ϕS2) + g16ϕS2ξ̃ = 0

∂wv

∂ξR
= g17(ϕ

2
S1 + 2ϕS2ϕS3) + g18ξ2 + g19ξξ̃ + g20ξ̃2 = 0



• These sets of equations admit the solutions

〈χ〉 = uχ

〈θ′〉 = u′θ = −[
(g2

3g7 + g2
4g5)

2g8

g4
4g2

6g9
]1/3uχ

〈θ′′〉 = u′′θ = [
(g2

3g7 + g2
4g5)g9

g2
4g6g8

]1/3uχ

〈∆〉 = u∆ =
g2
3(g7g12 − g6g13) + g2

4(g5g12 − g6g11)

g2
4g6

u2
χ

M∆

〈∆̄〉 = ū∆ = −[g2
3(g7g12 − g6g13) + g2

4(g5g12 − g6g11)]
2g14

g4
4g2

6

u4
χ

M2
∆M̄∆

〈φ〉 = (v1,0),

v1 = (
ig2g3[g

2
3(g7g12 − g6g13) + g2

4(g5g12 − g6g11)]

g1g3
4g6

)1/2M
−1/2
∆ u

3/2
χ

〈ϕT 〉 = (vT ,0,0) with vT =
g3
g4

uχ, 〈ξ̃〉 = 0, 〈ξ〉 = uξ

〈ϕS〉 = (vS, vS, vS), vS = (− g18

3g17
)1/2uξ



Corrections to the leading order predictions

• Two sources of corrections to the leading order results

1. Higher dimensional operators in the driving superpotential wv—

-revising the vacuum alignment

2. Higher dimensional operators in the Yukawa superpotentials

we,wν,wu and wd—-modifying the Yukawa couplings after the elec-

troweak and flavor symmetry breaking

• The subleading corrections have been studied in details. All ob-

servables get a correction of order 1/Λ, and the leading order

predictions are not spoiled.



Testing this model experimentally(in progress)

• The most promising are the FCNC(flavor changing neutral cur-

rent) processes, such as lepton flavor violation µ → eγ and µ − e

conversion in atom, electric dipole moments of the electron and

neutron, proton decay and so on.

• The constraints and the implication form leptogenesis.



Summary

• A SUSY model based on T ′ ⊗ Z3 ⊗ Z9 is built.

• TB mixing with small corrections is derived naturally, and the

correct pattern in the charged lepton masses are generated. In

the charged lepton sector, T ′ is broken completely at the leading

order, and it is broken to Z4 in the neutrino sector

• The up type quark and down type quark mass matrices have the

same textures as the U(2) flavor theory at the leading order, re-

alistic hierarchies in quark masses and CKM matrix elements are

produced.



Thank you!


