Topical Seminar on Frontier of Particle Physics 2007-2008

Neutrino Physics and Astrophysics

September 17-21, Beijing

Neutrino Mass Models part II

Ferruccio Feruglio
Universita' di Padova

plan of part II

1. Flavor symmetries (II): the lepton mixing puzzle 2. First approximation for a realistic model: TB mixing 3. TB mixing from symmetry breaking of a flavor symmetry 1. A minimal model based on A_{4}
 2. Conclusion

[much more speculative! Only an example out of many existing possibilities, to illustrate current ideas]

```
based on
AF1 = Guido Altarelli and F. F. hep-ph/0504165
AF2 = Guido Altarelli and F. F. hep-ph/0512103
AFL = Guido Altarelli,F.F. and Yin Lin hep-ph/0610165
FHLM1 = F.F., Claudia Hagedorn, Yin Lin and Luca Merlo hep-ph/0702194
AFH = Guido Altarelli, F.F. and Claudia Hagedorn hep-ph/0702194
FL = F.F. and Yin Lin hep-ph/07121528
L = Yin Lin hep-ph/08042867
```


Flavor symmetries II (the lepton mixing puzzle)

$$
-\frac{g}{\sqrt{2}} W_{\mu}^{-} \bar{e}_{L} \gamma^{u} U_{P M N S} v_{L}+h . c .
$$

$U_{\text {PMNS }}$ depends by three mixing angles $\vartheta_{12}, \vartheta_{23}, \vartheta_{13}$ like $\mathrm{V}_{\text {CKM }}$

$$
U_{P M N S}=U_{e}^{+} U_{v}
$$

ϑ_{ij} have been determined or constrained by neutrino oscillations

	Fogli [NoVe 2008] [0806.2649]	Schwetz et al. [0808.2016]
$\sin ^{2} \vartheta_{12}$	$0.326_{-0.04}^{+0.05} \quad[2 \sigma]$	$0.304_{-0.016}^{+0.02}$
$\sin ^{2} \vartheta_{23}$	$0.45_{-0.09}^{+0.16} \quad[2 \sigma]$	$0.50_{-0.06}^{+0.07}$
$\sin ^{2} \vartheta_{13}$	0.016 ± 0.010	$0.01_{-0.011}^{+0.016}$
$\Delta m_{21}^{2}\left(e V^{2}\right)$	$(7.66 \pm 0.35) \times 10^{-5} \quad[2 \sigma]$	$\left(7.65_{-0.20}^{+0.23}\right) \times 10^{-5}$
$\Delta m_{31}^{2}\left(e V^{2}\right) \mid$	$(2.38 \pm 0.27) \times 10^{-3} \quad[2 \sigma]$	$\left(2.40_{-0.11}^{+0.12}\right) \times 10^{-3}$

Tri-Bimaximal Mixing

a good approximation of the data [Harrison, Perkins and Scott; Zhi-Zhong Xing 2002]

$$
\sin ^{2} \vartheta_{12}^{T B}=\frac{1}{3} \quad \sin ^{2} \vartheta_{23}^{T B}=\frac{1}{2} \quad \sin ^{2} \vartheta_{13}^{T B}=0
$$

quality set by the solar angle

$$
\vartheta_{12}^{T B}=35.3^{0} \longleftrightarrow \begin{aligned}
& \vartheta_{12}^{\text {Fogli }}=\left(34.8_{-2.5}^{+3.0}\right)^{0} \\
& \vartheta_{12}^{\text {Schwetz }}=\left(33.5_{-1.0}^{+1.4}\right)^{0}
\end{aligned}
$$

correct within a couple of degrees, about 0.035 rad , less than $\vartheta_{c^{2}}$

$$
U_{T B}=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right) \quad \begin{array}{ll}
\text { Tri-Bimaximal mixing } \\
v_{3}=\frac{-v_{\mu}+v_{\tau}}{\sqrt{2}} & \text { maximal } \\
v_{2}=\frac{v_{e}+v_{\mu}+v_{\tau}}{\sqrt{3}} & \text { trimaximal }
\end{array}
$$

What is the best $1^{\text {st }}$ order approximation to lepton mixing?

 in the quark sector$$
V_{C K M}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+O\left(\vartheta_{C}\right)
$$

[Wolfenstein 1983:
Zhi-Zhong Xing 1994,...]
in the lepton sector

$$
\begin{aligned}
U_{P M N S} & =\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)+\ldots \\
U_{P M N S} & =\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}
\end{array}\right)+\ldots
\end{aligned}
$$

agreement of ϑ_{12} suggests that only tiny corrections [$O\left(\vartheta_{c}{ }^{2}\right)$] are tolerated. If all corrections are of the same order, then $\vartheta_{13} \approx O\left(\vartheta_{C}{ }^{2}\right)$ expected
can be reconciled with the data through a correction of $O\left(\vartheta_{\mathrm{C}}\right)$, for instance a rotation in the 12 sector [from the left side] $\vartheta_{13} \approx O\left(\vartheta_{\mathrm{C}}\right)$ expected

$$
\begin{array}{ll}
\text { [quark-lepton complementarity ?] } & \text { [Smirnov; } \\
\vartheta_{23}-\pi / 4 \approx O\left(\vartheta_{c}{ }^{2}\right) & \text { Midal; } \\
\text { Smata and and } \\
\text { Smirnov 2004] }
\end{array}
$$

common feature: $\vartheta_{23} \approx \pi / 4$ [maximal atm mixing]
... or anarchical UPMNS ? [Hall, Murayama, Weiner 1999]

θ_{23} maximal from some flavour symmetries ?

a no-go theorem [F. 2004]
$\vartheta_{23}=\pi / 4$ can never arise in the limit of an exact realistic symmetry
charged lepton mass matrix:
symmetric limit
realistic symmetry:
$\begin{aligned} & \text { (1) }\left|\delta m_{l}^{0}\right|<\left|m_{l}^{0}\right| \\ & (2) m_{l}^{0} \text { has rank } \leq 1\end{aligned} \quad \longrightarrow m_{l}^{0}=\left(\begin{array}{llc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & m_{\tau}\end{array}\right) \longrightarrow \vartheta_{12}^{e}$ undetermined

$$
\begin{array}{lr}
U_{P M N S}=U_{e}^{+} U_{v} & \text { [omitting phases] } \\
\tan \vartheta_{23}^{0}=\tan \vartheta_{23}^{v} \cos \vartheta_{12}^{e}+\left(\frac{\tan \vartheta_{13}^{v}}{\cos \vartheta_{23}^{v}}\right) \sin \vartheta_{12}^{e}
\end{array}<\text { undetermined }
$$

$$
\vartheta_{23}=\frac{\pi}{4} \quad \begin{aligned}
& \text { determined entirely by breaking effects } \\
& \text { (different, in general, for } v \text { and e sectors) }
\end{aligned}
$$

Lepton mixing from symmetry breaking

Consider a flavor symmetry G_{f} such that G_{f} is broken into two different subgroups: G_{e} in the charged lepton sector, and G_{v} in the neutrino sector. ($m_{e}{ }^{+} m_{e}$) is invariant under G_{e} and m_{v} is invariant under G_{v}. If G_{e} and G_{v} are appropriately chosen, the constraints on m_{e} and m_{v} can give rise to the observed UPMNS
For instance we can select G_{e} in such a way that $\left(m_{e}{ }^{+} m_{e}\right)$ is diagonal and G_{v} in such a way that m_{v} is responsible for the whole lepton mixing.

TB mixing from symmetry breaking

it is easy to find a symmetry that forces $\left(m_{e}{ }^{+} m_{e}\right)$ to be diagonal; a "minimal" example (there are many other possibilities) is

$$
G_{T}=\left\{1, T, T^{2}\right\}
$$

$$
T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right) \quad \omega=e^{i \frac{2 \pi}{3}}
$$

[$T^{3}=1$ and mathematicians call a group with this property Z_{3}]

$$
\mathrm{T}^{+}\left(m_{e}^{+} m_{e}\right) \mathrm{T}=\left(m_{e}^{+} m_{e}\right) \quad \longrightarrow\left(m_{e}^{+} m_{e}\right)=\left(\begin{array}{ccc}
m_{e}^{2} & 0 & 0 \\
0 & m_{\mu}^{2} & 0 \\
0 & 0 & m_{\tau}^{2}
\end{array}\right)
$$

in such a framework TB mixing should arise entirely from m_{v}

$$
m_{v}(T B) \equiv \frac{m_{3}}{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right)+\frac{m_{2}}{3}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)+\frac{m_{1}}{6}\left(\begin{array}{ccc}
4 & -2 & -2 \\
-2 & 1 & 1 \\
-2 & 1 & 1
\end{array}\right) \begin{aligned}
& \text { most general } \\
& \begin{array}{l}
\text { neutrino mass } \\
\text { matrix giving } \\
\text { rise to } \\
\text { TB mixing }
\end{array}
\end{aligned}
$$

easy to construct from the eigenvectors:

$$
m_{3} \leftrightarrow \frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) \quad m_{2} \leftrightarrow \frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad m_{1} \leftrightarrow \frac{1}{\sqrt{6}}\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right)
$$

a "minimal" symmetry guaranteeing such a pattern [C.S. Lam 0804.2622]

$$
\boldsymbol{G}_{S} \times \boldsymbol{G}_{U} \boldsymbol{G}_{S}=\{1, S\} \quad \boldsymbol{G}_{U}=\{1, \mathrm{U}\} \quad s=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right) U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

[this group corresponds to $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ since $\mathrm{S}^{2}=\mathrm{U}^{2}=1$]

$$
S^{T} m_{v} S=m_{v} \quad U^{T} m_{v} U=m_{v} \quad \Longrightarrow \quad m_{v}=m_{v}(T B)
$$

Algorithm to generate TB mixing

start from a flavour symmetry group G_{f} containing G_{T}, G_{S}, G_{U}
arrange appropriate symmetry breaking

if the breaking is spontaneous, induced by $\left\langle\varphi_{T}\right\rangle,\left\langle\varphi_{S}\right\rangle, \ldots$... there is a vacuum alignment problem

Minimal choice

G_{f} generated by S and T (U can arise as an accidental symmetry) they satisfy

$$
S^{2}=T^{3}=(S T)^{3}=1
$$

these are the defining relations of A_{4}, group of even permutations of 4 objects, subgroup of $S O$ (3) leaving invariant a regular tetrahedron. S and T generate 12 elements
[Ma and Rajasekaran 2001, Ma 2002, Babu, Ma and Valle 2003, ...]

$$
A_{4}=\left\{1, S, T, S T, T S, T^{2}, S T^{2}, S T S, T S T, T^{2} S, T S T^{2}, T^{2} S T\right\}
$$

[Medeiros Varzielas, King and Ross 2005 and 2006;
Luhn, Nasri and Ramond 2007, Blum, Hagedorn and Lindner 2007,...]
A_{4} has 4 irreducible representations: $1,1^{\prime}, 1^{\prime \prime}$ and 3

$$
\omega \equiv e^{i^{2 \pi}} \begin{array}{cccc}
1 \frac{2 \pi}{3} & 1^{\prime} & S=1 & T=1 \\
& 1^{\prime} & S=1 & T=\omega^{2} \\
& 1^{\prime \prime} & S=1 & T=\omega
\end{array}
$$

$$
3 \quad S=\frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 2 \\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right) \quad T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right)
$$

Building blocks of a minimal model [af1, AF2]

$\underbrace{\underbrace{}_{\text {Higgses }}}_{$| | l | e^{c} | μ^{c} | τ^{c} | h_{u} | h_{d} | φ_{T} | φ_{S} | ξ_{i} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A_{4} | 3 | 1 | $1^{\prime \prime}$ | 1^{\prime} | 1 | 1 | 3 | 3 | 1 |
| matter fields | | | | | | | | | |$}$

[change of notation: Higgs doublets are denoted by h_{u} and h_{d}]
$S U(2) \times U(1) \times A_{4} \times \ldots$ invariant Lagrangian:

$$
\begin{aligned}
& L=y_{e} e^{c} h\left(\varphi_{T} l\right)+\frac{y_{\mu}}{c} \mu^{c}\left(\varphi_{T} l\right)^{\prime}+\frac{y_{\tau}}{c} \tau^{c} h\left(\varphi_{T} l\right)^{\prime \prime} \quad\left[(\ldots) \text { denotes an } A_{4}\right. \text { singlet,...] } \\
& +\frac{x_{a}}{\Lambda^{2}} h_{u} h_{u} \xi(l l)+\frac{x_{b}}{\Lambda^{2}} h_{u} h_{u}\left(\varphi_{S} l l\right)+V\left(\xi, \varphi_{S}, \varphi_{T}\right) \ldots<\substack{\text { higher dimensional } \\
\text { operators in } 1 / \Lambda} \\
& \text { expansion [} \Lambda \text { = cutoff] } \\
& \begin{array}{ll}
\text { additional symmetry: } Z_{3} \text {, acts as a discrete } & \varphi_{S} \leftrightarrow \varphi_{T} \\
\text { lepton number; avoids additional invariants } & x(l l)
\end{array}
\end{aligned}
$$

under appropriate conditions (SUSY,...) a natural minimum of the scalar potential V is

$$
\begin{aligned}
\frac{\left\langle\varphi_{T}\right\rangle}{\Lambda} & =(u, 0,0) \\
\frac{\left\langle\varphi_{S}\right\rangle}{\Lambda} & =y_{b}(u, u, u) \\
\frac{\langle\xi\rangle}{\Lambda} & =y_{a} u
\end{aligned}
$$

then:

$$
\begin{aligned}
& m_{l}=\left(\begin{array}{ccc}
y_{e} & 0 & 0 \\
0 & y_{\mu} & 0 \\
0 & 0 & y_{\tau}
\end{array}\right) v_{d} u \\
& m_{v}=\left(\begin{array}{ccc}
a+\frac{2}{3} b & -\frac{b}{3} & -\frac{b}{3} \\
-\frac{b}{3} & \frac{2}{3} b & a-\frac{b}{3} \\
-\frac{b}{3} & a-\frac{b}{3} & \frac{2}{3} b
\end{array}\right) \frac{v_{u}^{2}}{\Lambda} \\
& a \equiv 2 x_{a} y_{a} u \\
& \text { at } u
\end{aligned}
$$

charged fermion masses

$$
m_{f}=y_{f} v_{d} u
$$

free parameters as in the SM at this level

2 complex parameters in v sector (overall phase unphysical)
is also invariant under G_{U} (accidental symmetry)

TB mixing automatically guaranteed by pattern of symmetry breaking

$$
U_{P M N S}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

independent from

$$
|a|,|b|, \Delta=\arg (a)-\arg (b)!!
$$

v spectrum

$$
r \equiv \frac{\Delta m_{\text {sol }}^{2}}{\Delta m_{\text {atm }}^{2}} \approx \frac{1}{35} \quad \text { requires a (moderate) tuning }
$$

in this minimal model the mass spectrum is always of normal hierarchy type the model predicts

$$
m_{1} \geq 0.017 \mathrm{eV} \quad \sum_{i} m_{i} \geq 0.09 \mathrm{eV} \quad\left|m_{3}\right|^{2}=\left|m_{e e}\right|^{2}+\frac{10}{9} \Delta m_{\text {atm }}^{2}\left(1-\frac{\Delta m_{\text {sol }}^{2}}{\Delta m_{\text {atm }}^{2}}\right)
$$

in a see-saw realization both normal and inverted hierarchies can be accommodated

Sub-leading corrections

arising from higher dimensional operators, depleted by additional powers of $1 / \Lambda$.

they affect m_{1}, m_{v} and they can deform the VEVs.
results

$$
U_{P M N S}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)+O(u)
$$

TB pattern is preserved if corrections are $\leq \vartheta_{c}{ }^{2} \approx 0.04$
generic prediction for ϑ_{13} $\vartheta_{13}=O(u)$
range of VEVs:

$$
\begin{aligned}
& m_{\tau}=y_{\tau} v_{d} u \\
& y_{\tau}<4 \pi
\end{aligned} \quad \square \quad \begin{aligned}
& u>0.002(0.02) \\
& \tan \beta=2.5(30)
\end{aligned} \quad \tan \beta=\frac{v_{u}}{v_{d}}
$$

the range expected for ϑ_{13} is similar
additional tests are possible if there is new physics at a scale M close to TeV

$$
L_{e f f}=i \frac{e}{M^{2}} l^{c} h_{d}\left(\sigma^{\mu v} F_{\mu \nu}\right) \mathcal{M}(\langle\varphi\rangle) l+[4-\text { fermion }]+\text { h.c. }+\ldots
$$

dominant 4-fermion LFV operators

$$
\frac{1}{M^{2}}(\bar{l} \bar{l} l l)
$$

selection rule $\Delta L_{e} \Delta L_{\mu} \Delta L_{\tau}= \pm 2$

$$
\tau^{-} \rightarrow \mu^{+} e^{-} e^{-} \quad \tau^{-} \rightarrow e^{+} \mu^{-} \mu^{-}
$$

this term contributes to magnetic dipole moments and to LFV transitions such as $\mu \rightarrow e \gamma \quad \tau \rightarrow \mu \gamma \quad \tau \rightarrow e \gamma$ usually discussed in terms of

$$
R_{i j}=\frac{B R\left(l_{i} \rightarrow l_{j} \gamma\right)}{B R\left(l_{i} \rightarrow l_{j} v_{i} \bar{v}_{j}\right)}
$$

up to O(1) coefficients $R_{\mu e} \approx R_{\tau \mu} \approx R_{\tau e}$ independently from u

$$
\tau \rightarrow \mu \gamma \quad \tau \rightarrow e \gamma \quad \text { below expected future sensitivity }
$$

In a SUSY realization of this model

Conclusion

theory of neutrino masses
it does not exist! Neither for neutrinos nor for charged fermions. We lack a unifying principle.
like weak interactions before the electroweak theory

only few ideas and prejudices about neutrino masses and mixing angles
caveat: several prejudices turned out to be wrong in the past!

- $m_{v} \approx 10 \mathrm{eV}$ because is the cosmologically relevant range
- solution to solar is MSW Small Angle
- atmospheric neutrino problem will disappear because it implies a large angle
[other slides]
many models predicts a large but not necessarily maximal θ_{23}
an example: abelian flavour symmetry group $\mathrm{U}(1)_{\mathrm{F}}$

$$
\begin{aligned}
& F(l)=(x, 0,0) \quad[x \neq 0] \\
& F\left(e^{c}\right)=(x, x, 0)
\end{aligned}
$$

$$
\begin{array}{r}
m_{e}=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & O(1) & O(1)
\end{array}\right) v_{d} \quad m_{v}=\left(\begin{array}{ccc}
\cdot & \cdot & \cdot \\
\cdot & O(1) & O(1) \\
\cdot & O(1) & O(1)
\end{array}\right) \frac{v_{u}^{2}}{\Lambda} \\
\qquad \vartheta_{23} \approx O(1) \quad \text { maximal only by a fine-tuning! }
\end{array}
$$

similarly for all other abelian charge assignements

$$
F(l)=(1,-1,-1) \quad m_{v}=\left(\begin{array}{ccc}
\cdot & O(1) & O(1) \\
O(1) & \cdot & \cdot \\
O(1) & \cdot & \cdot
\end{array}\right) \frac{v_{u}^{2}}{\Lambda} \quad \vartheta_{23} \approx O(1)+\text { charged lepton contribution }
$$

no help from the see-saw mechanism within abelian symmetries...

θ_{23} maximal by RGE effects?

running effects important only for quasi-degenerate neutrinos
2 flavour case

$$
\text { boundary conditions at } \Lambda \gg \text { e.w. scale } \quad m_{2}, m_{3}, \boldsymbol{\vartheta}_{23}
$$

$$
\text { at } Q<\Lambda
$$

$$
\begin{aligned}
& \boldsymbol{\vartheta}_{23}(Q) \approx \frac{\boldsymbol{\pi}}{4} \quad \Leftrightarrow \quad \boldsymbol{\varepsilon} \approx-\frac{\delta m}{m} \cos 2 \boldsymbol{\vartheta}_{23} \\
& \text { [possible only if } \quad \delta m \equiv m_{2}-m_{3} \ll m_{2}+m_{3} \approx 2 m \text {] }
\end{aligned}
$$

$$
\varepsilon \approx \frac{1}{16 \pi^{2}} y_{\tau}^{2} \log \frac{\Lambda}{Q}
$$

gives the scale Q at which $\theta_{23}(Q)$ becomes maximal

$m_{2}, m_{3}, \boldsymbol{\vartheta}_{23}$ fine tuned to obtain Q at the e.w. scale
a similar conclusion also for the 3 flavour case:
$\rightarrow \sin ^{2} 2 \vartheta_{12}=\frac{\sin ^{2} \vartheta_{13} \sin ^{2} 2 \vartheta_{23}}{\left(\sin ^{2} \vartheta_{23} \cos ^{2} \vartheta_{13}+\sin ^{2} \vartheta_{13}\right)^{2}}$

$$
\begin{aligned}
& \text { if } \vartheta_{23}=\frac{\pi}{4} \\
& \sin ^{2} 2 \vartheta_{12}=\frac{4 \sin ^{2} \vartheta_{13}}{\left(1+\sin ^{2} \vartheta_{13}\right)^{2}}<0.2 \text { (Chooz) }
\end{aligned}
$$

Alignment and mass hierarchies

$$
\begin{aligned}
& m_{l}=\left(\begin{array}{ccc}
y_{e} & 0 & 0 \\
0 & y_{\mu} & 0 \\
0 & 0 & y_{\tau}
\end{array}\right) v_{d}\left(\frac{v_{T}}{\Lambda}\right) \quad \begin{array}{l}
\text { charged fermion masses } \\
\text { are already diagonal }
\end{array} \\
& \begin{array}{l}
m_{e} \ll m_{\mu} \ll m_{\tau} \quad \begin{array}{l}
\text { can be reproduced by } \\
\text { U(1) flavour symmetry }
\end{array} \\
\left.\begin{array}{l}
Q\left(e^{c}\right)=4 \quad Q\left(\mu^{c}\right)=2 \quad Q\left(\tau^{c}\right)=0 \\
Q(l)=0
\end{array}\right\} \text { compatible with } A_{4} \\
Q(\vartheta)=-1 \quad\langle\vartheta\rangle \neq 0
\end{array} \\
& y_{e} \approx \frac{\langle\vartheta\rangle^{4}}{\Lambda^{4}} \quad y_{\mu} \approx \frac{\langle\vartheta\rangle^{2}}{\Lambda^{2}} \quad y_{\tau} \approx 1
\end{aligned}
$$

[see also Lin hep-ph/08042867 for a realization without an additional U(1)]

Quark masses - grand unification

quarks assigned to the same A_{4} representations used for leptons?

	q	u^{c}	c^{c}	t^{c}	d^{c}	s^{c}	b^{c}
A_{4}	3	1	$1^{\prime \prime}$	1^{\prime}	1	$1^{\prime \prime}$	1^{\prime}

fermion masses from dim ≥ 5 operators, e.g. $\quad \underline{\tau^{c} \varphi_{T} l H_{d}}$ good for leptons, but not for the top quark $\quad \frac{\Lambda}{\Lambda}$
naïve extension to quarks leads diagonal quark mass matrices and to $\mathrm{V}_{\text {CKM }}=1$ departure from this approximation is problematic [expansion parameter (VEV/ \wedge) too small]

possible solution within T^{\prime}, the double covering of A_{4} [FHLM1]

$$
S^{2}=R \quad R^{2}=1 \quad(S T)^{3}=T^{3}=1
$$

24 elements

representations: 1	$\prime \prime$	$1^{\prime \prime}$	3	2	2^{\prime}	$2^{\prime \prime}$

	$\left(\begin{array}{ll}u & d \\ c & s\end{array}\right)$	$\binom{u^{c}}{c^{c}}$	$\binom{d^{c}}{s^{c}}$	$\left(\begin{array}{ll}t & b\end{array}\right)$	t^{c}	b^{c}	η	$\xi^{\prime \prime}$
T^{\prime}	$2^{\prime \prime}$	$2^{\prime \prime}$	$2^{\prime \prime}$	1	1	1	2^{\prime}	$1^{\prime \prime}$

- lepton sector as in the A_{4} model
$-\dagger$ and b masses $a t$ the renormalizable level (τ mass from higher dim operators) at the leading order

$$
m_{u, d} \propto\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & \times & \times \\
0 & \times & \times
\end{array}\right) \quad \begin{array}{ll}
33 \gg 22,23,32
\end{array} \quad \begin{aligned}
& m_{t}, m_{b}>m_{c}, m_{s} \neq 0 \\
& V_{c b}
\end{aligned}
$$

- masses and mixing angles of $1^{\text {st }}$ generation from higher-order effects
- despite the large number of parameters two relations are predicted

$$
\begin{array}{r}
\sqrt{\frac{m_{d}}{m_{s}}}=\left|V_{u s}\right|+O\left(\lambda^{2}\right) \\
0.213 \div 0.243 \quad 0.2257 \pm 0.0021
\end{array}
$$

- vacuum alignment explicitly solved
- lepton sector not spoiled by the corrections coming from the quark sector
other option: [AFH]

SUSY SU(5) in $5 D=M_{4} \times\left(S^{1} \times Z_{2}\right)$
flavour symmetry $A_{4} \times U(1)$

DT splitting problem solved via SU(5) breaking induced by compactification
dim 5 B-violating operators forbidden!
p-decay dominated by gauge boson exchange (dim 6)

unwanted minimal $S U(5)$ mass relation $m_{e}=m_{d}{ }^{\top}$ avoided by assigning $T_{1,2}$ to the bulk
the construction is compatible with A_{4} !

	N	F	T_{1}	T_{2}	T_{3}	H_{5}	$H_{\overline{5}}$
$S U(5)$	1	$\overline{5}$	10	10	10	5	$\overline{5}$
A_{4}	3	3	$1^{\prime \prime}$	1^{\prime}	1	1	1^{\prime}

realistic quark mass matrices by an additional $U(1)$ acting on $T_{1,2}$
neutrino masses from see-saw compatible with both normal and inverted hierarchy
unsuppressed top Yukawa coupling $T_{3} T_{3}$ TB mixing + small corrections

A_{4} as a leftover of Poincare symmetry in D>4

D dimensional Poincare symmetry: D-translations \times SO(1,D-1)
usually broken by
compactification down to 4 dimensions:
4-translations $\times \operatorname{SO}(1,3) \times$...
a discrete subgroup of the (D-4) euclidean group $=$ translations \times rotations can survive in specific geometries

Example: $\mathrm{D}=6$
2 dimensions $\quad z \rightarrow z+\gamma$ compactified on $\mathrm{T}^{2} / Z_{2} \quad z \rightarrow-z$
four fixed points


```
if \(\gamma=\mathrm{e}^{\mathrm{i} \frac{\pi}{3}}\)
```

compact space is a regular tetrahedron invariant under

$$
\begin{array}{lll}
S: & z \rightarrow z+\frac{1}{2} & \text { [translation] } \\
T: & z \rightarrow \gamma^{2} z & \text { [rotation by } 120^{\circ} \text {] }
\end{array}
$$

[subgroup of 2 dim Euclidean group $=2$-translations $\times S O(2)$]
the four fixed points $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ are permuted under the action of S and T

$$
\begin{array}{ll}
S: & \left(z_{1}, z_{2}, z_{3}, z_{4}\right) \rightarrow\left(z_{4}, z_{3}, z_{2}, z_{1}\right) \\
T: & \left(z_{1}, z_{2}, z_{3}, z_{4}\right) \rightarrow\left(z_{2}, z_{3}, z_{1}, z_{4}\right)
\end{array}
$$

S and T satisfy

$$
S^{2}=T^{3}=(S T)^{3}=1
$$

the compact space is invariant under a remnant of 2 -translations $\times S O$ (2) isomorphic to the A_{4} group

Field Theory

brane fields $\varphi_{1}(x), \varphi_{2}(x), \varphi_{3}(x), \varphi_{4}(x)$ transform as $3+$ (a singlet) under A_{4}
The previous model can be reproduced by choosing $\mathrm{I}, \mathrm{e}^{\mathrm{c}}, \mu^{\mathrm{c}}, \mathrm{T}^{\mathrm{c}}, \mathrm{H}_{\mathrm{u}, \mathrm{d}}$ as brane fields and φ_{T}, φ_{S} and ξ as bulk fields.

String Theory [heterotic string compactified on orbifolds]

in string theory the discrete flavour symmetry is in general bigger than the isometry of the compact space. [Kobayash, Nilles, Ploger, Raby, Ratz 2006]
orbifolds are defined by the identification

$$
(\vartheta x) \approx x+l \quad\left\{\begin{array}{ccl}
l=n_{a} e_{a} & \begin{array}{l}
\text { translation } \\
\text { in a lattice }
\end{array} & \begin{array}{c}
\text { group generated by }(\vartheta, I) \\
\vartheta
\end{array} \\
\text { is called space group }
\end{array}\right.
$$

fixed points: special points X_{F} satisfying

$$
x_{F} \equiv\left(\vartheta_{F}^{K} x_{F}\right)+l_{F} \quad \text { for some } \quad\left(\vartheta_{F}^{K}, l_{F}\right)
$$

twisted states living at the fixed point $x_{F}=\left(\vartheta_{F}{ }_{F}{ }^{K}, l_{F}\right)$ have couplings satisfying space group selection rules [SGSR]. Non-vanishing couplings allowed for

$$
\prod_{F}\left(\vartheta_{F}^{K}, l_{F}\right) \equiv(1,0)
$$

G_{f} is the group generated by the orbifold isometry and the SGSR

Example: $\mathbf{S}^{1 /} Z_{2}$

$$
\left.\left.\begin{array}{c}
1 \\
\text { Isometry group }=S_{2} \text { generated by } \sigma^{1} \text { in the basis }\{|1>,| 2>\}
\end{array}\right\} \begin{array}{l}
\text { [allowed couplings when number } n_{1} \\
\text { of twisted states at |1> and } \\
\text { the number } n_{2} \text { of twisted states } \\
\text { at |2> are even] }
\end{array}\right\}
$$

relation between A_{4} and the modular group [AF2]

modular group PSL(2,Z): linear fractional transformation

$$
\xrightarrow{\substack{\text { complex } \\ \text { variable } \\ c z+d} \frac{a z+b}{a d-b c=1}}
$$

discrete, infinite group generated by two elements

obeying

$$
S^{2}=(S T)^{3}=1
$$

the modular group is present everywhere in string theory
[any relation to string theory approaches
to fermion masses?]
A_{4} is a finite subgroup of the modular group and

$$
A_{4}=\frac{P S L(2, Z)}{H}
$$ representations of PSL $(2, Z)$

Ibanez; Hamidi, Vafa; Dixon, Friedan, Martinec,

future improvements on atmospheric and reactor angles

$\sin ^{2} \theta$

$\delta\left(\sin ^{2} \theta_{23}\right)$ reduced by future LBL experiments from $v_{\mu} \rightarrow v_{\mu}$ disappearance channel

$$
P_{\mu \mu} \approx 1-\sin ^{2} 2 \vartheta_{23} \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right)
$$

- no substantial improvements from conventional beams
- superbeams (e.g. T2K in 5 yr of run)

$$
\begin{gathered}
\vartheta_{23} \approx \frac{\pi}{4} \\
\square
\end{gathered}
$$

$$
\delta \vartheta_{23} \approx \frac{\sqrt{\delta P_{\mu \mu}}}{2}
$$

i.e. a small uncertainty on $\mathrm{P}_{\mu \mathrm{u}}$ leads to a large uncertainty on θ_{23}

$$
\begin{aligned}
& \delta P_{\mu \mu} \approx 0.01 \\
& \delta \vartheta_{23} \approx 0.05 \mathrm{rad} \leftrightarrow 2.9^{0}
\end{aligned}
$$

improvement by about a factor 2

T2K-1 90\% CL
black = normal hierarchy red = inverted hierarchy true value 41°
[courtesy by
Enrique Fernandez]

maximal mixing from renormalization group running?

θ_{23} maximal by RGE effects?

running effects important only for quasi-degenerate neutrinos
2 flavour case

$$
\text { boundary conditions at } \Lambda \gg \text { e.w. scale } \quad m_{2}, m_{3}, \boldsymbol{\vartheta}_{23}
$$

$$
\text { at } Q<\Lambda
$$

$$
\begin{aligned}
& \boldsymbol{\vartheta}_{23}(Q) \approx \frac{\boldsymbol{\pi}}{4} \quad \Leftrightarrow \quad \boldsymbol{\varepsilon} \approx-\frac{\delta m}{m} \cos 2 \boldsymbol{\vartheta}_{23} \\
& \text { [possible only if } \quad \delta m \equiv m_{2}-m_{3} \ll m_{2}+m_{3} \approx 2 m \text {] }
\end{aligned}
$$

$$
\varepsilon \approx \frac{1}{16 \pi^{2}} y_{\tau}^{2} \log \frac{\Lambda}{Q}
$$

gives the scale Q at which $\theta_{23}(Q)$ becomes maximal

$m_{2}, m_{3}, \boldsymbol{\vartheta}_{23}$ fine tuned to obtain Q at the e.w. scale
a similar conclusion also for the 3 flavour case:
$\rightarrow \sin ^{2} 2 \vartheta_{12}=\frac{\sin ^{2} \vartheta_{13} \sin ^{2} 2 \vartheta_{23}}{\left(\sin ^{2} \vartheta_{23} \cos ^{2} \vartheta_{13}+\sin ^{2} \vartheta_{13}\right)^{2}}$

$$
\begin{aligned}
& \text { if } \vartheta_{23}=\frac{\pi}{4} \\
& \sin ^{2} 2 \vartheta_{12}=\frac{4 \sin ^{2} \vartheta_{13}}{\left(1+\sin ^{2} \vartheta_{13}\right)^{2}}<0.2 \text { (Chooz) }
\end{aligned}
$$

vacuum alignment from minimization of the scalar potential

(1) natural vacuum alignment

$\left\langle\varphi_{T}\right\rangle$	$=$	$\left(v_{T}, 0,0\right)$
$\left\langle\varphi_{S}\right\rangle$	$=$	$\left(v_{S}, v_{S}, v_{S}\right)$
$\langle\xi\rangle$	$=$	u

it is not a local minimum of the most general renormalizable scalar potential V depending on $\varphi_{S}, \varphi_{T}, \xi$ and invariant under A_{4}
$\nu_{T} \approx \nu_{S} \approx u$

a simple solution in 1 extra dimension $\equiv E D$

[Altarelli, F. 0504165] $\left\langle\varphi_{T}\right\rangle=\left(v_{T}, 0,0\right)$ local minimum of $\mathrm{V}_{0}$$e_{0}^{c}, \mu^{c}, \tau^{c}$	$l, h_{u, d} \|$$\left\langle\varphi_{S}\right\rangle=\left(v_{S}, v_{S}, v_{S}\right)$ $\langle\xi\rangle=u$
local minimum of V_{L}	

$$
\begin{aligned}
& v \text { masses arise from } \\
& \text { local operators at } \mathrm{y}=\mathrm{L}
\end{aligned} \quad \frac{\left(\varphi_{S} l l\right) h_{u} h_{u}}{\Lambda^{2}} \quad \frac{\xi(l l) h_{u} h_{u}}{\Lambda^{2}} \quad \begin{aligned}
& \text { this explains also the } \\
& \text { absence of the terms } \\
& \text { with } \varphi_{S} \leftrightarrow \varphi_{T}
\end{aligned}
$$

$$
E \ll M
$$

a 4D supersymmetric solution \equiv SUSY [Altarelli,F. hep-ph/0512103]

L is identified with the superpotential $\mathrm{w}_{\text {lepton }}$ in the lepton sector
$\mathrm{w}_{\text {lepton }}$ is invariant under $\quad A_{4} \times Z_{3} \times U(1)_{R}$

	l	e^{c}	μ^{c}	$\boldsymbol{\tau}^{c}$	$h_{u, d}$	φ_{T}	φ_{S}	ξ	ξ	φ_{0}^{T}	φ_{0}^{S}	ξ_{0}
A_{4}	3	1	$1^{\prime \prime}$	1^{\prime}	1	3	3	1	1	3	3	1
Z_{3}	ω	ω^{2}	ω^{2}	ω^{2}	1	1	ω	ω	ω	1	ω	ω
$U(1)_{R}$	1	1	1	1	0	0	0	0	0	2	2	2
matter fields												

absence of $\quad \varphi_{S} \leftrightarrow \varphi_{T} \quad x(l l)$ automatic

$$
\begin{aligned}
& w=w_{\text {lepton }}+w_{d}+\ldots \\
& w_{d}=M\left(\varphi_{0}^{T} \varphi_{T}\right)+g\left(\varphi_{0}^{T} \varphi_{T} \varphi_{T}\right)+g_{1}\left(\varphi_{0}^{S} \varphi_{S} \varphi_{S}\right)+g_{2} \tilde{\xi}\left(\varphi_{0}^{S} \varphi_{S}\right)+ \\
& g_{3} \xi_{0}\left(\varphi_{S} \varphi_{S}\right)+g_{4} \xi_{0} \xi^{2}+g_{5} \xi_{0} \xi \tilde{\xi}+g_{6} \xi_{0} \xi^{2} \\
& \text { minimum of the } \\
& \text { scalar potential at: } \\
& \left\langle\varphi_{T}\right\rangle=\left(v_{T}, 0,0\right) \\
& \begin{array}{ll}
\left\langle\varphi_{S}\right\rangle & = \\
\left(v_{S}, v_{S}, v_{S}\right) \\
\langle\xi\rangle & = \\
\langle\xi
\end{array} \quad v_{T}=-\frac{3 M}{2 g} \quad v_{S}^{2}=-\frac{g_{4}}{3 g_{3}} u^{2} \\
& \begin{array}{lll}
\langle\xi\rangle & = & u \\
\langle\widetilde{\xi}\rangle & = & 0
\end{array} \\
& u \text { undetermined }
\end{aligned}
$$

