Searches for

BSM neutral Higgs

Yaquan Fang, <u>Xiaohu Sun</u> 10-06-2014 IHEP, Beijing

Shift Apr-Jul 2014

Table includes what I have done this half year and what I will do up to the end of July

Newly joined RECO shift training and passed the exam becoming RECO shifter

A good starting for this year's shift :)

Personal Schedule Report - Summary

from 24-Apr-2014 to 28-Jul-2014 - XIAOHU SUN (4908)

Activity	System	Task	Allocated Hours	Allocated Shifts	Allocated Fte
Computing/Software	General Tasks	529222- ADCoS Senior shifts	161.6	20.20	0.06
	General Tasks	529223- ADCoS Trainee shifts	0	0.00	0.00
	General Tasks	529614- Reconstruction Software Shifts	84	10.50	0.03
		Total in Computing/Software	245.6	30.70	0.08
				'	
		Total	245.6	30.70	0.08

More details were shown in this morning's talk https://indico.cern.ch/event/323871/contribution/2/0/material/slides/0.pdf

2

WWyy basics – control regions

- To train MVA and to obtain the two efficiencies:
 - 2/3-jet bin is used for $\boldsymbol{\varepsilon}_{\gamma\gamma}$: window/sideband for bkg
 - 3-jet bin is used for MVA training: sideband for bkg
 - 3-jet bin is used for $\boldsymbol{\varepsilon}_{MVA}$: sideband bkg

ϵ_{vv} for backgrounds

• Fit the sidebands in 2/3-jet bin along the invariant mass of yy (binning is not good for the time-being)

	2-jet bin	3-jet bin	4-jet bin (rev iso)
εγγ	10.8%	10.8%	-

This efficiency is independent on jet multiplicity Try to use it in 4-jet inclusive bin

Train/test MVA by using 3-jet bin

- MVA goal:
 - Effectively distinguish signal from backgrounds
 - Should be kept yy-mass independent
- MVA training sample:
 - Signal: ¹/₂ MC
 - Backgrounds: ¹/₂ sideband data in 3-jet
- The other halves are used for testing
- ϵ_{MVA} for both signal and backgrounds are measured in training sample and validated in testing sample
- One needs to verify that sideband data in 3-jet bin has similar modeling on the variable used in MVA to the sideband data in 4-jet

For MVA, compare 3/4inc-jet bin

etc.

In general, the modelings are consistent between 3- and 4inc-jet bins

A new idea to try (from last pres)

 Actually the missing W boson now I am constructing is a sum of missing W and residuals

pT(yy) + pT(jxjy) + pT(missW) + pT(residual) = 0

To be calculated

To-do list (in the order of priority)

- Instead of using j1 j2, find jx jy to be used to reconstruct only one W boson as precisely as possible (preliminarily explored)
- Using these new variables from adaptive method in MVA (trying)
- Validate the 3-jet bin can be used as training for 4-jet bin inclusive
- Introduce more variables into MVA training: y-jet variables, event shape variables (only yy side, only jets side) ... going on ...
- Explain the background components by using Du Chun's samples (jjjjj,jjjy,jjyy): reading them now, mimicking the cuts from ATLAS
- Measure eff(m_yy) & uncertainties
- Freeze MVA cuts at some point, and measure eff(MVA) & uncertainties
- Learn and use Hfitter to build up the statistical model
- Start documentation
- Try deep learning if possible

News on 14TeV non-resonant

- Under center of mass energy 14 TeV, with 3000 fb-1 high luminosity assumed, people have started to search SM HH (bbyy) production before May 2014
- CDS link:
 - https://cds.cern.ch/record/1702033

Arnaez, O.^a, Bentvelsen, S.^b, van Eijk, B.^b, Escalier, M.^d, Oropeza Barrera, C.^c, Nisati, A.^e,
Slawinska, M.^b, Styles, N.^h, Yao, W. M.ⁱ, van den Wollenberg, W.^b

News on 14TeV non-resonant

- Due to the limitation on computing, only truth level info is used with smearing in order to introduce the detector effects
- Cut-based analysis is implemented: an expected signal yield of 7.3 evts in 3000 fb-1 is obtained, expected bkg is 70 evts
- S/sqrt(B)~0.87 (0.03 expected from 8TeV analysis)

Samples	Selected	Acc.(%)	Exp.	
	Events		(3000 fb^{-1})	
$H(b\bar{b})H(\gamma\gamma)$	136	2.73	7.3±0.62	
jjγγ	39×0.231	1.8×01^{-5}	12±1.9	
<i>cc</i> γγ	56×0.839	2.35×10^{-4}	11.1±1.5	
$b\bar{b}\gamma\gamma$	94×1.0	2.1×10^{-3}	21.2 ± 2.2	
tī	4	2.67×10^{-5}	2.3±1.1	
$t\bar{t}\gamma$	7	1.1×10^{-4}	10.6 ± 4.1	
$t\bar{t}H(\gamma\gamma)$	208	0.18	7.4 ± 0.52	
$Z(b\bar{b})H(\gamma\gamma)$	8.48×10^{3}	0.424	3.9 ± 0.04	
$b\bar{b}H(\gamma\gamma)$	236	0.032	1.3 ± 0.1	
Total	-	-	70.0±5.4	
S/\sqrt{B}	-	-	0.87	

No chance to claim the observation alone with bbyy at 14 TeV Has to be combined with other channels 11

Combination SM HH non-resonant

- With bbyy final state, expected upper limit 1.0 pb (HH) corresponding to ~114.5 times of SM HH production
 - Also, there is **2.4** standard deviation in observation
- With bbbb final state, expected upper limit corresponding to ~40 times of SM HH production by using m(lead) vs m(sub) corrected from 6th May, before including systematic uncertainties and before re-optimizing the cuts that are used for resonant search
- Regarding the limited differences on the sensitivities, it is still worthy to combine both results with Run I
 - To obtain a better upper limit on SM HH production
 - As well as, if possible, to extract a "significant" *significance*
 - To serve as a good reference for Run II
- The machinary for combination is in place, all we need to do is
 - Gather the workspaces from both analyses after optimization
 - Converge on the correlated uncertainties (lumi, JES, isr/fsr etc.)

*Checks on the overlapped phase space in two analyses, should be negligible¹³

Combination BSM $H \rightarrow hh$

- The scanned mass points: bbyy final state covers from 260 GeV to 500 GeV, while with bbbb final state from 500 GeV 1000 GeV
 - bbbb signal acceptance drops significantly below 500 GeV
 - It seems that we can only combine in high mass region if bbyy final state can extend the search
- Well, if only looking at 500 GeV, by eye catching on the limit plots:
 - Expected upper limit on $gg \rightarrow H \rightarrow hh$ (bbyy): **0.8** pb
 - Expected upper limit on $gg \rightarrow H \rightarrow hh$ (bbbb): **0.1** pb from 6th May without systematic uncertainties
- At least at this joint mass point, both analyses are comparable with respect to the sensitivity
- Low mass (<500GeV), bbyy definitely has more sensitivities
- High mass (>500GeV), it is still hard to say now

Combination BSM $H \rightarrow hh$ (other issues)

 To interpret for 2HDM, in high mass region, one has to re-check resonant width, maybe has to redefine a smaller window

cos(b-a) ~ [-0.3,0.3]; tanb ~ [0.5,4]

anß

- The VBF, bbH production may also vary in high mass region, need to check when interpreting for 2HDM
- The signal templates are different: for bbyy final state, latest HeavyScalor in MG5; for bbbb final state, 2HDM in MG5
- As mentioned in SM HH comb, the overlapped phase space should be negligible

Combination BSM A \rightarrow Zh and H \rightarrow hh

- The basic idea is to combine the measurements from two different production: A \rightarrow Zh, H \rightarrow hh, by using one scale μ for both cross section
- Then by using this scale µ, one can provide the upper limits for each production as well as makes constraints in the tanb vs cos(b-a) plane
- If one assumes the cross section of $H \rightarrow hh$ is μ , then the cross section of $A \rightarrow Zh$ should be $\mu^*(A/H)$
 - Then the two measurements are correlated in the combination, leading to the possibility of obtaining from the fit the combined upper limits or "combined significance"
 - In the combined fit, the only POI is μ and (A/H) exists as a function of b and a
 - Due to the varying (A/H), one has to extract the upper limit for each point in the phase space to see if this certain point is rejected or not (quite computing-consuming)

Glance at $H \rightarrow hh \rightarrow WWyy \rightarrow jjjjyy$

- In parallel, we started to look at gg → H → hh → WWyy with W hadronic decay leading to final state of jjjjyy
 - $h \rightarrow WW$ has the second largest branching ratio after $h \rightarrow bb$
- Apply the same cuts from yy side, then ask njets>=4, estimate roughly the expected upper limit, and then additionally apply MVA cut to see the improvement on the expected upper limit

	Lumi (pb-1)	Branching ratio	Cut eff (yy&Njet>=4)	Upper limit	Cut eff (additionally MVA)	Upper limit
Non-resonant SM HH	20,000	4.48e-4	15%	18 pb	15%*93%	7.2 pb
Resonant 300GeV	20,000	4.48e-4	9%	30 pb	9%*63%	14 pb

10%

17

*The MVA is trained with signal MC sample and background from sideband This leads to signal eff = 63%, bkg eff = 9% for resonant, signal eff 93%, bkg eff = 13% for non-resonant

Compared to the expexted upper limits from bbyy analysis: * Non-resonant: **1.0** pb

* Resonant @ 300GeV: **1.5** pb

Introduction to jjjjyy

- Final states jjjjyy for searching
 - SM hh production
 - BSM gg \rightarrow X \rightarrow hh production

Signal region event yields [EXP]

- Signal region (ask yy cuts && njets>=4):
 - mass(yy) is required by $|m_h \Delta m_h m_{\gamma\gamma}| < 2\sigma_{\gamma\gamma}$
 - where mh=125.6, deltamh=0.15, sigma=1.6

* bkg in signal region estimated by fitting to exponential with sideband data 19

JxJy not has to be j1j2

- Till now I only assume j1 j2 are from a real W boson and use them to reconstruct it for simplicity
- An adaptive method is used to improve the correctness of finding the two jets from a same W boson here
 - By asking the invariant mass of jx jy, and choose the pair with the mass closest to W boson mass from PDG

*these correctness are calculated by using signal MC only @ mH=300GeV

JxJy not has to be j1j2

 Compare the invariant mass of jxjy in adaptive method and the one of j1j2 in the fixed method

MVA with JxJy

- Train with the variables from JxJy instead of J1J2
- Much more better performance is obtained

Classifier (#signal, #backgr.) Optimal-cut S/sqrt(B) NSig NBkg EffSig EffBkg

- MLP: (1000,1000) 0.6192 (55 +- 4.8) 515.8762 87.92532 0.5159 0.08793
- MLPBNN: (1000,1000) 0.6068 (54.9 +- 4.8) 545.217 98.76543 0.5452 0.09877
- BDT: (1000,1000) 0.1597 (65.1 +- 5.4) 633.2395 94.54983 0.6332 0.09455

The signal eff is kept 63% while the bkg eff is lower 9%

MVA inputs with adaptive method

MVA with JxJy for **SM HH**

• Train with the variables from JxJy instead of J1J2

- Classifier (#signal,#backgr.) Optimal-cut S/sqrt(S+B) NSig NBkg EffSig EffBkg

MLP: (1000, 1000) 0.4930 27.9795 895.2804 128.5757 0.8953 0.1286
MLPBNN: (1000, 1000) 0.4863 27.9399 901.6102 139.717 0.9016 0.1397
SVM: (1000, 1000) 0.4642 27.8195 893.3926 137.9103 0.8934 0.1379
BDT: (1000, 1000) -0.1115 28.4816 925.4858 130.3824 0.9255 0.1304

The signal eff is 93% while the bkg eff is 13%

MVA inputs with ada method (SM HH)

A new idea to try

- We all know missingET, which is due to the undetectable neutrino
- In our case, we don't have missingET, instead, we have a missing W since our pT requirements on jet almost remove all the 3rd and 4th jets
- We can try to reconstruct the other W boson by the momentum conservation law in transverse plan!

Additional cuts

- Additionally, we will cut on kinematics of the children from the other Higgs boson
 - To do some studies on cuts: deltaPhi(j,j) deltaEta(j,j)
 - To find the more correct combinations of jets originating from the same W boson

Njets {flag_all}

A first look at sideband region

- Sideband region:
 - mass(yy) within [100,160] GeV
 - mass(yy) is excluded from $|m_h \Delta m_h m_{\gamma\gamma}| < 2\sigma_{\gamma\gamma}$
 - where mh=125.6, deltamh=0.15, sigma=1.6

sideband	# of evt
ggH	0.467175
VBF	0.123474
WH	0.0638113
ZH	0.0405459
ttH	0.138622
Continuum	?
In data	1170

There are large components in backgrounds not yet clear Need to at least introduce $pp \rightarrow jjjyy$ and $pp \rightarrow jjyy$

Niets>=4

Bkg samples, use bbyy continuum samples? ²⁸

A first look at signal region

- Signal region:
 - mass(yy) is required by $|m_h \Delta m_h m_{\gamma\gamma}| < 2\sigma_{\gamma\gamma}$
 - where mh=125.6, deltamh=0.15, sigma=1.6

sideband	# of evt
ggH	4.91724
VBF	1.0963
WH	0.570564
ZH	0.374228
ttH	1.34295
Continuum	?
est bkg*	143

* bkg in signal region estimated by fitting to exponential with sideband data

Njets>=4