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Outline

•  Why do we exist?
•  Solar Neutrinos
•  Massive Neutrinos and Structure Formation
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Why do we exist?�
Matter Anti-matter Asymmetry



4 Murayama, Jinhua School, Sep 2008 



5 

Matter and Anti-Matter�
Early Universe
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Matter and Anti-Matter�
Current Universe

The Great Annihilation
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Baryogenesis

•  What created this tiny excess matter? 
•  Necessary conditions for baryogenesis (Sakharov):

–  Baryon number non-conservation
–  CP violation

(subtle difference between matter and anti-matter)
–  Non-equilibrium
⇒ Γ(ΔB>0) > Γ(ΔB<0)

•  It looks like neutrinos have no role in this…
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Electroweak Anomaly

•  Actually, SM converts L
 (ν) to B (quarks).
–  In Early Universe (T >

 200GeV), W is massless
 and fluctuate in W
 plasma

–  Energy levels for left
-handed quarks/leptons
 fluctuate correspon
-dingly

ΔL=ΔQ=ΔQ=ΔQ=ΔB=1 ⇒ Δ(B–L)=0
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Leptogenesis

•  You generate Lepton Asymmetry first.
•  Generate L from the direct CP violation in right

-handed neutrino decay

•  L gets converted to B via EW anomaly
 ⇒ More matter than anti-matter        
 ⇒ We have survived “The Great Annihilation”

Γ(N1→νiH) − Γ(N1→ν iH)∝ Im(h1 jh1khlk
* hlj
*)
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Origin of Universe

•  Maybe an even bigger role
•  Microscopically small Universe at

 Big Bang got stretched by an
 exponential expansion (inflation)

•  Need a spinless field that 
–  slowly rolls down the potential
–  oscillates around it minimum
–  decays to produce a thermal bath

•  The superpartner of right-handed
 neutrino fits the bill

•  When it decays, it produces the
 lepton asymmetry at the same time 
(HM, Suzuki, Yanagida, Yokoyama)

Neutrino is mother of the Universe?
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Origin of the Universe

•  Right-handed scalar
 neutrino: V=m2φ2

•  ns~0.96
•  r~0.16
•  Need m~1013GeV
•  Still consistent with latest

 WMAP
•  But V=λφ4 is excluded
•  Verification possible in

 the near future
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Solar Neutrinos
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How the Sun burns

•  The Sun emits light because nuclear fusion
 produces a lot of energy

Φν =
2Lsun
25MeV

1
4π (1AU)2

= 7 ⋅1010 sec−1 cm−2
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Solar Neutrino Spectrum

€ 

p+ p→ d +νe + e+

€ 

7Be + e−→7Li +νe

€ 

7Be + p→8B

→8Be+ e+ +νe
8Be→ 2α€ 

p+ e− + p
→ d +νe

€ 

3He+ p

→4He +νe + e+
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We don’t get enough

•  Neutrino
 oscillation?

•  Something
 wrong with our
 understanding of
 the Sun?
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Homestake Experiment
•  The first solar neutrino

 experiment 1970-98
•  600t dry cleaning fluid

 Cl2C=CCl2
 perchloroethylene

•  νe 37Cl (24%)→e- 37Ar
•  Makes ~0.5atom/day
•  Extract them by He

 bubbling every ~2wks
•  Count 37Ar decay in a

 proportional counter        
 τ1/2=35.04 days

2.56±0.23 SNU vs 7.6+1.3-1.1 predicted
1 SNU = 10-36 captures/atom/sec
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SuperK sees the Sun

€ 

Φν = 2.35 ± 0.02 ± 0.08 ×106cm−2 sec−1

€ 

Φν
th = 5.79 ×106cm−2 sec−1

Elastic scattering νee→νee
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Ga Experiments

•  νe
71Ga (40%)→e- 71Ge

•  Low threshold                 
 Eν> 0.23MeV,     
 sensitive to pp ν’s

•  Radiochemical
•  GALLEX in Gran Sasso,

 SAGE in Baksan
•  Capture cross section

 calibrated by 51Cr source
 (>60 PBq)!

74+7-8 (GALLEX) 75+8-7 (SAGE) SNU 
cf. 128+9-7 predicted
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Why?

1.  Astrophysics is wrong
–  pp neutrino flux tied to solar luminosity
–  Change 7Be, 8B arbitrarily ⇒ can’t fit the data

2.  Some of the data are wrong
–  Even if only one experiment correct, the

 puzzle remains
–  Need both 1. & 2. to explain the situation

3.  Something is wrong with neutrinos
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Confusing data

Homestake

-#sunspot

#Democrates
 in the House
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Astrophysics wrong?

Fit data with arbitrary 7Be, 8B Best fit needs negative 7Be
Remember 8B is a product of 7Be!
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Astrophysics wrong?

•  Helioseismology data agree well with the SSM

See, however, recent developments in Raffelt’s lecture
Murayama, Jinhua School, Sep 2008 
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SNO comes to the rescue

•  Charged Current:νe

•  Neutral Current: νe+νµ+ντ

•  7.9σ difference
⇒ νµ,τ are coming from the Sun!

€ 

φCC =1.68−0.06
+0.06(stat)−0.09

+0.08(syst)
φCC = 1.68+0.06

−0.06(stat.)+0.08
−0.09(syst.)

φNC = 4.94+0.21
−0.21(stat.)+0.38

−0.34(syst.)
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Wrong Neutrinos

•  Only νe produced in the
 Sun

•  Wrong Neutrinos νµ,τ are
 coming from the Sun!

•  Somehow some of νe were
 converted to νµ,τ on their
 way from the Sun’s core
 to the detector
⇒ neutrino oscillation!
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CC NC

ES
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We don’t get enough

•  Neutrino
 oscillation?

•  Something
 wrong with our
 understanding of
 the Sun?
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Terrestrial “Solar Neutrino”

•  Can we convincingly
 verify oscillation with
 man-made neutrinos?

•  Hard for low Δm2
•  To probe LMA, need

 L~100km, 1kt

•  Need low Eν, high Φν
•  Use neutrinos from

 nuclear reactors

Psurv = 1− sin2 2θ sin2 1.27Δm
2c4

eV2
GeV
Eν

L
km

 

 
 

 

 
 

1kt

KamLAND
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Location, Location, Location



33 

KamLAND 2008�
Reactor neutrinos do oscillate!

≈Proper time τ 
L0=180 km Murayama, Jinhua School, Sep 2008 
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Detection Principle

Coincidence signal: detect
•  Prompt:    e+   annihilation
•  Delayed:  n  capture
180 µs capture time

p +e 

511keV γ

511keV γ
2.2 MeV 

d 
n 

Cross section for�
 νe + p → e+ + n

Reactor
νe spectrum

Detected Eν spectrum
(no oscillations)
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KamLAND result

•  First terrestrial expt
 relevant to solar
 neutrino problem

Dec 2002
Expected #events: 86.8±5.6
Background #events: 0.95±0.99

Observed #events: 54
No oscillation hypothesis
Excluded at 99.95%

Murayama, Jinhua School, Sep 2008 
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March 2002 

April 2002
 with SNO 

Dec 2002 
with KamLAND 

Progress in 2002 �
on the Solar Neutrino Problem

June 2004 
with KamLAND 
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KamLAND 2008�
Reactor neutrinos do oscillate!

≈Proper time τ 
L0=180 km Murayama, Jinhua School, Sep 2008 
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No other solution than oscillation

•  Neutrino decay
– Wrong energy dependence 

•  Spin-resonant flip
– Relies on a large solar magnetic field

•  New flavor-changing neutral current
– Relies on a high solar matter density

•  Violation of the equivalence principle
– Relies on the strong solar gravitational potential

Murayama, Jinhua School, Sep 2008 
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Two-Neutrino Oscillation

•  When produced (e.g., π+→µ+νµ), neutrino is
 of a particular type

•  No longer 100% νµ, partly ντ! 
•  “Survival probability” for νµ after t 

|νµ , t = 1 cosθ e−im1
2t / 4p + 2 sinθ e−im2

2t / 4p

  

P = νµ νµ , t
2

= 1− sin2 2θ sin2 1.27Δm2c4

eV2
GeV
c  p 

ct
km

 

 
 

 

 
 

e−im1
2t / 4p e−im2

2t / 4p,t

Usually plotted on (Δm2, sin22θ) 
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Dark Side of Neutrino Oscillation

•  Traditional parameterization of  neutrino
 oscillation in terms of (Δm2, sin22θ) covers
 only a half of the parameter space
(de Gouvêa, Friedland, HM)

•  Convention: ν2 heavier than ν1
– Vary θ from 0˚ to 90˚
–  sin22θ covers 0˚ to 45˚
– Light side (0 to 45˚) and Dark Side (45˚ to 90˚ )

ν1 = νe cosθ +νµ sinθ

ν2 = −νe sinθ +νµ cosθ

Murayama, Jinhua School, Sep 2008 
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Dark Side of Neutrino Oscillation

•  To cover the whole parameter space, can’t use (Δm2,
 sin22θ) but (Δm2, tan2θ) instead. 
 (Fogli, Lisi, Montanino; de Gouvêa, Friedland, HM)

•  In vacuum, oscillation probability depends only on sin22θ,
 i.e., invariant under θ↔ 90°-θ

•  Seen as a reflection symmetry on the log scale tan2θ ↔
 cot2θ 

•  Or use sin2θ on the linear scale sin2θ ↔ cos2θ 

Murayama, Jinhua School, Sep 2008 
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Fit to the rates of
solar neutrino events
from all experiments
(Fogli et al)

How do we 
understand this
Plot?

Focus on the final
answer
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Matter Effect

•  CC interaction in the
 presence of non
-relativistic electron

€ 

L = −
GF
2

e γµ (1−γ5 )νeν eγ
µ (1−γ5 )e

= −
GF
2

e γµ (1−γ5 )eν eγ
µ (1−γ5 )νe

= − 2GFneν eγ
0νe

•  Neutrino Hamiltonian

€ 

H = common

+
Δm2

4E
−cos2θ sin 2θ
sin 2θ cos2θ

 

 
 

 

 
 

+ 2GFne
1 0
0 0
 

 
 

 

 
 

Electron neutrino higher energy in the Sun
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Electron Number Density

Nearly 
exponential
for most of the 
Sun’s interior
⇒ oscillation
probability can
 be solved
 analytically
 with
 Whittaker
 function

€ 

ne (r) ≈ ne (0)e
−r / r0

ne (0) ≈ 100NA /cm
3

r0 ≈ Rsun /10 ≈ 7 ⋅10
4 km

Δm2 vs 4√2GFneEν
~2.6 10-4eV2 (Eν/10MeV)
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Adiabatic

•  Use “instantaneous”
 eigenstates ν+ and ν–

•  For the LMA region,
 the dynamics is
 adiabatic: there is no
 hopping between
 states
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Loose Ends

•  Energy dependence in the solar neutrino
 survival probability not fully demonstrated
–  pp, 7Be solar neutrino experiments

•  Evidence for ντ “appearance” in atmos ν
 still not strong enough (99%CL)
– OPERA, ICARUS

Murayama, Jinhua School, Sep 2008 
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Low-Energy Solar Neutrinos�

•  Solar neutrino data
 suggest energy
-dependent survival
 probability
⇒ tests MSW effect
⇒ θ12
⇒ Helps interpretation
 of CP violation,
 double beta decay
 data

7%
1%

20%
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Transition from matter to vacuum

•  Measuring low-energy (< MeV) solar
 neutrino flux is a great experimental
 challenge

•  Low cross section
•  Can’t even make an electron
•  Radioactivity background is huge!
•  Need U, Th < 10-16g/g
•  Can’t clean water to that level
•  But oil? (liquid scintillator)
•  Elastic scattering νee→νee
•  Good light yield: ~11K photons/MeV
•  Achieved 500 p.e./MeV

•  Borexino
•  organic liquid scintillator

Murayama, Jinhua School, Sep 2008 
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Massive Neutrinos and�
Structure Formation
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Neutrino Dark Matter?

•  Now that we seem to know neutrinos are
 massive, can’t they be dark matter?

•  Problem: neutrinos don’t clump!
Ωνh

2 =
mν
97eV
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Cold Dark Matter

•  Cold Dark Matter is not moving much
•  Gets attracted by gravity
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Neutrino Free Streaming

•  Neutrinos, on the other hand, move fast and
 tend to wipe out the density contrast.
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Small Scale Structure Suppressed

•  Because the
 neutrino free
 streaming wipes
 out density
 fluctuation,
 structure is
 suppressed at small
 distance scales

55 Murayama, Jinhua School, Sep 2008 
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Limits

•  Depends on the details
 of the analysis

•  Use Lyman alpha?
•  Allow for scale

-dependent bias?
•  e.g., M. Tegmark et al,

 astro-ph/0608632
 using Luminous Red
 Galaxies mν<0.3eV
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