Status on combinations and BSM gg → H → hh → WWyy search with jjjjyy final state

Yaquan Fang, <u>Xiaohu Sun</u> 04-06-2014 IHEP, Beijing

Combination SM HH non-resonant

- With bbyy final state, expected upper limit 1.0 pb (HH) corresponding to ~114.5 times of SM HH production
 - Also, there is **2.4** standard deviation in observation
- With bbbb final state, expected upper limit corresponding to ~40 times of SM HH production by using m(lead) vs m(sub) corrected from 6th May, before including systematic uncertainties and before re-optimizing the cuts that are used for resonant search
- Regarding the limited differences on the sensitivities, it is still worthy to combine both results with Run I
 - To obtain a better upper limit on SM HH production
 - As well as, if possible, to extract a "significant" *significance*
 - To serve as a good reference for Run II
- The machinary for combination is in place, all we need to do is
 - Gather the workspaces from both analyses after optimization
 - Converge on the correlated uncertainties (lumi, JES, isr/fsr etc.)

*Checks on the overlapped phase space in two analyses, should be negligible

Combination BSM $H \rightarrow hh$

- The scanned mass points: bbyy final state covers from 260 GeV to 500 GeV, while with bbbb final state from 500 GeV 1000 GeV
 - bbbb signal acceptance drops significantly below 500 GeV
 - It seems that we can only combine in high mass region if bbyy final state can extend the search
- Well, if only looking at 500 GeV, by eye catching on the limit plots:
 - Expected upper limit on $gg \rightarrow H \rightarrow hh$ (bbyy): **0.8** pb
 - Expected upper limit on $gg \rightarrow H \rightarrow hh$ (bbbb): **0.1** pb from 6th May without systematic uncertainties
- At least at this joint mass point, both analyses are comparable with respect to the sensitivity
- Low mass (<500GeV), bbyy definitely has more sensitivities
- High mass (>500GeV), it is still hard to say now

Combination BSM $H \rightarrow hh$ (other issues)

 To interpret for 2HDM, in high mass region, one has to re-check resonant width, maybe has to redefine a smaller window

cos(b-a) ~ [-0.3,0.3]; tanb ~ [0.5,4]

anß

- The VBF, bbH production may also vary in high mass region, need to check when interpreting for 2HDM
- The signal templates are different: for bbyy final state, latest HeavyScalor in MG5; for bbbb final state, 2HDM in MG5
- As mentioned in SM HH comb, the overlapped phase space should be negligible

Combination BSM A \rightarrow Zh and H \rightarrow hh

- The basic idea is to combine the measurements from two different production: A \rightarrow Zh, H \rightarrow hh, by using one scale μ for both cross section
- Then by using this scale μ, one can provide the upper limits for each production as well as makes constraints in the tanb vs cos(ba) plane
- If one assumes the cross section of $H \rightarrow hh$ is μ , then the cross section of $A \rightarrow Zh$ should be $\mu^*(A/H)$
 - Then the two measurements are correlated in the combination, leading to the possibility of obtaining from the fit the combined upper limits or "combined significance"
 - In the combined fit, the only POI is μ and (A/H) exists as a function of b and a
 - Due to the varying (A/H), one has to extract the upper limit for each point in the phase space to see if this certain point is rejected or not (*quite* computing-consuming, any other ideas?)

Glance at $H \rightarrow hh \rightarrow WWyy \rightarrow jjjjyy$

- In parallel, we started to look at gg → H → hh → WWyy with W hadronic decay leading to final state of jjjjyy
 - $h \rightarrow WW$ has the second largest branching ratio after $h \rightarrow bb$
- Apply the same cuts from yy side, then ask njets>=4, estimate roughly the expected upper limit, and then additionally apply MVA cut to see the improvement on the expected upper limit

	Lumi (pb-1)	Branching ratio	Cut eff (yy&Njet>=4)	Upper limit	Cut eff (additionally MVA)	Upper limit
Non-resonant SM HH	20,000	4.48e-4	15%	18 pb	15%*93%	7.2 pb
Resonant 300GeV	20,000	4.48e-4	9%	30 pb	9%*63%	14 pb

10%

5%

6

*The MVA is trained with signal MC sample and background from sideband This leads to signal eff = 63%, bkg eff = 9% for resonant, signal eff 93%, bkg eff = 13% for non-resonant

Compared to the expexted upper limits from bbyy analysis:

* Non-resonant: **1.0** pb

* Resonant @ 300GeV: **1.5** pb

MVA with JxJy

- Train with the variables from JxJy instead of J1J2
- Much more better performance is obtained

Classifier (#signal, #backgr.) Optimal-cut S/sqrt(B) NSig NBkg EffSig EffBkg

- MLP: (1000,1000) 0.6192 (55 +- 4.8) 515.8762 87.92532 0.5159 0.08793 MLPBNN: (1000,1000) 0.6068 (54.9 +- 4.8) 545.217 98.76543 0.5452 0.09877
- BDT: (1000,1000) 0.1597 (65.1 +- 5.4) 633.2395 94.54983 0.6332 0.09455

The signal eff is kept 63% while the bkg eff is lower 9% The relative S/sqrt(B) is leveled up to 65.1

7

MVA inputs with adaptive method

MVA with JxJy for **SM HH**

• Train with the variables from JxJy instead of J1J2

- Classifier (#signal,#backgr.) Optimal-cut S/sqrt(S+B) NSig NBkg EffSig EffBkg

MLP: (1000, 1000) 0.4930 27.9795 895.2804 128.5757 0.8953 0.1286
MLPBNN: (1000, 1000) 0.4863 27.9399 901.6102 139.717 0.9016 0.1397
SVM: (1000, 1000) 0.4642 27.8195 893.3926 137.9103 0.8934 0.1379
BDT: (1000, 1000) -0.1115 28.4816 925.4858 130.3824 0.9255 0.1304

The signal eff is 93% while the bkg eff is 13% The relative S/sqrt(B) is up to 28

MVA inputs with ada method (SM HH)

10

A new idea to try

- We all know missingET, which is due to the undetectable neutrino
- In our case, we don't have missingET, instead, we have a missing W since our pT requirements on jet almost remove all the 3rd and 4th jets
- We can try to reconstruct the other W boson by the momentum conservation law in transverse plan!

Introduction

• Sample page

Additional cuts

- Additionally, we will cut on kinematics of the children from the other Higgs boson
 - To do some studies on cuts: deltaPhi(j,j) deltaEta(j,j)
 - To find the more correct combinations of jets originating from the same W boson

Njets {flag_all}

Cutflow (mainly yy-cuts)

- Use $h \rightarrow yy$ trigger and get the gamma pair
- Follow the same preselection in HSG1, check on cutflow (private MC production 28k):

		Unweighted evt	Cut eff (%)
	generated	28000	100%
	trigger	19953	71%
	GRL	19953	71%
	detector errors	19953	71%
	vertex tracks	19953	71%
	pre-selection	15547	56%
	photon pT	13996	50%
	photon ID	12041	43%
	photon isolation	9525	34%
	diphoton mass	9516	34%
Additionally	Niets>=4	2913	10%
, la arcionany			
And	XXX	-	5%

Descriptions of cuts

description	
d Generated events	generated
EF g35 loose g25 loose (8TeV	trigger
L Good Run Lis	GRL
s LAr error, TileError, BadJe	detector errors
s Primary vertex track requirements	vertex tracks
n At least two loose photons	pre-selection
T 1 st > 40 GeV, 2 nd > 30 GeV	photon pT
IsEM & 0x45fc01 == 0	photon ID
n Calo (etcone40) < 6GeV && track < 2.6GeV	photon isolation
s [100GeV, 160GeV	diphoton mass

	SM		R	Resonant NV	VA	
	Benchmark	260 GeV	300 GeV	350 GeV	500 GeV	1000 GeV
Generated	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
Trigger	73.1%	72.5%	71.6%	71.8%	73.6%	81.0%
Preselection	57.3%	56.7%	56.1%	56.2%	57.7%	65.1%
Photon p_T	51.6%	51.6%	49.8%	49.2%	52.5%	62.4%
Photon Identification	45.3%	44.2%	42.8%	42.6%	46.4%	56.2%
Isolation	39.1%	33.1%	33.8%	35.9%	40.6%	47.4%
$105 < m_{\gamma\gamma} < 160 \text{ GeV}$	39.0%	33.0%	33.8%	35.9%	40.5%	47.4%
2 Central Jets	33.9%	25.5%	26.9%	29.8%	36.2%	45.1%
Tagging	12.5%	8.4%	8.9%	10.0%	14.1%	19.1%
$b p_T$ Cuts	10.1%	4.8%	5.6%	7.2%	12.0%	18.1%
$95 < m_{b\bar{b}} < 135~{\rm GeV}$	7.4%	4.0%	4.3%	5.3%	8.6%	14.2%

Reconstructed jets >= 4

 By matching with truth information of jets, one find calculate the correctness of the well-reconstructed jet pairs

specific	#evts	%
none (all cuts form yy side)	2914	-
any pairs from W	1887	65%
1 pair from W	1704	58%
2 pairs from W	183	6%
the pair from 1 st W	1243	43%
the pair from 2 nd W	827	28%

*all numbers except the case of 'none' are calculated by asking njets>=4 pT > 25 GeV when |eta| < 2.4 pT > 30 GeV when |eta| > 2.4

So, instead of asking for >=4 jets and trying to reconstruct both Ws, one may keep higher statistics and obtain better sensitivities by Looking also 2,3,>=4 jets and reconstruct <u>only one of the Ws from 2 jets</u>

Reconstructed jets >=2

• Redo the cutflow and the correctness tables

	Unweighted evt	Cut eff (%)			
generated	28000	100%			
trigger	19953	71%	specific	#evts	%
GRL	19953	71%	none (all cuts form yy side)	8312	-
detector errors	19953	71%	any pairs from W	3909	47%
vertex tracks	19953	71%	1 pair from W	3726	45 %
pre-selection	15547	56%	2 pairs from W	183	2%
photon pT	13996	50%	the pair from 1 st W	2631	32%
photon ID	12041	43%	the pair from 2 nd W	1461	18%
photon iso	9525	34%			
diphoton mass	9516	34%			

Njets>=2	8312	30%

BSM gg \rightarrow H \rightarrow hh \rightarrow WWyy \rightarrow jjjjyy

- Triggered by the recent results on $H \rightarrow hh \rightarrow bbyy$ search
 - There is a significance of 3.0 standard deviations at $mH{=}300 GeV$
- We look at second largest decay: $H \rightarrow hh \rightarrow WWyy \rightarrow jjjjyy$
- Look at the pT of jets in parton level, find it quite difficult to reconstruct all four jets

A first look at sideband region

- Sideband region:
 - mass(yy) within [100,160] GeV
 - mass(yy) is excluded from $|m_h \Delta m_h m_{\gamma\gamma}| < 2\sigma_{\gamma\gamma}$
 - where mh=125.6, deltamh=0.15, sigma=1.6

sideband	# of evt
ggH	0.467175
VBF	0.123474
WH	0.0638113
ZH	0.0405459
ttH	0.138622
Continuum	?
In data	1170

There are large components in backgrounds not yet clear Need to at least introduce $pp \rightarrow jjjyy$ and $pp \rightarrow jjyy$

Niets>=4

Bkg samples, use bbyy continuum samples? ²²

A first look at signal region

- Signal region:
 - mass(yy) is required by $|m_h \Delta m_h m_{\gamma\gamma}| < 2\sigma_{\gamma\gamma}$
 - where mh=125.6, deltamh=0.15, sigma=1.6

sideband	# of evt
ggH	4.91724
VBF	1.0963
WH	0.570564
ZH	0.374228
ttH	1.34295
Continuum	?
est bkg*	143

* bkg in signal region estimated by fitting to exponential with sideband data

Njets>=4

Signal region event yields [EXP]

- Signal region (ask yy cuts && njets>=4):
 - mass(yy) is required by $|m_h \Delta m_h m_{\gamma\gamma}| < 2\sigma_{\gamma\gamma}$
 - where mh=125.6, deltamh=0.15, sigma=1.6

* bkg in signal region estimated by fitting to exponential with sideband data 24

JxJy not has to be j1j2

- Till now I only assume j1 j2 are from a real W boson and use them to reconstruct it for simplicity
- An adaptive method is used to improve the correctness of finding the two jets from a same W boson here
 - By asking the invariant mass of jx jy, and choose the pair with the mass closest to W boson mass from PDG

*these correctness are calculated by using signal MC only @ mH=300GeV

JxJy not has to be j1j2

 Compare the invariant mass of jxjy in adaptive method and the one of j1j2 in the fixed method

