Status and Plans for VBF MVA Analysis

Jin Wang On behalf of VBF MVA contributors

2013-10-24, HSG1 Meeting

Samples and Twiki

- Common ntuples for MVA analysis are available from Fuquan eos:
 - /eos/atlas/user/f/fwang/HSG1_ntuples_May30/
 - Need to update samples with new photon calibration/geometry when available
 - signal MC, 10M Sherpa γγ MC after latest AC
 - full data with luminosity 20.3 fb⁻¹
- Twiki page with detailed information (thanks to Dag and Florian)
 - https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/HggMVAPublic ation2013
 - Introduction of samples and selections
 - cut flow for acceptance challenge (to be updated)
 - variable definitions in MVA
 - task list

Current Baseline Approach

- Use 8 variables: m_{jj} , $\Delta \eta_{jj}$, $\Delta R(\gamma \gamma j j)_{min}$, η^* , $\Delta \Phi_{\gamma \gamma, j j}$, p_{Tt} , η_{jet1} , η_{jet2}
- VBF MVA training, test, optimization
 - signal sample: VBF MC
 - background sample: Sherpa γγ MC + reverse isolation sidebands from data
 - normalized with 74.9% Sherpa MC and 25.1% RevISO (from inclusive analysis)
 - odd events for training
 - MVA training configuration are optimized to maximize the ROC curve integral with good overtraining test
 - even events for test/optimization

More Options for Potential Improvement

Current analysis is robust. We only consider introducing changes to the paper analysis that brings significant improvement without adding too much complexity.

- The choice of variables:
 - remove the eta of two jets
 - explore more potential variables
 - Sergei, Ana, Xifeng

Background modelling

- reweight background to mass sidebands using different variables
 - preliminary results available, will spend more time for a fine study
- improve the background composition for VBF category
 - under investigation by the differential cross section analysis for various Njet bins
- Jin, Olivier, Jim, Yanping
- MVA optimization and VBF categorization
 - optimize MVA configuration and VBF categorization simultaneously
 - David, Florian, Sergei
- Introducing a 3rd category for 2 jet events?
 - investigate the effects on VBF/inclusive measurement
 - proposed by Krisztian, Florian

Other Tasks with Machinary Available

- Spurious Signal: Amanda, Xifeng,
- Signal extraction and resolution: Yanping, Xifeng, Jin
- Theory Systematics: Dag, Florian, Yanping
- JES/JER Systematics: Xifeng, David
- VBF scale uncertainties: Amanda, Xifeng
- Detailed cross checks as been done in Moriond: Jin, Olivier
 - variables correlation to m_{vv}
 - kinematic properties between background model and mass sidebands
 - MVA response between background model and data mass sidebands
 - ${\ensuremath{\, \circ }}$ $\ensuremath{\, m_{\gamma\gamma}}$ spectra of the data sideband and of the background model with/without MVA cut
 - Validate MVA distribution using data/MC comparison of high stat Zee+jets events
- Documentation in coupling analysis supporting note

Results could be converged quickly with fixed VBF MVA discriminant/categorization.

MCFM Scale Uncertainty Study

• From Xifeng

Compare MCFM scale uncertainties with dynamic/fix scale

- using MCFM ggFH+2jet parton level (NLO) with 2 & 3 partons
- dynamic scale: $m_{H}^{2}+p_{T}(\gamma\gamma)^{2}$
- uncertainties with fixed scale:
 - 2j inclusive: +14.3%-21.0%, 3j inclusive: +89%-44.7%
- uncertainties with dynamic scale:
 - 2j inclusive: +12.4%-21.7%, 3j inclusive: +64.7%-42.6%

• Discuss with theorists if it is better to use dynamic scale