DAMPE mission Introduction

Chinese Academy of Science

DAMPE International Collaboration Team

China:

Purple Mountain Observatory, CAS Institute of High Energy of Physics, CAS Institute of Modern Physics, CAS National Space Science Center, CAS University of Science and Technology of China

Swiss:

Geneva University

Italy: I.N.F.N. Sez. di Perugia, Perugia University I.N.F.N. Sez. di Bari, Bari University

DAMPE Observation

Electron:2GeV-10TeV Gamma-rays:2GeV-10TeV Proton and Heavy Ions:30GeV-1000TeV

Scientific Objectives

Science Objectives	Observation Targets
Nearby Cosmic-ray Sources	Electron spectrum in trans-TeV region
Dark Matter	Signatures in electron/gamma energy spectra in 10GeV – 10 TeV region
Origin and Acceleration of Cosmic Rays	p-Fe above 30 GeV
Cosmic –ray Propagation in the Galaxy	B/C ratio up to several TeV /n
Gamma-ray Transients	Gamma-ray time profile
Gamma-ray Astronomy	Gamma-ray mapping

High energy electron lost energy ∝1/E² Local TeV electrons: Age < ~10⁵ years, Distance < 1 kpc Local TeV electrons → Vela, Monogem, Cygnus Loop

Electron spectrum depending on Vela and Cygnus Loop Kobayashi, 1210.2813

Cosmic – ray Propagation in the Galaxy B/C ratio observation

□ B/C ratio: Secondary/Primay CNO+ISM→B $N_B/N_C \propto \lambda_{esc} * \sigma_{CNO \rightarrow B}$ →Propagation in the Galaxy

Dark Matter

Signals in e&y spectrum & space distribution

These signals are smoking gun of dark matter particle

Present Observation

A gamma line at the GC?

Meng Su

Optimize search region around Galactic center based on signal-to-noise ratio for different dark matter halo models.

→ find excess in Galactic center around 110 GeV and 130 GeV

An offset-DM + Einasto model fits the data best:

 6.6σ local, 5.1σ global significance

Gamma-ray line in Clusters?

PAMELA 7 year e⁻ Observation

AMS02 e⁺ fraction

If the excess has a particle physics origin, it should be isotropic

The fluctuations of the positron ratio e⁺/e⁻ are isotropic

AMS02 and Pamela e⁻ spectrum

AMS02 e⁻+e⁺ & Pamela e⁻ spectrum

Present status

- Cosmic electrons:
- No Space Observation above TeVs
- Cosmic ray Proton and Heavy Ions
- from TeV to PeV, no direct element spectral measurement
- Gamma-ray astronomy
 - There is a gap between space and ground observation (10s GeV -100s GeV)
 - No High energy resolution observation in space
- Dark matter particle
 - No proof

Energy range >TeV Energy resolution better than 1.5% Background Rejection above 10⁵

DAMPE Mission

Payload Overview

Measurement	Detector
Charge	Si-strip & Scintillation Hodoscope
Direction	Si-Stripe
Energy	BGO Calorimeter (31 r.l.)
Background Rejection	BGO Cal. Plus Neutron detector

W converter + thick calorimeter (total 33 X_0) + precise tracking + charge measurement high energy γ -ray, electron and CR telescope Comparison with AMS-02 and Fermi

	DAMPE	AMS-02	Fermi LAT
e/γ Energy range (GeV)	5 - 10 ⁴	0.1 - 10 ³	0.02 - 300
e/γ Energy res.@100 GeV (%)	1.5	3	10
e/γ Angular res.@100 GeV (°)	0.1	0.3	0.1
e/p discrimination	10 ⁵	10 ⁵ - 10 ⁶	10 ³
Calorimeter thickness (X ₀)	31	17	8.6
Geometrical accep. (m ² sr) (e)	0.29	0.06	0.15

- Geometrical acceptance with BGO alone: 0.36 m²sr
- BGO+STK+PSD: 0.29 m²sr
- First 10 layers of BGO (22 X_0) +STK+PSD: 0.36 m²sr

Plastic Scintillator Detector (PSD)

- Two layers (x and y) of plastic scintillation strips of 1cm thick, 2.8 cm wide and 82 cm long
 - Strip staggered by 0.8 cm, fully covered area: 82cm × 82cm
- Readout both ends with PMT, use two dynode signals (factor ~40) to extend the dynamic range
 - FE ASIC VA160 with dynamic range up to 12 pC
- Expected performance
 - Position resolution ~6 mm
 - Charge resolution 0.25 u
 - Dynamic range Z = 1 20

A A ST

Silicon Tungsten Tracker (STK)

- **1** 12 layers of silicon micro-strip detector, 7 support trays
 - Tray: carbon fiber face sheet with AI honeycomb core
 - Sensor 9.5 x 9.5 cm², 4 sensors bonded together to form a ladder
 - 16 ladders on each face of the support tray, x-view and y-view
 - Except top and bottom trays: only one face has ladders
- □ Tungsten plates integrated in trays 2, 3, 4 counting from the top

STK Silicon Sensor

- Silicon strip detectors produced by Hamamatsu Photonics
 - 9.5 x 9.5 cm², 768 strips, 121 µm pitch (AGILE geometry)
 - 320±15 μm thick (AGILE: 410 μm)
- □ Two types of SSD being considered
 - Type A: resistivity 3-8 kΩ, V_{fd} 40-120 V
 - Type B: resistivity 5-8 k Ω , V_{fd} 10-80 V
- □ 30 Type A SSD delivered
 - V_{fd} 75-80 V
 - <I_{leak}> ~150 nA, max 280 nA
 - 0 bad channels
- 81 Type B SSD delivered
 - 54 with Vfd 45-50 V, 26 with Vfd 65-70 V
 - <I_{leak}> ~170 nA, max 400 nA
 - 1 bad channels

STK: Ladder Assembly

Special jigs designed to assemble (align, glue and bond) 4 sensors on a TFH to produce a ladder

- Specification: align 4 sensors to 40 μm, planarity to 50 μm

TevPA, Irvine, 26-29/08/13

A SP

STK: Support Tray

- **7** trays, 3 with tungsten plates
 - 22 kg of tungsten for trays with 2mm plates
 - CFRP side beams and corners to reduce total weight (~140 kg)

- A quarter size tray with 2mm tungsten plates have been produced by Composite Design (a Swiss company)
 - Being mounted with ladders and will go through vibration and thermal tests

BGO Calorimeter (BGO)

- 14-layer BGO hodoscope, 7 x-layers + 7 y-layers
- BGO bar 2.5cm × 2.5cm, 60cm long, readout both ends with PMT
 - Use 3 dynode (2, 5, 8) signals to extend the dynamic range
- Charge readout: VA160 with dynamic range up to 12 pC
- Trigger readout: VATA160 to generate hit signal above threshold
 - Detection area 60cm × 60cm

Total thickness 31X₀

Measure electron/photon energy with great precision between 5 GeV - 10 TeV

Neutron Detector

Size: 60cmX60cmX2cm Boron density: 5% 4 PMT

Neutron detector rejection power depending on electron selection eff.

Expected Performance from Simulation

Energy Resolution

Energy resolution for electrons as a function of energy

Data was generated by G4 with particle vertically impacted on the center of ECAL(can ignore lateral leakage).

As shown in plots, Leakage Correction can give a better resolution.

Energy Resolution at 5TeV ~ 0.035%

Energy Linearity

Leakage Correction can also give a better linearity. The gradient from 0.9592 to 0.9996. We wish it perfectly equal to 1.

Angular resolution just from BGO

Angle resolution for electrons as a function of energy and angleWith the energy increasing and angle decreasing, angle resolution became better.In high energy[500GeV,~], Θ_{68} can reach less than 1 degree (simulation result).In low energy[~,200GeV], angle resolution is not so good, STK will provide better resolution.

e p seperation: Shower development in BGO calorimeter

Shower Structure Parameter - FValue

 $FValue = E_{frac} \cdot RMS^2$

	Electron	proton
Energy Range [900,1000] GeV	19963	165617
F13<20&&F14<15	19060	108
Efficiency or False Rejection Rate	95.48%	0.0652%(1.5e+03)

e/p discrimination by neutron detector

Deposited Energy at time window [1.5,10]µs in ND

♦ As plot, proton is obviously different with electron. we can use this difference to discriminate electron and proton.

Selection criterion: 3MeV.

Result: Reject 90% proton while keeping 98.3% electrons.

Gamma FoV will be increased by side incident events

PSF depending on energy

Xin DAMPE is discussing to use 3mm W in total instead of 5mm

γ-ray GF for converted photon

Xin Note unconverted γ -ray at high energy can add to efficiency.

Exposure time

Gamma-ray mapping by 30 days

Gamma-ray Sensitivity

DAMPE for gamma-ray line observation

Monochromatic gamma-ray signals from WIMP dark matter annihilation would provide a distinctive signature of dark matter, if detected. Since gamma-ray line signatures are expected in the sub-TeV to TeV region, due to annihilation or decay of dark matter particles, DAMPE, with an excellent energy resolution of 1% above 100 GeV, is a suitable instrument to detect these signatures .

Simulated 1.4 TeV gamma-ray line from dark matter toward the Galactic center $(300^{\circ} < I < 60^{\circ}, |b| < 10^{\circ})$ including the Galactic diffuse background for DAMPE 6 Months observations.

The annihilation cross-section is taken as $\langle \sigma v \rangle \gamma \gamma = 1 \times 10^{-25}$ cm³s⁻¹ with a NFW halo profile. The distinctive line signature is clearly seen in the gamma-ray spectrum.

Heavy Ion observation

Requirements for calorimetry:

- Proton interaction requires > 0.5 λ INT
- Energy Measurement at 100 TeV scale
- requires confinement of the e.m. core of

the shower, i.e. > 20 X0

	λ_{INT}	X ₀ (nominal incidence)
DAMPE	1.6	34
CREAM	0.5+0.7	20
AMS02	0.5	17

Heavy Ion results

B/C ratio (1 year)

Expected electron spectrum (1yr) by Vela source

Expected performance for $\boldsymbol{\gamma}$ and e

γ performance		e perfo	e performance	
Range	2GeV-10TeV	Range	2GeV-10TeV	
Effective Area	0.3m ² @10GeV	Geometry Factor	0.3m ² .sr	
Field of View	2.8 sr	Energy resolution	1.5%@100GeV	
Geometry Factor	0.85m ² .sr	Angular resolution	0.1 ⁰ @10GeV%	
Energy resolution	1.5%@100GeV	Proton Rejection	10 ⁵	
Angular resolution	0.1 ⁰ @10GeV%	Gamma sepeartion	100	
Point source Sensitivity	8.5X10 ⁻¹¹ cm ⁻² s ⁻¹			

DAMPE Beam Test

Beam Test Setup Scheme

Calibration with proton MIP

Fitting Function: Gaussian convolution landau

Energy Resolution

Electron Energy Spectrum

Energy Linearity

The gradient is equal to 0.885, which mainly caused by dead region.

Reconstructed Angle distribution

200GeV electron vertically injection. Left: X-Z projection Right: Y-Z Projection $\sigma_{xz} = 0.4109^{\circ}$ $\sigma_{yz} = 0.3604$

Angle Resolution δ_{angle}

e/p discrimination

Shower development in 11, 12 BGO Layer, Red dots: e, black dots: p

e/p seperation

These results agree with simulation very well

Present Status

Vibration Test

Neutron Detector

BGO Cal.

Phase-C& D

June, 2014, end of Phase C_o Flight Model will be finished end of 2014

Launch date: June, 2015

谢谢!