Theoretical Overview of Neutrino Physics II

Hitoshi Murayama September 17th, 2008 九华山庄

- Why do we exist?
- Solar Neutrinos
- Massive Neutrinos and Structure Formation

Why do we exist? Matter Anti-matter Asymmetry

ANGELS DEMONS

"A breathless, real-time adventure...Exciting, fast-paced, with an unusually high IQ." —San Francisco Chronicle

Murayama, Jinhua School, Sep 2008

With a dangerous cargo

at stake, Commander Sisko must battle a band of hijackers!

STAR TREP

DEEP SPACE NINE

ANTIMATTER

John Vornholt

PARAT NAME TAKING

Baryogenesis

- What created this tiny excess matter?
- *Necessary* conditions for baryogenesis (Sakharov):
 - Baryon number non-conservation
 - CP violation
 - (subtle difference between matter and anti-matter)
 - Non-equilibrium
 - $\Rightarrow \Gamma(\Delta B \!\!>\!\! 0) > \Gamma(\Delta B \!\!<\!\! 0)$
- It looks like neutrinos have no role in this...

Electroweak Anomaly

- Actually, SM converts L
 (v) to B (quarks).
 - In Early Universe (T > 200GeV), W is massless and fluctuate in W plasma
 - Energy levels for left
 -handed quarks/leptons
 fluctuate correspon
 -dingly

 $\Delta L = \Delta Q = \Delta Q = \Delta Q = \Delta B = 1 \implies \Delta (B - L) = 0$

Leptogenesis

- You generate *Lepton Asymmetry* first.
- Generate *L* from the direct CP violation in right -handed neutrino decay V_i

$$N_1 \longrightarrow h_{1j}$$

 $\Gamma(N_1 \rightarrow \nu_i H) - \Gamma(N_1 \rightarrow \overline{\nu}_i H) \propto \operatorname{Im}(h_{1j} h_{1k} h_{lk}^* h_{lj}^*)$

• L gets converted to B via EW anomaly

 \Rightarrow More matter than anti-matter

⇒ We have survived "The Great Annihilation" Murayama, Jinhua School, Sep 2008

EORETICAL PHYSIC

Origin of Universe

- Maybe an *even bigger* role
- Microscopically small Universe at Big Bang got stretched by an exponential expansion (inflation)
- Need a spinless field that
 - slowly rolls down the potential
 - oscillates around it minimum
 - decays to produce a thermal bath
- The superpartner of right-handed neutrino fits the bill
- When it decays, it produces the lepton asymmetry at the same time (HM, Suzuki, Yanagida, Yokoyama)

Neutrino is mother of the Universe?

EORETICAL

Origin of the Universe

- Right-handed scalar neutrino: V=m²φ²
- $n_s \sim 0.96$
- *r~*0.16
- Need $m \sim 10^{13} \text{GeV}$
- Still consistent with latest WMAP
- But $V = \lambda \phi^4$ is excluded
- Verification possible in the near future

Solar Neutrinos

How the Sun burns

• The Sun emits light because nuclear fusion produces a lot of energy

Solar Neutrino Spectrum

We don't get enough

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

Neutrino oscillation?

Something wrong with our understanding of the Sun?

Homestake Experiment

- The first solar neutrino experiment 1970-98
- 600t dry cleaning fluid Cl₂C=CCl₂ perchloroethylene
- v_e^{37} Cl (24%) $\rightarrow e^{-37}$ Ar
- Makes ~0.5atom/day
- Extract them by He bubbling every ~2wks
- Count ³⁷Ar decay in a proportional counter $\tau_{1/2}$ =35.04 days

 2.56 ± 0.23 SNU vs 7.6+1.3-1.1 predicted 1 SNU = 10^{-36} captures/atom/sec

SuperK sees the Sun

Ga Experiments

- v_e^{71} Ga (40%) $\rightarrow e^{-71}$ Ge
- Low threshold $E_v > 0.23 \text{MeV},$ sensitive to *pp v*'s
- Radiochemical
- GALLEX in Gran Sasso, SAGE in Baksan
- Capture cross section calibrated by ⁵¹Cr source (>60 PBq)!

74+7-8 (GALLEX) 75+8-7 (SAGE) SNU cf. 128+9-7 predicted

Why?

- 1. Astrophysics is wrong
 - pp neutrino flux tied to solar luminosity
 - Change ⁷Be, ⁸B arbitrarily \Rightarrow can't fit the data
- 2. Some of the data are wrong
 - Even if only one experiment correct, the puzzle remains
 - Need both 1. & 2. to explain the situation
- 3. Something is wrong with neutrinos

BERKELEY CENTER FOR THEORETICAL PHYSICS

Astrophysics wrong?

Fit data with arbitrary ⁷Be, ⁸B

Best fit needs negative ⁷Be Remember ⁸B is a product of ⁷Be!

Murayama, Jinhua School, Sep 2008

PHYSIC

THEORETICAL

Astrophysics wrong?

• Helioseismology data agree well with the SSM

Murayama, Jinhua School, Sep 2008

SNO comes to the rescue

• Charged Current: v_e

 $\phi_{CC} = 1.68^{+0.06}_{-0.06} (\text{stat.})^{+0.08}_{-0.09} (\text{syst.})$

• Neutral Current: $v_e + v_\mu + v_\tau$ $\phi_{NC} = 4.94^{+0.21}_{-0.21} (\text{stat.})^{+0.38}_{-0.34} (\text{syst.}) v_e, v_\mu, v_\tau v_{e_z} v_\mu, v_\tau$

• 7.9σ difference

 $\Rightarrow v_{\mu,\tau}$ are coming from the Sun!

d

Wrong Neutrinos

- Only v_e produced in the Sun
- Wrong Neutrinos $v_{\mu,\tau}$ are coming from the Sun!
- Somehow some of v_e were converted to $v_{\mu,\tau}$ on their way from the Sun's core to the detector

 \Rightarrow neutrino oscillation!

We don't get enough

• Neutrino oscillation?

Something wrong with our understanding of the Sun?

FIFY CENTER

Terrestrial "Solar Neutrino"

• Can we convincingly verify oscillation with man-made neutrinos?

 $P_{surv} = 1 - \sin^2 2\theta \sin^2 \left(1.27 \frac{\Delta m^2 c^4}{eV^2} \frac{\text{GeV}}{E_v} \frac{L}{\text{km}} \right)$

- Hard for low Δm^2
- To probe LMA, need L~100km, 1kt
- Need low E_{v} , high Φ_{v}
- Use neutrinos from nuclear reactors

Murayama, Jinhua School, Sep 2008

BERKELEY CENTER FOR THEORETICAL PHYSICS

Location, Location, Location

32

Reactor

spectrum

THEORETICAL PHYSICS

Detection Principle

 $v_{-}+$

Coincidence signal: detect Prompt Delayed Cross section for 180 μ s capture time 34 +n

KamLAND result

• First terrestrial expt relevant to solar neutrino problem

Dec 2002

Expected #events: 86.8±5.6 Background #events: 0.95±0.99 Observed #events: 54

No oscillation hypothesis Excluded at 99.95%

No other solution than oscillation

- Neutrino decay
 - Wrong energy dependence
- Spin-resonant flip
 - Relies on a large solar magnetic field
- New flavor-changing neutral current
 - Relies on a high solar matter density
- Violation of the equivalence principle
 - Relies on the strong solar gravitational potential

39

Two-Neutrino Oscillation

• When produced (*e.g.*, $\pi^+ \rightarrow \mu^+ \nu_{\mu}$), neutrino is of a particular type

$$|v_{\mu},t\rangle = |1\rangle \cos\theta e^{-im_1^2 t/4p} + |2\rangle \sin\theta e^{-im_2^2 t/4p}$$

- No longer 100% v_{μ} , partly $v_{\tau}!$
- "Survival probability" for v_{μ} after t

$$P = \left| \left\langle v_{\mu} \left| v_{\mu}, t \right\rangle \right|^{2} = 1 - \sin^{2} 2\theta \sin^{2} \left(1.27 \frac{\Delta m^{2} c^{4}}{eV^{2}} \frac{\text{GeV}}{c|\vec{p}|} \frac{ct}{\text{km}} \right)$$

Usually plotted on $(\Delta m^2, \sin^2 2\theta)$

Dark Side of Neutrino Oscillation

- Traditional parameterization of neutrino oscillation in terms of (Δm², sin²2θ) covers only a *half* of the parameter space (de Gouvêa, Friedland, HM)
- Convention: v_2 heavier than v_1
 - Vary θ from 0° to 90° $v_1 = v_e \cos\theta + v_\mu \sin\theta$
 - $-\sin^2 2\theta$ covers 0° to 45° $v_2 = -v_e \sin\theta + v_\mu \cos\theta$
 - Light side (0 to 45°) and Dark Side (45° to 90°)

Dark Side of Neutrino Oscillation

• To cover the whole parameter space, can't use $(\Delta m^2, \sin^2 2\theta)$ but $(\Delta m^2, \tan^2 \theta)$ instead.

(Fogli, Lisi, Montanino; de Gouvêa, Friedland, HM)

- In vacuum, oscillation probability depends only on $\sin^2 2\theta$, *i.e.*, invariant under $\theta \Leftrightarrow 90^\circ \theta$
- Seen as a reflection symmetry on the log scale $\tan^2 \theta \Leftrightarrow \cot^2 \theta$
- Or use $\sin^2 \theta$ on the linear scale $\sin^2 \theta \Leftrightarrow \cos^2 \theta$

I P M U

Fit to the rates of solar neutrino events from all experiments (Fogli et al)

How do we understand this Plot?

Focus on the final answer

Matter Effect

• CC interaction in the presence of non -relativistic electron

$$L = -\frac{G_F}{\sqrt{2}} \bar{e} \gamma_\mu (1 - \gamma_5) v_e \bar{v}_e \gamma^\mu (1 - \gamma_5) e^{-\frac{1}{2} \bar{v}_e \gamma_\mu} (1 - \gamma_5) e^{-\frac{1}{2$$

$$= -\frac{G_F}{\sqrt{2}} \overline{e} \gamma_{\mu} (1 - \gamma_5) e \overline{v}_e \gamma^{\mu} (1 - \gamma_5) v_e$$

 $=-\sqrt{2}G_F n_e \overline{v}_e \gamma^0 v_e$

$$+\frac{\Delta m^2}{4E} \begin{pmatrix} -\cos 2\theta & \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix} \\ +\sqrt{2}G_F n_e \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Electron neutrino higher energy in the Sun

Murayama, Jinhua School, Sep 2008

Electron Number Density

Nearly exponential for most of the Sun's interior \Rightarrow oscillation probability can be solved analytically with Whittaker function

Adiabatic

 Use "instantaneous" eigenstates v₊ and v_{_}

 For the LMA region, the dynamics is adiabatic: there is no hopping between states

$$P_{\rm surv} = \cos^2\theta \cos^2\theta_m + \sin^2\theta \sin^2\theta_m$$

Loose Ends

- Energy dependence in the solar neutrino survival probability not fully demonstrated pp, ⁷Be solar neutrino experiments
- Evidence for ν_τ "appearance" in atmos ν still not strong enough (99%CL)
 – OPERA, ICARUS

PMOW-Energy Solar Neutring Seley CENTER FO THEORETICAL PHYSIC

- Solar neutrino data suggest energy
 -dependent survival probability
 - ⇒ tests MSW effect
 - $\Rightarrow \theta_{12}$
 - ⇒ Helps interpretation of CP violation, double beta decay data

Murayama, Jinhua School, Sep 2008

EORETICAL PHYSICS

Transition from matter to vacuum

- Measuring low-energy (< MeV) solar neutrino flux is a *great* experimental challenge
- Low cross section
- Can't even make an electron
- Radioactivity background is *huge*!
- Need U, Th < 10^{-16} g/g
- Can't clean water to that level
- But oil? (liquid scintillator)
- Elastic scattering $v_e e \rightarrow v_e e$
- Good light yield: ~11K photons/MeV
- Achieved 500 p.e./MeV

- Borexino
- organic liquid scintillator

Murayama, Jinhua School, Sep 2008

Massive Neutrinos and Structure Formation

Neutrino Dark Matter?

• Now that we seem to know neutrinos are massive, can't they be dark matter?

$$\Omega_{\nu}h^2 = \frac{m_{\nu}}{97\text{eV}}$$

• Problem: neutrinos don't clump!

Cold Dark Matter

- Cold Dark Matter is not moving much
- Gets attracted by gravity

Neutrino Free Streaming

• Neutrinos, on the other hand, move fast and tend to wipe out the density contrast.

THEORETICAL PHYSICS

Small Scale Structure Suppressed

Because the neutrino free streaming wipes out density fluctuation, structure is suppressed at small distance scales

Murayama, Jinhua School, Sep 2008

Limits

- Depends on the details of the analysis
- Use Lyman alpha?
- Allow for scale -dependent bias?
- e.g., M. Tegmark et al, astro-ph/0608632 using Luminous Red Galaxies m_v<0.3eV

