Advanced Calorimetry

R&D Trends on calorimetry for existing and future collider facilities

Calorimeter systems @ LHC and their evolutions:
Overview existing detector technologies
| ongevity challenges of the systems and upgrade plans for HL-LHC

Dual Readout Detectors

DREAM/RD52
norganic scintillator R&D @ CERN (P Lecoq)
Calorimeter R&D for ILC/CLIC
Particle Flow Algorithm
SIW ECAL
HCAL R&D Va

F. Lanni
Brookhaven National Laboratory
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Technologies used in the LHC calorimeters

® Pb\VWO, homogeneous calorimeter:
» CMS ECAL, ALICE PHOS
® | Ar sampling calorimeter:

» ATLAS EM Barrel and Endcap, Hadronic Endcap,
Forward calorimeters

® Scintillator/WLS fiber sampling calorimeters:

» CMS HCAL Barrel and Endcap, ATLAS TileCal
(barrel HCAL), LHCb HCAL

® Shashlik Pb/Scint sampling calorimeters:
» ALICE EMCal/DCal, LHCb ECAL
® Quartz Fiber/Steel sampling calorimeter:

» CMS HCAL Forward
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Phase-I Upgrades Phase-Il Upgrades

Detector Consolidation

EMCal extension (DCal):

- | 7.7k Pb/Scint Shashlik towers
(from 12.3k)

PHOS 4th module installation:

- 14.3k PbWOQOy4 crystals (from 10.8k)

L

TRIGGER
- HAMBERsJ
ZDC

<116m from I P,

Upgrade of the
EMCAL and PHOS &
readout electronics

Electronics and Trigger
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SN Considering additional
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Upgrade of the readout
electronics of both ECAL
giaml and HCAL: triggerless

9K == readout at 40 MHz
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Detector Consolidation Phase-l Upgrades — g s  Phase-ll Upgrades

Replacement of ECAL cells
close to the beam (existing
spares Is sufficient)

Degradation of HCAL

ST\ rcsponse tolerable
SPD/PS

RICH2 M NS

>
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LHCb ECAL

» 66 layers alternating scintillator (4mm)/Pb
(2mm) — 25 Xo

» Light collection by WLS fibers
» Readout by multi-anode PMT

o 10.0%
» Energy Resolution: E — W D

» Fast response ~25ns

® Shashlik technology

LLVDE O DA A GBI

® Requirements:

» Stable operation under high radiation rate

» Small lateral segmentation

P ~+Inner
e Module 9 cells:
il s @ 4x4 cm?

o
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LHCb ECAL Longevity

Simulation of Radiation Doses in ECAL: Measurem?nt ?f Sign?l Degradati.on:
~6 Mrad is expected for 50 fb! in Shower Max ~ x2 reduction in the light output is seen for
region, ECAL cells closest to the beam pipe inner most cells after 1 Mrad (red vs black )

dose in ECAL at EM shower max, krad, for 2/fb @14 TeV ﬂ ﬁ ﬁ
Beam direction
®

2 ]
8 3

| PMT, ADC coun
2

* Inner cell, not irradiated

* Inner cell, 40 cm to beam
* Inner cell, 32 cm to beam
* Inner cell, 28 cm to beam
* Inner cell, 20 cm to beam

® Reduction by x5 Is acceptable from resolution point of view. Satisfactory till LS3

® | HCb plans replacement of ECAL central modules (48 out of 6000) with spare ones during LS3
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3.8T magnet

O
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HCAL (Barrel and Endcap)
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Upgrade Roadmap In the next two decades @a Py ED
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LS| LS2 LS3
Detector Cuiisolidation Phase-l Upgrades Phase-Il Upgrades
Thin window, multi- 3.8T magnet

anode PMTs in Forward ==
Calorimeter (HF)

HCAL (Barrel and Endcap)

ECAL (Barrel and Endcap)

Detectors

HCAL Forward

Installation of MTCA based
Back-End electronics in HF
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T —

Detector Consolidation Phase-l Upgrades Phase-Il Upgrades

3.8T magnet

HCAL (Barrel and Endcap)

ECAL (Barrel and Endcap)

Detectors

HCAL Forward

Installatlon of new Back-
End in the Barrel and
endcap HCAL i

Installation of new Front-
End on the Forward
calorimeter (HF)

Electronics and Trigger
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Detector Consolidation Phase-1 upgrades Phase-Il Upgrades

C M\S Photodetector upgrade  JRUELGLE
N

with SIPM in HCAL (barrel
and endcap) allowing for

,../.-‘-%’-"’ longrtudinal information ECAL (Barrel and Endcap)

HCAL (Barrel and Endcap)

Detectors

HCAL Forward

) __,__--—-/”"/E)ompact Muon Solenoid

Installation of new Front-End
on barrel and endcap HCAL
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LS| LS2 LS3
Detector Consolidation Phase-l Upgrades Phase-i upgrades

3.8T magnet

HCAL (Barrel and Endcap)

| Replacement and |
g¥J upgrade of the
ECAL and HCAL

9 endcap detectors

Detectors

=

=, Upgrade of the main

/ readout of the barrel
5 SEl N 4 ECAL: 40 MHz data
Sl - stream

Electronics and Trigger




CMS ECAL

Precision electromagnetic calorimetry: 75848 PWO crystal ‘

PWO: PbWO,
about 10 m3, 90ton

Previous
Crystal
calorimeters:
max 1m?3

endcap
supercystals
(5x5 crystals)

Super Module
(1700 crystals) 3662 crystals

Barrel: |n| <1.48 EndCaps: 148 <|n| <3.0
36 Super Modules 4 Dees

61200 crystals (2x2x23cm?) 14648 crystals (3x3x22cm?)
|
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CMS ECAL

Comparison Real Longitudinal Transmission vs, Emission spectrum

| ~—&— PWO crystal i Emission

Transmision [%]

t=30/10 ns

PWO

450 500 550 600

® PbWO4 crystals developed for CMS
® Advantages:

* Very effective in shower contalp

* Transparent to its emission

* Fast
® Disadvantages:

* Low light output —

Wavelength (nm)

Parameter
Radiation Length [cm]
Moliere Radius [cm]
Refractive Index

Peak Emission [nm]

% of light in 25 ns

* Hard light extraction

International Workshop on Future High Energy Circular Colliders
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CMS ECAL: Testbeam performance

Ty r 7T T
| I I | I

CMS ECAL Test Beam
Resolution in 3x3
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CMS ECAL IN-situ erformance

Y(1,2,38)
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CMS ECAL: Radiation Damage

Crystals are subject to two types of irradiation:
Longitudinal transmission after gamma irradiation & proton irradiation

1. Gamma irradiation causes damage which is
spontaneously recovered at room temperature.
* Recovery has been observed in 2011 and 2012
during long shutdowns, technical stops etc.

* Loss of transmission caused by y irradiation
for few fb! (atm = 2.6): green line vs. blue line

(=]
o

(=}
(=}

-~

//

- - - PbWO, emission
2. Hadron damage creates defects which cause spectrum
light transmission loss. The damage is permanent ol
g . gelisp —— after 500Gy Co” irradiation
and cumulative at room temperature. I —4— after 9.6710“piem”
* Loss of caused by proton irradiation: A 1* =4 after 3.6910"picm"
-> 150 fb (at 1} = 2.6): orange line vs. blue line 450 500 55 600 650
Wavelength (nm
-> 600 fb! (at 1} = 2.6): red line vs. blue line gth (nm)
* Hadron damage causes band-end shift at low RRRo

wave lengths of the PbWO, emission spectrum.

£
o

Transmission (%0)

' Simulation of crystal nN=0.92

transparency evolution at
LHC (L=2x103cm2s)
- based on test beam
irradiation results

0.998

0.996

0.994

Effects that requires correction

given the precision required in the
central ECAL
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CMS ECAL+HCAL: Radiation Damage

] ] Response degradation in HE after 500 fb-1 @ 13 TeV collisions
Simulation: 50 GeV e- | | CMS preliminary

—— 10 fb”, 5E+33 cm”s™ . o

—— 500 b7, 2E434 cm?s? | 1N ECAL:
1000 fb™, 5E+34 cm2s™ | * 500 fb™, up tomn < 2.6
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e 2000 fb™', 5E+34 cmZs™ | * 1000 fb?, up tom < 2.2
———3000 fb”, 5E+34 cm?s' | * 3000 fb?, upton<2.1

In the endcap radiation damage Is very

severe. [t will require upgrade of the endcap
FCAL+HCAL detector before HL-LHC

\ /
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CMS Endcap Upgrade Options

|. Maintain tradrtional geometry:
» ECAL w. Shashlik-like design with rad. hard scintillators, e.g. LYSO, CeF3

» HCAL w. rad. hard scintillators and more readout fibers

Existing tile design New tile design

I ol

LYSO (2 mm) " ; [ s

Clear fiber-WLS fiber
SPLICE

4x WLS fibers

WLS fibers

WLS fiber Y

yd

1x Monitoring fiber

Tile 27

Tile (Scintillator SCSN-81) (8 fingers tiles option)

2. Alternative geometry/concepts with potential improved performance at high pileup
» Dual Readout following DREAM/RDS52

» Particle Flow Calorimeter w. high granularity detector following work of CALICE

Considering an integrated approach with an endcap detector covering up to nN=4
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Detectors

LAr hadronic
end-cap (HEC)

LAr electromagnetic
end-cap (EMECQ)

LAr electromagnetic

barrel
LAr forward (FCal)

Electronics and Trigger
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2017 2013 2014 20.5 2016 2017 2018 2019 2020 2021 2022 2023 ... 2030
LS| LS2 LS3

Uetactor Consali2auon Phase-l Upgrades Phase-Il Upgrades

Tile barrel Tile extended barrel

) EXPERIMENT __

Detectors

LAr hadronic
end-cap (HEC)

LAr electromagnetic S (-
end-cap (EMECQ) — el

o
—~—

Low Voltage Power S595

Supply replacement
(both LArand Tile) SeiEEls

Electronics and Trigger

LAr forward (FCal)
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Detector Consolidation noce-| Unorads, Phase-ll Upgrades

Tile barrel Tile extended barrel

Detectors

LAr hadronic
end-cap (HEC)

LAr electromagnetic "
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ATLAS
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2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 ... 203u
LS| LS2 LS3

Detector Consolidation Phase-l Upgrades Friwos M= oraues

fos
‘g’ ATL AS Tile barrel Tile extendgd bar

M EXPERIMENT . ] Possible upgrade of the

Forward Calorimeter
e (FCAD

AAAAAA

Detectors

LAr hadronic

end-cap (HEC) ~

"] [N

| £\ o~ Upgrade of the main
bV STOl ", "\ readout (bothTile
— e~ _ and LAr): 40 MHz
» data stream

" Possible upgrade of the

Ar electromagnetic S &N cryogenic analog front-
barrel ,
end of the LAr hadronic

Electronics and Trigger

4 endcap (HEQ)



Tile barrel

LAr hadronic
end-cap (HEC)

LAr electromagnetic
end-cap (EMEC)

LAr electromagnetic

Longevity of ATLAS LAr

Barrel (EMB) \ -

Tile extended barrel

'Y |

4
E

Liquid Argon:

EM barrel and end-cap

* Lead absorber

* Accordion geometry

* Barrel: |m|<1.475

* End-cap: 1.375< [n|<3.2

Hadronic end-cap
* Copper absorber
* Parallel plate electrodes
* Coverage: 1.5< |n|<3.2

Forward Calorimeter
* tubes and rods in copper
or tungsten matrix

* Coverage: 3.1< |n|<4.9

LAr Forward

* Liquid Argon calorimeters are intrinsically radiation tolerant.
* |Integrated dose in LAr expected during Phase2 will not pose operational problems.



__AITLAS LAr Calorimeters

Towers in Sampling 3
AgxAn =0.0245x 0.05

Square towers in
Sampling 2
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Al LAS LAr Calorimeters

Towers in Sampling 3
AgxAn =00245x 0.05

Square towers in
Sampling 2

International Workshop on Future High Energy Circular Colliders



Al LAS LAr Calorimeters

1LQ

I(t)=1, (1-%)

Integrate the current over
time t, << t; (t,~40ns)

t 1.t
Q) =Q,[—--(—)]
| 2 ty -
200 300 400 t (ns)

outer copper layer

inner copper layer
o kapt)c,)n

outer copper layer

Bipolar shaper response

stainless steel

gue - &) < to triangular signal
a

— detector response
time is not t; but t;

® Shower development and creation of
lonization Is instantaneous

® Drift across the 2mm LAr gap takes ~450ns

® To speed the response integrate ‘effectively’
the charge to about 0% of the drift time

i S —

!

® by shaping the preamplifier output signal

—
©

® bipolar shaping to reduce sensitivity to pileup
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AlLAS LAr Forward Calorimeter,

® 3 modules in each endcap covering 3.1<|n|<4.9

o FCALI: LAr+Cu, 28 Xo e.m.module
® FCAL2,3: LAr+W, 2x3.7\ hadronic modules
® | Ar gaps: 0.25,0.375,0.5mm

® Jo speed the response integrate ‘effectively’ the
charge to about 10% of the drift time

® by shaping the preamplifier output signal

® bipolar shaping to reduce sensitivity to pileup

o (o )-Le)s)(o)<s)
‘ °8°°°°°O 050

Copper Tube

PEEK Fiber

| «adout pin
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AlLAS LAr Forward Calorimeter,

3 mechanisms could lead to performance
degradation at high instantaneous luminosities:

. Electrode at luminosity and HV .of
see N e —_ 5x10” cm2s! 250V
® Space Charge Effects: build up of Ar+ ions lead f — = 1x10% cem2s! 190V
' - =+ 3x10%em2s' 117V
- == 6x10*cm2s? = 74V
— — 1x10¥ cm?2s’ - '

to drift field distortion and consequently signal
degradation

® | arge currents drawn through protection
resistors lowers significantly the HV in the LAr
gap enhancing the signal degradation

Relative Current

® Bubble formation in LAr due to the excessive
heat produced by energy deposition

® FCALI response could be degraded in the higt
IN| region I

Performance implications on:
® Missing E; resolution and talls
® Forward jet tagging

Quantitative evaluation on-going. Several
options for upgrade considered
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Calorimetry
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DREAM and RDo>2

Basic structure:

® DREAM = Dual Readout Method

i 2 M
4x4 mm* Cu rods

« Compensating calorimeter based on both 2.5 mm radius hole
readout of scintillation light and Cerenkov 7 hbers

radiation D suntl”;mng

4 Cerenkov

DREAM prototype:
5580 rods, 35910 fibers, 2 m |(mg (10 Aipyy)
16.2 em effective radius (0.81 Aing, 8.0 pm)
1030 Kg

Xo = 20.10 mm, pm =20.35 mm

19 towers, 270 rods each

* Quartz fibers (Cerenkov) are only sensitive
to EM components in a hadronic shower
development

* Regular scintillation readout measures visible
energy

hexagonal shape, 80 mm apex to apex

Tower radius 37.10 mm (1.82 pu)

Each tower read-out by 2 PMs (1 for Q and 1
for S hibers)

] Ct:nll'uf tower + two rings

® Combining the two methods allow for a
measurement of f_., In a hadronic shower

* eliminating largest source of fluctuations

® [irst test-beam results with the DREAM
prototype in ~2005

® RD52 testbeam end of 2012 and reported to
CERN SPC

International Workshop on Future High Energy Circular Colliders 23 | 7th 2013



® DREAM = Dual Readout Method

» Compensating calorimeter based on both
readout of scintillation light and Cerenkov
radiation

* Quartz fibers (Cerenkov) are only sensitive
to EM components in a hadronic shower
development

* Regular scintillation readout measures visible

energy

® Combining the two methods allow for a
measurement of f_., In a hadronic shower

* eliminating largest source of fluctuations

® [irst test-beam results with the DREAM
prototype in ~2005

® RD52 testbeam end of 2012 and reported to
CERN SPC

International Workshop on Future High Energy Circular Colliders

6th-17th 2013




RD52: [estbeam Results
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RD52: lestbeam Results

® Response to pions:

Electron energy scale well reproduced by DR!!

| I ' ] ] I I

electrons!! -

—b

ae

A /ey
v C/CeV

<
Il
z
;
3
>
8
B
Q
s
S
v

L L

60 80 100 120 140
Pion energy (GeV)

Energy resolution (%)

Energy (GeV)

20 100
. . —r

T |

LA A )

e RD 52
A DREAM
a SPACAL

Single 7 resolution

0.20 0.15 0.10 0.0

- 1/\/E

Sehwook Lee (Txas Tech University, USA), Precision Energy Measurements with the RD52 Fiber Calorimeter, 2013 IEEE, Seoul, South Korea, Oct. 29, 2013
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Dual Readout R&D @ CERN

® Based on the concept of meta-cable structures:

» A heavy non-intrinsic scintillating material with high-bandgap for low UV
absorption

» The undoped host acts as efficient Cerenkov emitter: heavy material,
high refraction index, high UV transmission

» Cerium or Praesodinum doping will make the fiber act as efficient and
fast scintillator:

4 ~40ns for Ce doping
4 ~20ns for Pr doping
» Excrtation and emission spectra separated

® Bulk material approach

» L(Y)SO, LUAG, GAScAG

» Heavy fluoride glasses (HFG) [radiation damage Is an Issu€]



Dual Readout R&D @ CER

| utetium Aluminum Garnet ' - - |
LUAG (LU3A|SO12) T A excitation and emission spectra of LUAG:Ce

—&— emission 510nm

excitation 347nm
Physico-chemical properties Optical properties o oty itk
s / Spac sbic / Ia3 20" 00C
Structure / Space group Cubic / Ia3d Light yield: Ce or Pr doped (pl‘.".\{c\") 2 \',f:l( ;.“
Density (g/cm®) 6.73 _ 3 EY
© d(LYVdT 0.8%/°C 5 g
Zeff 62.9 E] 2
® Emission wavelength (nm): Ce doped @ 535 s g
Radiation length X, (cm) @ 141 Pr doped 290, 350 & rf
233 Decay time (ns): Ce doped 0 iE' =
Interaction length (cm) @ ’“:f.' lf'j 5 Pr doped @ 20 =
. 15 Refractive index @ 633am (isotropic) 1.842
Hardness (Mohs) PWO: 3 n?= 33275151 - 0.0149248 A? Quartz: 155
BGO, glass: 5
Fracture toughness (Mpa.m'?) 1.1 Fundamental absorption undoped (nm) 250
C]C'avagc plﬂnc / H:O holublll[-\' T\O / ho .\{ax. CC!anOV ]“,‘2 31‘.glc 579 350 400 450 500 550 0 TRANR
Melting point (*C) 2260 ' T 12/10/08
Total reflexion 1/2 angle 33° u /\ ) r
Thermal expansion @ RT (°K") 8810° .

Cerenkov threshold e energy (KeV) @
Thermal conductivity @ RT ( W/m°K) 31

excitation and emission spectra of LUAG:Pr
100

—&— Emission 325 —— Excitation 245
Excitation 280
80
4
%‘-Uﬂ (M \!1\
: \\/

(%)

co
o

LuAG:Pr Decay Time 22ns

Intensity emissicn jusd

LuAG:Ce Decay time 61ns

{EN) USNEIEXS AJISUSIY|

Intensity normalised

200 300 400 500

time (ns) CERN, PH_CMX 200 250 300 350

0
s PH-CMA

E— 9
P Lecoq, Organic and Inorganic Scintillators, XII ICFA School on Instrumentation in Elementary Particle Physics, Bogota’ Columbia, December 201 3 g



Dual Readout R&D @ CERN

® quasi-homogeneous
calorimeter

» scintillating and Cerenkov

fibers of the same heavy
material eliminating
sampling fluctuations

® very flexible fiber
arrangement for any lateral MOEMS diffractive
o o N m
or longitudinal Vght concentrator

segmentation

® Possibility of combining PFA
(high segmentation) and
Dual Readout Technique

® Diffractive optic light
concentrator to a photo-
detector (SIPM). Readout at
both ends
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R&D @ ILC
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Calorimetry @ ILC/CLIC

® (oal: distinguish W,.Z hadronic decays
»WW/ZZ = 4 jets

® Requirement: jet energy resolution ~3-4%
@ ~50 GeV

» 309%\\/E stochastic term ' | 60%/ Ejet - 30%/'\E,et
® High granularity detectors B

fraction of energy T S single particle jet energy

Particles in jet - , .
In jet resolution resolution

® Particle Flow Algorithm:

, , charged 60% tracker ~0.01% - pt negligible
» measure charged particles with trackers particles

photons 30% ECAL ~15%/+/E ~5%/+/E

» photons with ECAL
. neutral 10% ECAL+HCAL ~45%//E ~15%/E
» neutral hadrons with ECAL+HCAL hadrons
<3 = U. o, AI=27.0 CI
» Combine tracker and calo information | pr. -*% 2" || rews premminary )
to separate clusters originated by - L
charged from those by neutral 5 AEN B comenacuos [T
C % 0.35F N U &
» Minimization of shower overlaps to ke N .- @ 03
. . . . = : -'_ Y — > - lepjets
avold ambiguity and double counting e e S & o025
. . - \“»\\\ ‘:’ 0.2 ;
’ tg 0.15F
_ — Polstechnique &
0 = Ocharged D O~ @ Oneutral © Tciiiiunion 0.05
0" |

20 100

p, [GeV/c]
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Calorimetry @ ILC/CLIC

* Various options for high granularity sampling calorimeters...

PFA Calorimeter

Absorber:

! | }
Readout: * M
l S

digital

Active:  |Siicon | |Scintilator| MAPS =~ |Scintillatorl | RPC || GEM || MO

- < - e
/'/f
..’/ ,

megas
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Calorimetry @ ILC: SIW ECAL

Physics Prototype

Proof of principle
2003 - 2011

JINST 3, 2008

Number of channels : 9720
Weight : ~ 200 Kg

International Workshop on Future High Energy Circular Colliders

Technological Prototype

Engineering challenges
2010- ... ~

TDR EUDET-Report-2009-01

Number of channels : 45360
Weight : ~ 700 Kg

LC detector

1 DBDforiLC
CDR for CLIC

ECAL :
Channels : ~ 100 106
Total Weight: ~130 t

IHEP Beijing - December | 6th-17th 2013



Calorimetry @ ILC: SIVW ECAL

International

® Beam tests 2006-201 | with the first
prototype (DESY, CERN, FNAL)

® Proof of principle. Improve understanding of the detector
technology and of methods

* Unprecedented granularity: shower development and
detalled comparison with Geant4 simulations

* Better understanding of hadronic non-em components

* Noise, calibration, performances

* Development and testing algorithms

e-, mu p(1-180 GeV)

L=
Q

I lllllllll

.
R R L
. -

CALICE Preliminary 30 GeV n* -

Energy (MIP)
o

0.05—.

—

0.05 Data compared B
with QGSP_BERT 4

0.04};

000 ® unprecedented detalls of the
o ¥ shower development and of
‘ the shower components

m TB data — —

—QGSP_BIC P  — Others

CALICE PRELIMINARY

40 50
Pseudolayer numk
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Calorimetry @ ILC: SIW ECAL

Technological prototype (started 2010): realistic dimensions,
integration and power pulsed electronics

W o G T T W thickness:
1 Active Sensor Units (ASU) struct feopper)

] PCB: 1200 pm * 2.1 mm (20 layers)
1 kapton (HV for PIN diodes) (with FE|embedded)

*4 .2 mm (9 layers)
1 layer PIN diodes E

1 PCB with microchips embeded ﬁ wafer: 32

1 thermal drain (copper) ' Kapton®
100 pm

Interconnection
studies

/a

Chip embedded and
encapsulated

PB prototype

International Workshop on Future High Energy Circular Colliders 4 HEFP Beljing - December [ 6th-17th 2013




Calorimetry @ ILC: SIVW ECAL

Front end electronics: SKIROC

SKIROC (Silicon Kalorimeter Integrated Read Out Chip)
* SiGe 0.35pm AMS
e 7.5mmx8.7 mm
* High integration level (variable gain charge amp, 12-bit ADC, digital logic)
* 64 channels
* Large dynamic range (~2500 MIPS), low noise (0.4 fC — 10 pC)
* Auto-trigger at 2 MIP

* | ow Power: 25uW/ch (power pulsing)

5
Tex 7

Shoa dapir cgnid -.‘-,

|_,."'P st shapcr wpnad

Trnigger delay

Preamplifier
(adjustable gain)

Intemal trigger
(self-tnggenng capability)

International Workshop on Future High Energy Circular Colliders IHEP Beijing - December [ 6th-17th 2013



Calorimetry @ ILC: SIW ECAL,

® Beam tests @ DESY (low energy ® Understanding of the electronics
electrons)

® Fstablishment of calibration
* 6 layers July 2012 (1536 channels) brocedure

* 8 layers Feb 2013 (2048 channels) ® Homogeneity of response through

* 4 layers in power pulsing mode X,y scans
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Ca\ommetry @ ILC DI—ICAL

e DHCAL prototype. . ""“ ”M'i 7] ui
» RPC + Fe (or W) i }!. ,I

\H' W;H I i{,'

absorbers ;1,.4 ST

» Main stack (38-layers
| 7.5mm steel)

) Tail catcher (14-layer 25 [ T

mm steel + 6x10mm)

» Fach layer (Im?2 area)
consists of 3 RPCs
(Iecm?2 pads) for
approximately ~9000
channels/layer

{1
[l
e

it

+
|

T
iy

|

" |

20 GeV p

® Fxposed on testbeam at
FNAL first and then to

CERN on PS and SPS
beams

B |

==
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Calorlmetry @

J. Repond, First Results from the CALICE Digital Hadron Calorimetry, CHEF 2013, April 201 3

L C: DHCAL

0
' -4 ® Pion - P J
® Prototype tested with Fe and W absorbers B | ceer Tn  a
":‘ ° Hec'troo ‘
» Non-linearity: data empirically fit by a 2 A
power low EP (B=0.9 for hadrons, 0.78 b o BT :
for electrons) N o
|
& o '
» A 2 ’
0.24} - ' /.‘
5 il T2 2 ' CALICE F : v Frot
0.22} 15580 ) 10606 % '. -
c 009447 - 000OT2 as.o l ! W—DHCA_ : . € - °
'; Avcilob'e energy (GeV)
- e 09719/2 | \\ ® Pion - -
g°.1‘| ) ASso- \ i\ ® Electron
W C  00748: 0002806 \, N
] «0 . \
0.16}
o
0.14 .
T
0.12} 2]
1 [Fe-DHCAL -
050 18§ @ 25 2
Energy (GeV) ° 1 .
Standard pion selection ¢ ? ‘ ¢ aeo" Pions (68.0:0.4% (5.4=0.7)%
+ No hits in last two layers g o cd-Z Electrons (29.4:0.3)% 16.6=0.3)%
(IongitUdinal conta'nment E B JE IHEP Beijing - December | 6th-17th 2013
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Calorimetry @ ILC: SDHCAL

Linearrty recover (INL<5%) with semi-digital readout with multiple (Nthr=3) thresholds

Multi-threshold mode : linearity & resolution

a7 FYTI e Linearity < 5% over full range
PO 0.982: 000337 S '
P e Significant impact on the energy

SDHCAL multi-threshold mode ..-"" resolution

o

m
80
70
60
50
40
30
20

-y
o

AEVEM'I
o
8 Ed

‘O‘(E)/E< 10% @ 8OGe\/'

Yacine Haddad ( LLR) 22 avril 2013 16 / 26
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VWhat calorimeters at future facilities!?

® P Janot @ TLEP workshop October 201 3:"VWhat detector for...?"

® Questions obviously apply to calorimetry as well

Tiep Second approach (LHC) Puet wrfit\t/‘nzoht;;esz, 1308f_$1£2
Irs atthe p ICS Case 0
What detector for TLEP ?m ¢ Use existing LHC detectors

o First approach (ILC/CLIC)

+ Push detector design towards highest achievable performance
ILD

Mark Thomson
“A detector for TLEP:
Synergies with ILC/CLIC”

e +++ Realistic, most conservative
® +++ Clearly suitable to cover the full TLEP physics programme = sub-optimal hadron calorimetry, lots of material, Ap,/p;

® - Mightbe over-designed ? ® ++ can cope with TLEP-Z event rate

e —— Power pulsing is not a option at TLEP e - not thought for e*e- collisions
= Either more cooling (material) or less channels (granularity)
e ——— Cost ! ® —— cost!

» 0.5 to 1 Bs each — and TLEP may want to have 4 of them = Almost o.5 BCHF / detector

o Third approach (LEP) Tried back in the mid 1990's o Fourth approach (FCC) ke ;ﬂgymops

¢ Use LEP-like detectors ¢ A detector commonto TLEP and VHE-LHC ?

Yertex

Detectar LK : : ——
Tner Trackisg ‘ == o o -
W Cmter B . g : INST.YOKE reTvoRe
o - ) o by etwe a 4
Time Projection AsE " . - - ‘e S —————_S—_
o Chamber N - - = . o’ e,
|
.

I ectmagec 15 vae\ 5 ¢ : Soin SC SOLENOID @ 2T

Calarmeter

B Supercondcsing
Magres Cail

n Hadren

Calormeter

] Muca

Chamters

n Luminosky
Monitoes

The ALEPH Detector

+++ Cost!

= 100 MCHF / detector — Could easily afford four of them.

e ++ Realistic, conservative enough, globally suitable ® Pros and cons need to be worked out

e - TLEP-Z eventrate ?
e —- Outdated/not challenging technology ?

CIrTIatoriar vvore op U uLaurc % CTgy urd Ulnac

= Can a detector and its electronics survive half a century ?

Is it actually desirable ?




