QCD Background and Systematic Uncertainties in Top Physics

Jin Wang On behalf of ATLAS and CMS Collaboration

IHEP, China

2013-09-14, Top2013

Outline

Introduction of QCD Background in Top Physics

Methods of QCD Background Estimation

Latest Results from ATLAS, CMS, D0 and CDF

Conclusion

Introduction

Top Events and QCD Backgrounds

- Top events signatures comparing to QCD backgrounds:
 - Isolated lepton with large transverse momentum from W decay
 - large missing transverse momentum (MET) if W decays leptonically
 - reconstructed W and top mass spectrum (m_W, m_T) from final state particles

How QCD-multijet events become Background?

 QCD-multijet events with misidentified and non-prompt leptons (collectively called fake leptons) could pass top event selection

sources of fake leptons

fake electons

 b-quarks and c-quarks decay semileptonically
 jets misidentified as electrons

-- few charged tracks

little energy in hadronic compartments
 photon conversion

fake muons

b-quarks and c-quarks decay semileptonically
punch-through hadrons
pions or kaons which decay in flight within tracking region

Top and QCD Cross Sections

- High QCD rejection factors from top event selections
- QCD multijet cross section (~ µb/mb) is many orders of magnitude higher than top cross section
 - usually contributes as one of the most important non-top backgrounds after Vector+jets
- Good estimation of QCD background is important for precision top analysis

Methods of QCD Background Estimation

Estimate QCD from Monte Carlo?

• To get good prediction of QCD background from MC, we need

- high precision on fragmentation and hadronization models
- high precision on description of interactions with matter and in shower model
- good description of hadronic activity
- precise estimate of the cross section

Such precision is not achievable

Here comes data-driven approach for QCD background estimation

- matrix method
- template fit method where QCD templates from
 - jet-electron model
 - anti-electron/muon selection

Matrix Method

- real leptons: leptons from W (Z) decay
- tight leptons: standard selection in analysis
- loose leptons: looser identification and/or no isolation requirement

Solve Equation to Obtain N^{tight}_{fake}

$$N^{loose} = N^{loose}_{real} + N^{loose}_{fake}$$

$$N^{tight} = N^{tight}_{real} + N^{tight}_{fake} = \varepsilon_{real} N^{loose}_{real} + \varepsilon_{fake} N^{loose}_{fake}$$

$$N^{tight}_{fake} = \frac{\varepsilon_{fake}}{\varepsilon_{real} - \varepsilon_{fake}} (N^{loose} \varepsilon_{real} - N^{tight})$$

N^{loose}: Number of events with one loose lepton
 N^{tight}: Number of events with one tight lepton

• Using data to obtain $\varepsilon_{real} = \frac{N_{real}^{tight}}{N_{real}^{loose}}$ and $\varepsilon_{fake} = \frac{N_{fake}^{tight}}{N_{fake}^{loose}}$.

N^{tight}_{fake}: Estimated multijet events after tight selection

this is an example of lepton
+jets channel
>for dilepton channel: same
idea with more categories

Matrix Method

Tag and Probe for ε_{real}

- Select control sample: $z \rightarrow ll$
 - Two Loose leptons with opposite signs
 - 80.2 < M(ll) < 100.2 GeV, MET < 20 GeV
- Tag and probe method:
 - One lepton must be "tight"
 - Calculate the other lepton tight rate: ε_{real}
- ε_{fake} is measured from data control regions dominated by the contributions of fake leptons
 - example regions: low MET, low m_W or m_T , etc.
 - subtract *W*+*j*ets and *Z*+*j*ets backgrounds using Monte Carlo simulation

Estimate Systematics of Matrix Method

- Uncertainties of ϵ_{real} estimation are mostly statistical and negligible comparing to the ones of ϵ_{fake}
- Systematics Estimation of ε_{fake} :
 - varying the requirements of control regions selection
 - take into account used W+jets and Z+jets backgrounds uncertainties

Template Fit: Jet-electron Model

• Idea: use data samples with "electron-like" jet to simulate QCD with fake leptons

Multijet Model from Data

- 20 GeV jet trigger data
- Jets with kinematics of electrons
- With > 4 tracks
- Energy fraction requirement in electromagnetic calorimeter

QCD-multijet Estimation

- Binned likelihood fit on E_T^{miss}
 - Multijet shape from data
 - Other process shapes from MC

Template Fit: Anti-electron/muon Model

- Get QCD background template from a QCD enriched data sample where leptons failing some of the lepton cuts
 reverse lepton identification(ID)/isolation
- Fit QCD templates and other process templates to data
 fit with sensitive variable in control region orthogonal with signal region
 or directly get QCD normalization from final measurement fit

Systematics of Template Fit Method

• For jet-electron model

- cross check the fit with another variable, like the transverse *W* mass
- could also evaluate the effect from pile-up
 - divide the jet-electron data sample into a high pile-up sample and a low pile-up sample
 - usually based on the number of primary vertices in events
 - compare estimated QCD of two samples
- For anti-lepton model
 - vary the QCD templates with different selections of control region

Latest Results from ATLAS, CMS, D0 and CDF

QCD Background Estimation in ATLAS (arXiv:1207.5644)

- Measurements of top quark pair relative differential cross-sections with ATLAS
 - a paper published by <u>The European Physical Journal C</u> in January 2013
 - used 2.05 fb⁻¹ data collected by ATLAS at $\sqrt{s}=7$ TeV
- Used matrix method for QCD background estimation

Channel	μ + jets	e+jets	
tī	11100 ± 700	7400 ± 500	
W+jets	1700 ± 700	1300 ± 500	
Single top	490 ± 50	$\textbf{338} \pm \textbf{32}$	
Z+jets	192 ± 20	154 ± 26	
Diboson	34 ± 4	21 ± 3	
Fake-leptons	800 ± 800	250 ± 250	
Signal+bkg	14400 ± 1700	9500 ± 1100	
Observed	14416	9187	

Estimated QCD/signal+bkg is ~4.4%

\$100% uncertainty on QCD background estimation

-- Estimated by varying control region selection in fake rate calculation of matrix method

numbers of predicted and observed events after all selections

More Results in Latest ATLAS Publications

Channel	Goal	Luminosity (fb ⁻¹)	Reference	Method
Lepton+jets	search for ttbar resonances	4.7	<u>Phys. Rev. D 88,</u> 012004 (2013)	matrix method ¹
dilepton and lepton+jets	search for an excited bottom- quark b*	4.7	<u>Phys. Lett. B 721</u> (2013) 171-189	matrix method ²
Lepton+jets	Search for fourth- generation t' quarks	4.7	Phys. Lett. B 718 (2013)1284-1302	matrix method ³
lepton	t-channel single top- quark production cross section	1.04	<u>Phys. Lett. B 717</u> (2012) 330-350	jet-electron method ⁴

QCD background estimation systematic uncertainties

- **1**. use jet-electron method to estimate the systematics
- 2. 50% uncertainties on QCD background estimation from fake rate calculation
- **3**. 80% uncertainties: limited data sample (64%) + jet misidentification rate uncertainty (50%)
- 4. 50% uncertaintes: obtained from pile-up impact studies and alternative fit with $m_T(W)$

QCD Background Estimation in CMS

(arXiv:1212.6682)

- Measurement of the tt-bar production cross section in pp collisions at sqrt(s)
 = 7 TeV with lepton + jets final states
 - A paper published by <u>Physics Letters B</u> in March 2013
 - used 2.3 fb⁻¹ data collected by CMS at $\sqrt{s}=7$ TeV
- The mass of the three-jet combination distributions with estimated QCD backgrounds using anti-electron method

 The QCD multijet normalization is obtained by fitting missingEt distribution in data

 electron + jets channel: QCD distribution from MC
 muon + jets channel: QCD distribution from antimuon model

 Use alternative QCD shapes with different selection for systematic estimation

 different lepton ID/isolation/MET selection

More Results in CMS/D0/CDF

Experiment	Channel	Goal	Luminosity (fb ⁻¹)	Reference	Method
CMS	dilepton	σ(ttbar)	2.3	arXiv:1208.267 1	matrix method
DO	lepton+jets	σ(ttbar)	0.9	PRL 100, 192004 (2008)	matrix method
DO	dilepton	σ(ttbar) , m _t	1.0	PLB 679 , 177 (2009)	anti-electron
DO	single top	σ(t), t-ch	2.3	Fermilab-Pub- 09/372-E	matrix method
CDF	lepton+jets	σ(ttbar)	2.7	Phys.Rev.D84:0 31101,2011	anti-electron
CDF	single top	σ(t)	3.2	Phys.Rev.D82:1 12005,2010	jet-electron anti-electron

Conclusion

Conclusion

- QCD-multijet Background estimation is very important for precision top analysis
- In top analysis the data-driven methods are used to estimate QCD backgrounds
 - matrix method, templates fit method with jet-electron QCD model or anti-electron/muon QCD model
- Systematics estimation of QCD background usually comes from cross checks of alternative approaches in the method
- QCD background estimation method well fit in current top physics analysis
- Could get more ideas on QCD background estimation from W/Z studies and SUSY studies

Back Up

Cross Check Method in Matrix Method

Iteration Method for ε_{fake}

• Use multijet enriched control sample $E_T^{miss} < 10 \text{ GeV}$

