upper limit, exclusion& discovery

Yu Zhang 9.3

abstract

- upper limit and exclusion (what I understand before)
- discovery and their significance (what we talked about last week ,a little confused)
- I won't talk about any RooStat code here
- we can skip some basic knowledge about probability and hypothesis test here

upper limit

- upper limit means p(mu<mu_up)=0.95
- consider a poisson ditribution:b=4.5,n_obs=10, what is the upper limit of s?
- we scan the value of mu and when the area on the right of the red line is 0.05,we can get the upper limit.

a simple method-PLR fit

Expand $\ln L(\theta)$ about its maximum:

$$\ln L(\theta) = \ln L(\hat{\theta}) + \left[\frac{\partial \ln L}{\partial \theta}\right]_{\theta=\hat{\theta}} (\theta-\hat{\theta}) + \frac{1}{2!} \left[\frac{\partial^2 \ln L}{\partial \theta^2}\right]_{\theta=\hat{\theta}} (\theta-\hat{\theta})^2 +$$

$$\ln L(\theta) \approx \ln L_{\max} - \frac{(\theta-\hat{\theta})^2}{2\widehat{\sigma^2}_{\hat{\theta}}}$$

$$\ln L(\hat{\theta} \pm \hat{\sigma}_{\hat{\theta}}) \approx \ln L_{\max} - \frac{1}{2}$$

$$\ln L(\hat{\theta} \pm \hat{\sigma}_{\hat{\theta}}) \approx \ln L_{\max} - 2$$

$$-Ln \frac{\hat{L}(\hat{\theta} \pm \hat{\sigma}_{\hat{\sigma}})}{L_{\max}} \approx 2$$

• so when $-\ln\lambda(\mu)=2$, upper limit can be obtained

general method

- Null hypo:mu=0,alternate hypo:mu=1
- probability of x given θ :f(x| θ)

• test statistic:
$$q_{\mu} = -2Ln \frac{L(\mu, \hat{\theta})}{L(\mu, \hat{\theta})}$$
 if mu^hat>0

- parameters with one hat mean the best fit,
- mu is a variable and parameters with two hat is the best fit for a certain given mu

upper limit

- q_{obs} is calculated from data,q_{expect} is the median of background-only hypothesis
- I put Xiaohu's slides here.....

Test statistic → exclusion or upper limit

- Calculate the test statistic of S+B hypo based on its p-value
- The signal model is regarded as excluded at a confidence level of 1-alpha = 95% if one finds

$$p_{s+b} < \alpha$$

$$1 - \alpha = 95\%$$

confidence level $CL = 1 - \alpha$

NOTE: in another word, the signal rate s under which the 5% p_{s+b} reaches, can be regarded as a upper limit s_{up} , for which signal is not excluded.

So the interval $[0,s_{up}]$ covers s with a probability of at least 95%

Test statistic \rightarrow discovery

- Calculate the test statistic of B hypo based on its p-value: p_b
- Convert p-value into standard deviation (XX sigma)
- 3 sigma \rightarrow evidence; 5 sigma \rightarrow discovery
- The background-only model is regarded as rejected if 5 sigma

discovery

 if significance is 5 sigma or p-value <2.9e-7,a new particle is discovered----it is to say we have probability of 1-p to reject null hypo.

• test statistic:
$$q_0 = -2Ln \frac{L(0, \hat{\theta})}{L(\mu, \hat{\theta})}$$
 if mu^hat>0

- also parameters with one hat are the best fit and paramters with two hat is the best fit with mu=0
- so q_0 is only decided by dataset x and $f(x|\mu,\theta)$

if I am right...

 where is the line s+b in lower right plot from? • anyway, we can calculate p-value as usual

$$p_{obs} = \int_{q_{obs}}^{\infty} f(q_0 \mid 0) dq_0$$
$$p_{exp \ ect} = \int_{q_{exp \ ect}}^{\infty} f(q_0 \mid 0) dq_0$$

$$Significance \\ Z = \Phi^{-1}(1-p), \Phi(x) = \int_{-\infty}^{x} Gaussiahy, 0, 1) dy$$

In large sample limit, q_0 ~"half chi-2 distribution" (from Cowan's lecture)

$$f(q_0|0) = \frac{1}{2}\delta(q_0) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_0}}e^{-q_0/2}$$

CDF of q₀ $F(q_0|0) = \Phi(\sqrt{q_0})$ p-value $p_0 = 1 - F(q_0|0)$

So Z can be calculate $Z = \Phi^{-1}(1 - p_0) = \sqrt{q_0}$

the following three pages are copied from Cowan's lecture.

 s/\sqrt{b} for expected discovery significance For large s + b, $n \to x \sim \text{Gaussian}(\mu, \sigma)$, $\mu = s + b$, $\sigma = \sqrt{(s + b)}$. For observed value x_{obs} , *p*-value of s = 0 is $\text{Prob}(x > x_{\text{obs}} | s = 0)$,:

$$p_0 = 1 - \Phi\left(\frac{x_{\rm obs} - b}{\sqrt{b}}\right)$$

Significance for rejecting s = 0 is therefore

$$Z_0 = \Phi^{-1}(1 - p_0) = \frac{x_{\text{obs}} - b}{\sqrt{b}}$$

Expected (median) significance assuming signal rate s is

$$\mathrm{median}[Z_0|s+b] = \frac{s}{\sqrt{b}}$$

G. Cowan iSTEP 2014, Beijing / Statistics for Particle Physics / Lecture 3

Better approximation for significance Poisson likelihood for parameter *s* is

$$L(s) = \frac{(s+b)^n}{n!} e^{-(s+b)}$$
 For now
no nuisance

To test for discovery use profile likelihood ratio:

$$q_0 = \begin{cases} -2\ln\lambda(0) & \hat{s} \ge 0 \ , \\ 0 & \hat{s} < 0 \ . \end{cases} \qquad \lambda(s) = \frac{L(s, \hat{\hat{\theta}}(s))}{L(\hat{s}, \hat{\theta})}$$

So the likelihood ratio statistic for testing s = 0 is

$$q_0 = -2\ln\frac{L(0)}{L(\hat{s})} = 2\left(n\ln\frac{n}{b} + b - n\right) \quad \text{for } n > b, \ 0 \text{ otherwise}$$

params.

Approximate Poisson significance (continued)

For sufficiently large s + b, (use Wilks' theorem),

$$Z = \sqrt{2\left(n\ln\frac{n}{b} + b - n\right)} \quad \text{for } n > b \text{ and } Z = 0 \text{ otherwise.}$$

To find median[*Z*|*s*], let $n \rightarrow s + b$ (i.e., the Asimov data set):

$$Z_{\rm A} = \sqrt{2\left((s+b)\ln\left(1+\frac{s}{b}\right) - s\right)}$$

This reduces to s/\sqrt{b} for s << b.

$$Z_{A} = \sqrt{2\left((s+b)\ln\left(1+\frac{s}{b}\right) - s\right)}$$

• if $s \ll b, \ln(1+\frac{s}{b}) \sim \frac{s}{b} - \frac{s^{2}}{2b^{2}}$
 $(s+b)(\frac{s}{b} - \frac{s^{2}}{sb^{2}}) - s = \frac{s^{2}}{b} - \frac{s^{3}}{sb^{2}} + s - \frac{s^{2}}{bb} - s$

$$(s+b)(\frac{s}{b} - \frac{s}{2b^2}) - s = \frac{s}{b} - \frac{s}{2b^2} + s - \frac{s}{2b} - \frac{s}{2b} - \frac{s}{2b^2} + s - \frac{s}{2b} - \frac{s}{2b} - \frac{s}{2b^2} - \frac{s}{2b^2} - \frac{s}{2b^2} - \frac{s}{2b} - \frac{$$

• Z~
$$\frac{s}{\sqrt{b}}$$

back up

Test statistic for discovery

Try to reject background-only ($\mu = 0$) hypothesis using

$$q_0 = \begin{cases} -2\ln\lambda(0) & \hat{\mu} \ge 0\\ 0 & \hat{\mu} < 0 \end{cases}$$

Here data in critical region (high q_0) only when estimated signal strength $\hat{\mu}$ is positive.

Could also want two-sided critical region, e.g., if presence of signal process could lead to suppression (and/or enhancement) in number of events.

Note that even if physical models have $\mu \ge 0$, we allow $\hat{\mu}$ to be negative. In large sample limit its distribution becomes Gaussian, and this will allow us to write down simple expressions for distributions of our test statistics.

G. Cowan iSTEP 2014, Beijing / Statistics for Particle Physics / Lecture 3

p-value for discovery

Large q_0 means increasing incompatibility between the data and hypothesis, therefore *p*-value for an observed $q_{0,obs}$ is

will get formula for this later

From *p*-value get equivalent significance,

$$Z = \Phi^{-1}(1-p)$$

G. Cowan

iSTEP 2014, Beijing / Statistics for Particle Physics / Lecture 3

Expected (or median) significance / sensitivity

When planning the experiment, we want to quantify how sensitive we are to a potential discovery, e.g., by given median significance assuming some nonzero strength parameter μ' .

So for *p*-value, need $f(q_0|0)$, for sensitivity, will need $f(q_0|\mu')$,

G. Cowan

iSTEP 2014, Beijing / Statistics for Particle Physics / Lecture 3