Combination

BSM neutral Higgs

Yaquan Fang, Xinchou Lou, <u>Xiaohu Sun</u> and all the contributors working on A and H 01-09-2014 IHEP

Overview

- Combination on higgs-pair production with HH->bbyy and HH bbbb final states for NON-resonant search:
 - bbyy released paper, mature [arXiv:1406.5053]
 - bbbb published previously with graviton signal [ATLAS-CONF-2014-005], has changed to higgs signal samples, being ongoing, not yet provided workspace
- Combination on A->Zh production with Iltautau (hadhad,lephad,leplep) and II,vv bb final states for A search
 - Iltautau workspaces: hadhad/lephad updated with ATLAS convention; leplep updated but not yet with ATLAS convention (22Aug)
 - II,vv bb workspaces: updated workspaces (27July)
 - Correlations on nuisance parameters: between hadhad and lephad, leplep can join once ATLAS convention is implemented; between llbb and vvbb
- This talk will focus on AZh combination

Nuisance parameters

correlate LUMI between Iltautau and xxbb: <u>169 + 58</u> nuis

	lltautau	xxbb		
<pre># nui parameters syst+stats</pre>	34+58	136+0		
correlation	(only hadhad and lephad) alpha_ATLAS_BR_HTAUTAU, alpha_ATLAS_EL_EFF, alpha_ATLAS_EL_ES, alpha_ATLAS_JER_Iltautau, alpha_ATLAS_JES_Iltautau, alpha_ATLAS_MET_Iltautau, alpha_ATLAS_MU_2012_TRIG, alpha_ATLAS_MU_2012_TRIG, alpha_ATLAS_MU_EFF, alpha_ATLAS_MU_MS, alpha_ATLAS_PILEUP, alpha_ATLAS_TES_2012, alpha_ATLAS_TES_2012, alpha_QCDscale_VH, alpha_QCDscale_ggVV, alpha_QCDscale_qqVV, alpha_pdf_qq	(between llbb and vvbb) 40 SysBtag* 25 SysJet* SysJVF 3 SysMET ATLAS_norm_Zbb, ATLAS_norm_Zcl, ATLAS_norm_Zl, ATLAS_norm_ttbar, etc.		

AZh – correlation (asimov mu=0) mA=220GeV

SysZbbNorm_J3 SysZblZbbRatio SysttbarHighPtV

correlation_matrix

SysJet

ATLAS norm XXX

close to diagonal: SysJetFlavComp_Wjets vs SysJetFlavResp_Wjets

AZh – correlation (asimov mu=0) mA=240GeV

AZh – correlation (asimov mu=0) mA=260GeV

AZh – correlation (asimov mu=0) mA=300GeV

AZh – correlation (asimov mu=0) mA=340GeV

AZh – correlation (asimov mu=0) mA=350GeV

AZh – correlation (asimov mu=0) mA=400GeV

AZh – correlation (asimov mu=0) mA=500GeV

AZh – correlation (asimov mu=0) mA=800GeV

AZh – correlation (asimov mu=0) MA=1TeV

ATLAS_norm_XXX SysBTagB0Effic_Y2012 POI SysBTagB1Effic_Y2012 correlation_matrix

AZh – pull check (asimov mu=0) mA=220GeV

Underconstrained SysJetFlavorComp_Zjets SysJetFlavorResp_Zjets SysMETScaleSoftTerms_Y2012

14

AZh – pull check (asimov mu=0) mA=240GeV

Underconstrained SysJetFlavorComp_Zjets SysJetFlavorResp_Zjets SysMETScaleSoftTerms_Y2012

AZh – pull check (asimov mu=0) mA=260GeV

Underconstrained SysJetFlavorComp_Zjets SysJetFlavorResp_Zjets SysMETScaleSoftTerms_Y2012

16

AZh – pull check (asimov mu=0) mA=300GeV

Underconstrained SysJetFlavorComp_Zjets SysJetFlavorResp_Zjets SysMETScaleSoftTerms_Y2012

17

AZh – pull check (asimov mu=0) mA=340GeV

Underconstrained

AZh – pull check (asimov mu=0) mA=350GeV

Underconstrained SysJetFlavorComp_Zjets SysJetFlavorResp_Zjets SysMETScaleSoftTerms_Y2012

19

AZh – pull check (asimov mu=0) mA=400GeV

Underconstrained

AZh – pull check (asimov mu=0) mA=500GeV

Underconstrained SysJetFlavorComp_Zjets SysJetFlavorResp_Zjets SysMETScaleSoftTerms_Y2012

21

AZh – pull check (asimov mu=0) mA=800GeV

Underconstrained

AZh – pull check (asimov mu=0) MA=1TeV

Underconstrained SysBTagB1Effic_Y2012

23

AZh – significance check

mA=500GeV

AZh – significance check

Top 10 ranked nuisance parameters

mA=500GeV

AZh – PLR curves (asimov mu=0) mA=220GeV

- PLR curves are calculated for each sub-channel and the combined to have a basic idea of sensitivities and cross check with asymptotic upper limit setting
- PLR is calculated with asimovData in which signal strength is set to 0, so one-sided curves are shown as below (min_mu=0)

AZh – PLR curves (asimov mu=0) mA=300GeV

- PLR curves are calculated for each sub-channel and the combined to have a basic idea of sensitivities and cross check with asymptotic upper limit setting
- PLR is calculated with asimovData in which signal strength is set to 0, so one-sided curves are shown as below (min_mu=0)

AZh – PLR curves (asimov mu=0) mA=340GeV

- PLR curves are calculated for each sub-channel and the combined to have a basic idea of sensitivities and cross check with asymptotic upper limit setting
- PLR is calculated with asimovData in which signal strength is set to 0, so one-sided curves are shown as below (min_mu=0)

AZh – PLR curves (asimov mu=0) mA=400GeV

- PLR curves are calculated for each sub-channel and the combined to have a basic idea of sensitivities and cross check with asymptotic upper limit setting
- PLR is calculated with asimovData in which signal strength is set to 0, so one-sided curves are shown as below (min_mu=0)

AZh – PLR curves (asimov mu=0) mA=500GeV

- PLR curves are calculated for each sub-channel and the combined to have a basic idea of sensitivities and cross check with asymptotic upper limit setting
- PLR is calculated with asimovData in which signal strength is set to 0, so one-sided curves are shown as below (min_mu=0)

AZh – PLR curves (asimov mu=0) mA=800GeV

- PLR curves are calculated for each sub-channel and the combined to have a basic idea of sensitivities and cross check with asymptotic upper limit setting
- PLR is calculated with asimovData in which signal strength is set to 0, so one-sided curves are shown as below (min_mu=0)

AZh combination (previous version)

- Trying different scripts for upper limit setting (only asymptotics):
 - Standard script from StatForum (Kyle): >2days, endless
 - Aaron script: 1~2 days
 - Modified Aaron script from HSG5: comb/xxbb/vvbb >3 days not finished yet, llbb is done < 1 days

	+++ Aaron script +++								
	Observed Median +2sig +1sig -1sig -2sig								
	combined	0.2798	0.2798	0.5432	0.3946	0.2016	0.1502		
	xxbb	0.2918	0.2918	0.5704	0.4122	0.2103	0.1566		
mA	llbb	0.2945	0.2945	0.5778	0.4171	0.2122	0.1580		
300GeV	vvbb	4.7677	4.7677	10.7129	7.0971	3.4354	2.5589		
	hadhad	1.8711	1.8711	4.0766	2.7397	1.3482	1.0043		
	lephad	2.3156	2.3156	4.7806	3.3400	1.6685	1.2429		
	leplep	2.4921	2.4921	5.5921	3.7159	1.7957	1.3376		
	+++ Aaron script modified in HSG5 $+++$								

llbb 0.294514 0.294514 0.563147 0.39158 0.212214 0.158073

2HDM interpretation

- https://twiki.cern.ch/twiki/bin/view/AtlasProtected/HiggsBSM2HDM Plotting
- Using A -> Zh limits from all channel combined
- Shadowed area where width/mass>20% [NEW]

2HDM interpretation

Summary

- Mature workspaces are provided from each subchannel
- Combination framework, nuisance parameter check on pull, limit setting are ready and running smoothly, although 8 hours~2days are needed for each single test (NuiSig for each nuis); upper limit setting may take even longer
- Correlations: within both side, Iltautau and xxbb are correlated in their subchannels; across Iltautau and xxbb, lumi is correlated
- The upper limits setting are still running for this version
- Will run with latest workspaces if there is any recent updates :)
- Will start documentation recently, at least on AZh side
- Extending 2HDMPlottingTool to support exclusion planes on tanb vs mA/mH, cos(b-a) va mA/mH, still under development
- WWyy analysis, estimating uncertainties on resonant search

Correlation matrix (previous version)

• mA=300GeV

Correlation matrix – zoom in

high correlations are mainly related to ATLAS_norm_XXX

Correlation matrix – zoom in

SysJetFlavComp_Wjets correlated with SysJetFlavResp_Wjets

lltautau (syst) alpha ATLAS BR HTAUTAU a0, alpha ATLAS DataDriven hadhad a0, alpha ATLAS DataDriven lephad a0, alpha_ATLAS_EL EFF a0, alpha ATLAS EL ES a0, alpha ATLAS JER Iltautau a0, alpha ATLAS JES Iltautau a0, alpha ATLAS LUMI a0, alpha ATLAS LUMI 2012 a0, alpha ATLAS MET Iltautau a0, alpha ATLAS MU 2012 TRIG a0, alpha ATLAS MU EFF a0, alpha ATLAS MU Eff a0, alpha ATLAS MU MS a0, alpha_ATLAS_PILEUP_a0, alpha ATLAS TAU 2012 ID a0, alpha_ATLAS_TES_2012_a0, alpha ATLAS ggAZh Acc a0, alpha EIID a0, alpha JES a0,

alpha LL DD norm DF a0, alpha LL DD norm SF a0, alpha LL DD shape DF a0, alpha LL DD shape SF a0, alpha MET a0, alpha MuID a0, alpha QCDscale VH a0, alpha QCDscale ggVV a0, alpha_QCDscale_qqVV_a0, alpha TheoryNorm VVV a0, alpha TheoryNorm WZ a0, alpha TheoryNorm ttZ a0, alpha ZZ pdf gg a0, alpha_ZZ_pdf_qqbar_a0, alpha_pdf_gg_a0, alpha_pdf_qq_a0,

All nuisance

alpha_SysBTagC10Effic_Y2012_a1, alpha_SysBTagC11Effic_Y2012_a1,

xxbb (syst) ATLAS_norm_Wbb_a1, ATLAS norm Wcl a1, ATLAS norm WI a1, ATLAS norm Zbb a1, ATLAS_norm_Zcl a1, ATLAS norm ZI a1, ATLAS norm ttbar a1, alpha ATLAS LUMI 2012 a1, alpha SysBJetReso a1, alpha SysBTagB0Effic Y2012 a1, alpha_SysBTagB1Effic_Y2012_a1, alpha_SysBTagB2Effic Y2012 a1, alpha SysBTagB3Effic Y2012 a1, alpha SysBTagB4Effic Y2012 a1, alpha SysBTagB5Effic Y2012 a1, alpha SysBTagB6Effic Y2012 a1, alpha_SysBTagB7Effic Y2012 a1, alpha SysBTagB8Effic Y2012 a1, alpha_SysBTagB9Effic Y2012 a1, alpha_SysBTagBPythia8_Y2012_a1, alpha_SysBTagBSherpa_Y2012_a1, alpha SysBTagC0Effic Y2012 a1,

alpha_SysBTagC12Effic Y2012 a1, alpha_SysBTagC13Effic Y2012 a1, alpha_SysBTagC14Effic Y2012 a1, alpha SysBTagC1Effic Y2012 a1, alpha SysBTagC2Effic Y2012 a1, alpha SysBTagC3Effic Y2012 a1, alpha_SysBTagC4Effic Y2012 a1, alpha SysBTagC5Effic Y2012 a1, alpha SysBTagC6Effic Y2012 a1, alpha SysBTagC7Effic Y2012 a1, alpha SysBTagC8Effic Y2012 a1, alpha SysBTagC9Effic Y2012 a1, alpha_SysBTagCPythia8_Y2012_a1, alpha SysBTagCSherpa Y2012 a1, alpha SysBTagL0Effic Y2012 a1, alpha_SysBTagL1Effic_Y2012_a1, alpha SysBTagL2Effic Y2012 a1, alpha SysBTagL3Effic Y2012 a1, alpha_SysBTagL4Effic_Y2012_a1, alpha_SysBTagL5Effic_Y2012_a1, alpha_SysBTagL6Effic_Y2012_a1, alpha_SysBTagL7Effic Y2012 a1, alpha_SysBTagL8Effic_Y2012_a1, alpha SysBTagL9Effic Y2012 a1,

All nuisance parameters

xxbb (syst) alpha SysElecE a1, alpha_SysElecEResol_a1, alpha SysElecEffic a1, alpha SysJVF Y2012 a1, alpha SysJetEResol Y2012 a1, alpha SysJetEtaModel a1, alpha SysJetEtaStat Y2012 a1, alpha SysJetFlavB a1, alpha SysJetFlavComp a1, alpha SysJetFlavComp_Top_a1, alpha SysJetFlavComp VHVV a1, alpha_SysJetFlavComp_Wjets_a1, alpha_SysJetFlavComp_Zjets_a1, alpha SysJetFlavResp a1, alpha_SysJetFlavResp_Top_a1, alpha SysJetFlavResp VHVV a1, alpha_SysJetFlavResp_Wjets_a1, alpha_SysJetFlavResp_Zjets_a1,

alpha_SysJetMu_a1, alpha_SysJetNP1_Y2012_a1, alpha_SysJetNP2_Y2012_a1, alpha_SysJetNP3_Y2012_a1, alpha_SysJetNP4_Y2012_a1, alpha_SysJetNP5_Y2012_a1, alpha_SysJetNP6_rest_Y2012_a1, alpha_SysJetNPV_a1, alpha_SysJetNPV_a1, alpha_SysJetPilePt_Y2012_a1, alpha_SysJetPileRho_Y2012_a1,

alpha_SysMETResoSoftTerms_Y2012_a1, alpha_SysMETScaleSoftTerms_Y2012_a1, alpha_SysMETTrigStat_Y2012_a1, alpha_SysMuScale_Y2012_a1, alpha_SysMultijet_J2_T0_L0_Y2012_a1, alpha_SysMultijet_J2_T0_L1_Y2012_a1, alpha_SysMultijet_J2_T1_L1_Y2012_a1, alpha_SysMultijet_J2_T2_L1_Y2012_a1, alpha_SysMultijet_J3_T0_L0_Y2012_a1, alpha_SysMultijet_L2_Y2012_a1, alpha_SysMultijet_L2_Y2012_spctopemucna2a1,

All nuisance parameters

xxbb (syst) alpha_SysMuonEResolID a1, alpha_SysMuonEResolMS a1, alpha SysMuonEffic a1, alpha SysSChanAcerMC a1, alpha SysSChanAcerMCPS a1, alpha SysTChanPtB2 a1, alpha SysTheoryVHPt a1, alpha SysTheoryVPtQCD qqVH a1, alpha SysTopPt a1, alpha SysTruthTagDR Y2012 a1, alpha SysTtbarMBBCont a1, alpha SysVVJetPDFAlphaPt a1, alpha SysVVMbb WW a1, alpha SysVVMbb WZ a1, alpha_SysVVMbb_ZZ_a1, alpha SysWMbb Wcl a1, alpha SysWMbb Whf a1, alpha SysWMbb WI a1,

alpha_SysWPtV_Whf_a1, alpha_SysWbbMbbGS_a1, alpha_SysWbcWbbRatio_a1, alpha_SysWblWbbRatio_a1, alpha_SysWccWbbRatio_a1, alpha_SysWclNorm_J3_a1, alpha_SysWhfNorm_J3_a1, alpha_SysWlNorm_J3_a1, alpha_SysWtChanAcerMC_a1, alpha_SysWtChanPythiaHerwig_a1,

All nuisance parameters

xxbb (syst) alpha SysZDPhi J2 ZbORc a1, alpha SysZDPhi J2 ZI a1, alpha SysZDPhi J3 ZbORc a1, alpha SysZDPhi J3 ZI a1, alpha SysZMbb ZbORc a1, alpha SysZMbb Zl a1, alpha SysZPtV ZbORc a1, alpha SysZPtV ZI a1, alpha SysZbbNorm J3 a1, alpha SysZbcZbbRatio a1, alpha SysZblZbbRatio a1, alpha SysZccZbbRatio a1, alpha SysZclNorm J3 a1, alpha SysZINorm J3 a1,

alpha_SysstopWtNorm_a1, alpha_SysstopsNorm_a1, alpha_SysstoptNorm_a1, alpha_SysttbarHighPtV_a1, alpha_SysttbarNorm_J3_a1, alpha_SysttbarNorm_J3_L2_a1

2HDM xsec contour

CMS-HIG-13-025-PAS