The 2HDM-I heavier CP-even Higgs production

- $\sqrt{s} = 14$ TeV.
- Alinement limit: $\cos(\beta \alpha) = -0.06$.

The 2HDM-I heavier CP-even Higgs Br

 $Tan\beta = 1$

 $Tan\beta = 10$

The 2HDM-I $pp \to H \to hh \to W^+ W^- \gamma \gamma$ channel

 $\sigma[pp \to HX] \times Br[H \to hh] \times Br[h \to W^+ W^-] \times Br[h \to \gamma\gamma] \times 2$

The 2HDM-I $pp \to H \to hh \to W^+ W^- \gamma \gamma$ channel

- $Br [h \rightarrow W^+ W^-] / Br [h \rightarrow b b] \simeq 0.38;$
- Br [$W \rightarrow \ell \nu$] $\simeq 10.8\%$ ($\ell : e \text{ or } \mu \text{ or } \tau$);
- $Br [W \rightarrow hadrons] \simeq 67.6\%$.
- Signal cross section ratio σ [$W^+ W^- \gamma \gamma$] / σ [$b \ b \gamma \gamma$]: hadronnic decay: $0.38 \times 67.6\%^2 \simeq 0.18$; leptonic decay: $0.38 \times (3 \times 10.8\%)^2 \simeq 0.04$; semi-leptonic decay: $0.38 \times 67.6\% \times 3 \times 10.8\% \times 2 \simeq 0.17$.

Semi-leptonic decay channel

• Fast-simulation project:

MG5 + pythia + delphes 3.0.10.

- 2HDM Signal: $M_H = 300$ GeV.
- SM irreducible background:

$$p p \rightarrow q q \ell \nu \gamma \gamma \sim 31.13$$
[fb].

• SM reducible background:

$$\begin{array}{rcl} p \ p \ \rightarrow \ q \ q \ \ell \ \nu \ g \ g & \sim & \mathrm{o}(10^{-4}) [\mathrm{fb}], \\ p \ p \ \rightarrow & q \ q \ \ell \ \nu \ g \ q & \sim & \mathrm{o}(10^{-4}) [\mathrm{fb}], \\ p \ p \ \rightarrow & q \ q \ \ell \ \nu \ q \ q & \sim & \mathrm{o}(10^{-4}) [\mathrm{fb}], \\ p \ p \ \rightarrow & q \ q \ \ell \ \nu \ q \ q & \sim & \mathrm{o}(10^{-4}) [\mathrm{fb}], \\ p \ p \ \rightarrow & q \ q \ \ell \ \nu \ q \ \gamma & \sim & \mathrm{o}(10^{-1}) [\mathrm{fb}], \\ p \ p \ \rightarrow & q \ q \ \ell \ \nu \ q \ \gamma & \sim & \mathrm{o}(10^{-1}) [\mathrm{fb}], \end{array}$$

with photon identification efficiencies:

$$\epsilon_{q \to \gamma} \approx 3.6 \times 10^{-4}, \ \epsilon_{g \to \gamma} \approx 3.6 \times 10^{-5}$$

• SM Higgstrahlung:

Radiate Higgs: $p \ p \ \rightarrow \ h \ \rightarrow \ W^+ W^- \ \rightarrow \ W^+ W^- h$. $p \ p \ \rightarrow \ W^+ W^- h \ \rightarrow \ q \ q \ \ell \ \nu \ \gamma \ \gamma \ \sim \ o(10^{-3})$ [fb].

• SM reducible background:

$$p p \rightarrow \ell \nu \gamma \gamma \sim 143.3$$
[fb].

• Overlab remove:

• Electrons with $\Delta R(e, \gamma) < 0.4$ are removed;

► Jets(BTag,TauTag = 0) with $\Delta R(\text{jet}, e) < 0.2$ or $\Delta R(\text{jet}, \gamma) < 0.4$ are removed;

▶ Muons with $\Delta R(\mu, \text{jet}) < 0.4$ or $\Delta R(\mu, \gamma) < 0.4$ are removed.

• Final state($q \ q \ \ell \ \nu \ \gamma \ \gamma$) selection:

▶ Number of qjet ≥ 2 , m_{qq} of qjet pair closest to m_W ;

► Number of photon ≥ 2 , $m_{\gamma\gamma}$ of photon pair closest to m_h ;

▶ Number of electron or muon = 1.

• Basic cuts: $|\eta_{\gamma,q,\ell}| < 2.5, \ P_{T_{\gamma,q}} > 25 \text{ GeV}, \ P_{T_{\ell}} > 15 \text{ GeV}.$

Invariant mass distribution

• Invariant mass cuts: $120 \text{GeV} < m_{\gamma\gamma} < 130 \text{GeV}$ and $65 \text{GeV} < m_{qq} < 82 \text{GeV}$ to be used.

Missing ET distribution

• Missing ET cut: MET < 35GeV to be used.

P_T distribution

Chun Du

ΔR distribution

$\Delta \Phi$ distribution

• $\Delta \Phi$ cuts: $\Delta \Phi_{\gamma\gamma} > 1.6$ and $1.3 < \Delta \Phi_{qq} < 2.6$ to be used.

Cut efficiency

Cuts	$\sigma_{ m total}$	Events selection	$m_{\gamma\gamma} \ m_{qq}$	$\Delta \Phi$
Signal [fb]	0.17	0.011	MET 0.0051	0.0028
aduoo[fb]	21 50	0.514	0.0001	0.0020
$qqe\nu\gamma\gamma$ [ID]	51.59	0.514	0.0011	0.0004
$\ell u \gamma \gamma [{ m fb}]$	143.3	0.06	0	0
S/B	0.001	0.020	4.5	6.6
$S/\sqrt{B}^{[1]}$	0.41	0.47	4.8	4.3
$S/\sqrt{B}^{[2]}$	0.91	1.06	10.7	9.6
$Signif-P^{[1]}$	0.41	0.47	3.3	2.7
$Signif-P^{[2]}$	0.91	1.06	7.5	6.1

Signif-P:
$$\sqrt{2 \times \{(S+B) \times \ln[(S+B)/B] - S\}}$$
. Integrate
uminosity is assumed to be ^[1] $\int \mathcal{L} dt = 1000 \text{ fb}^{-1}$ and
^{2]} $\int \mathcal{L} dt = 5000 \text{ fb}^{-1}$.

Chun Du

MVA analysis

• BDT method

Correlation Matrix (signal)

	Linear correlation coefficients in %									100				
delPhiqq		13	-1	-8	-2	-19	-19	4	4	38	14	100		100
delPhiaa	7								26		100	14		80
delRqq										100		38	-	60
delRaa	3			-15	-21		-2		100	-15	26	4	-	40
PTI								100				4	_	20
PTq2nd		48				44	100					-19		_
PTq1st		53	14			100	44	7				-19		U
PTa2nd	5	3			100	8	2		-21		-19	-2		-20
PTa1st	5			100	-1							-8	-	-40
MET			100	11	1							-1	_	-60
mqq		100	8	8		53	48					13		-80
maa	100			5	5				3		7			
maa ^m qq MET ^P Ta1 ^P Ta2nd 91st 97q2nd ^e l aler aler del phiaa ^e l aler higq										'-100 °				

Correlation Matrix (background)

 \bullet Overtraining check

MVA analysis

 $\int \mathcal{L}dt = 1000 \text{ fb}^{-1}$. BDT cut: BDT ≥ 0.2507 .

 $\int \mathcal{L}dt = 5000 \text{ fb}^{-1}. \text{ BDT cut: BDT} \ge 0.2507.$

Invariant mass distribution after BDT

 $BDT \ge 0.2507.$