Update on BSM Higgs searches

Xiaohu SUN, IHEP, Beijing, 08-04-2014

2HDM Hhh->??yy

- $gg \rightarrow H \rightarrow hh \rightarrow WW/ZZ yy$
 - Let's take SM branching ratios for h \rightarrow WW/ZZ @ mh=125GeV
 - 21.5% h → WW
 - 2.64% h \rightarrow ZZ, very small, not yet multiplied by Z decay brs
- Well, 6.32%, $H \rightarrow \tau\tau$, no need to multiply any further brs
 - Coud be a channel to search in the future
 - But needs a lot of manpower (hadhad, hadlep, leplep)
 - Evidence in paper [ATLAS-CONF-2013-108]

WWyy

- Consider $h \rightarrow WW \rightarrow jjjj$
 - jjjj features:
 - Largest branching ratio
 - need to exlude bbbb carefully (small fraction of events) if combination
 - Backgrounds mainly from continuum jjjjyy, jjjjjy, jjjjjj, and ggh, vbf, Vh, tth, qcd, ttbar
 - Event counting, because bbyy analysis has very small statistics after all cuts and their branching ratio even after being multiplied by 70% btagging eff is still larger than ours with fully hadronic W decays

Comparison: h → WW → jjjj: 0.215*0.676*0.676 = 0.098

- Stream: Egamma stream? h → bb * btag%: 0.577 * 50% *50% = 0.283
- Trigger: EF_g35_loose_g25_loose?
- This is the best channel maybe, but quite challenging

WWyy

- Consider $h \rightarrow WW \rightarrow jj+lv$
 - jj+lv features:
 - Branching ratio is close to jjjj due to the two flavors (e,mu) and the permutation
 - Backgrounds mainly from ? V(lv)H(yy), tth, single top, ttbar, qcd
 - It is difficiult to reconstruct W boson due to existances of one neutrino and one off-shell W*

Comparison: $h \rightarrow WW \rightarrow jjlv: 0.215*0.676*0.108*2*2 = 0.063$ $h \rightarrow bb * btag\%: 0.577 * 50\% * 50\% = 0.283$

WWyy

- Consider $h \rightarrow WW \rightarrow Iv+Iv$
 - lv+lv features:
 - Branching ratio is very small
 - Backgrounds mainly from ? tth, Vh, ttbar, single top, WW
 - It is very difficiult to reconstruct W boson due to existances of two neutrino and one off-shell W*
 - If possible, fit on transverse mass of h(WW) or H, concerned about the very low statistics

Comparison: $h \rightarrow WW \rightarrow |v|v: 0.215*0.108*2*0.108*2 = 0.01$ $h \rightarrow bb * btag\%: 0.577 * 50\% *50\% = 0.283$

- Consider $h \rightarrow ZZ \rightarrow jjjj$
 - jjjj features:
 - Branching ratio is very small
 - Backgrounds mainly from continuum jjjjyy, jjjjjy, jjjjjj, and ggh, vbf, Vh, tth, qcd, ttbar
 - Maybe it is better to be merged into WW → jjjj analysis by enlarging the mass windows to cover both Z and W masses
 - Event counting with respect to this statistics

Comparison: $h \rightarrow ZZ \rightarrow jjjj: 0.0264*0.70*0.70 = 0.013$ $h \rightarrow bb * btag\%: 0.577 * 50\% *50\% = 0.283$

ZZyy

- Consider $h \rightarrow ZZ \rightarrow jj+ll$
 - jj+ll features:
 - Branching ratio is very small, but more clear signature
 - Backgrounds mainly from V(II)H(yy), tth, single top, ttbar, qcd
 - It is better than WW → jj+II, since one can check inv.mass(II) close to on-shell Z mass, if yes, then good, if not, then constrain jj by requiring the on-shell Z mass
 - Maybe there is a possibility of fitting inv. mass of H, since no MET exsits

Comparison: $h \rightarrow ZZ \rightarrow jjll: 0.0264*0.70*0.034*2 = 0.0126$ $h \rightarrow bb * btag\%: 0.577 * 50\% *50\% = 0.283$

- Consider $h \rightarrow ZZ \rightarrow IIII$
 - IIII features:
 - Branching ratio is extremely small, but very clear signature
 - Backgrounds mainly from ZZ
 - Fully reconstruct all masses
 - Event counting with probably zero backgrounds?!

Comparison: $h \rightarrow ZZ \rightarrow IIII: 0.0264*0.034*2*0.034*2 = 0.0001$ $h \rightarrow bb * btag\%: 0.577 * 50\% *50\% = 0.283$

ZZyy

- Consider $h \rightarrow ZZ \rightarrow jj+inv$.
 - jj+inv. features:
 - Branching ratio is quite small, signature is not clear
 - Backgrounds mainly from V(lv)H(yy), tth, single top, ttbar, qcd
 - Can be hacked in very high MET regime, in which case jets are probably boosted
 - Fit on MET distirbution if statistics allows

Comparison: $h \rightarrow ZZ \rightarrow jjinv.: 0.0264*0.70*0.20*2 = 0.007$ $h \rightarrow bb * btag\%: 0.577 * 50\% *50\% = 0.283$

All channel or which channel

- Look at jjjj final states including WW and ZZ by event counting
- Look at WW \rightarrow jj+lv by transverse mass
- Look at $ZZ \rightarrow jj+II$ with fully reconstructed H
- Maybe look at $ZZ \rightarrow IIII$ with probably zero background
- There are many promising channels, well, we cannot look at them all since we need a sizable amount of manpower

MC

- It is good to discuss after making sure which final state we will focus on
- Jianming proposed inclusive samples:
 - With 500k, the statistics for individual final states will be:
 - WW → 4j: 100k
 - WW \rightarrow I+2j: 62k
 - ZZ → 4j: 13k

So the other ~300k events?

- ZZ → 2l2j: 2400 ?
- ZZ → vv2j: 7k
- I am not sure this is the best idea
 - One cannot guarantee the interesting final states dominate in the inclusive sample
 - The branching ratios are functions of H mass which vary