Theory Studies in China --- status report of theory working group

朱守华(Shou-hua Zhu) 北京大学(Peking University) 2013/12

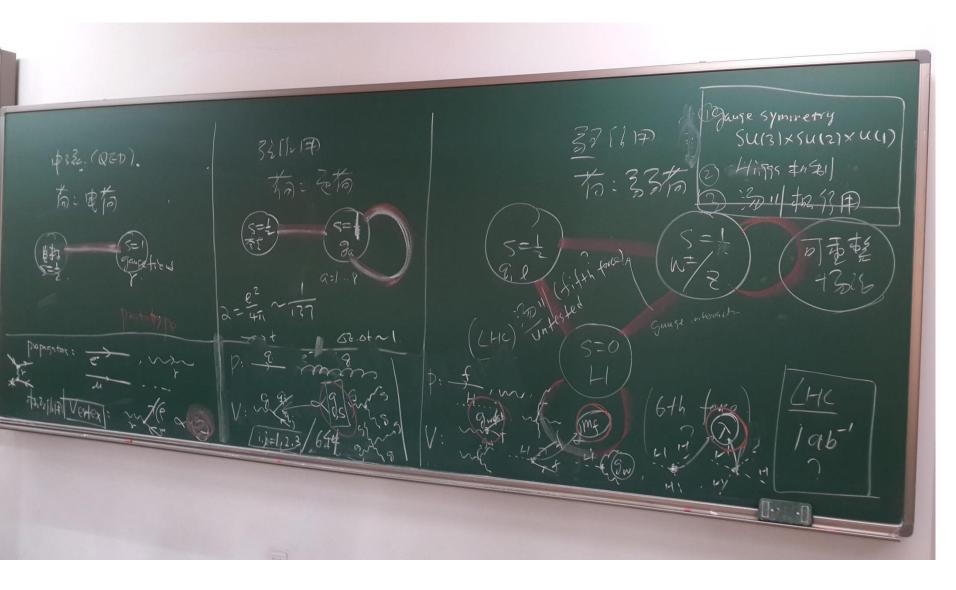
Physics at Circular Electron-Positron Collider (CEPC) and Super Proton-Proton Collider (SPPC)

Shou-Shan Bao,^a Xiao-jun Bi,^b Jun-Jie Cao,^c Qing-hong Cao,^{d,e} Ning Chen,^f Bo Feng,^g Lei Guo,^h Hong-Jian He (convenor),^f Chong Sheng Li,^{d,e} Hong-Lei Li,ⁱ Tianjun Li,^j Ying Li,^k Zhao Li,^b Wei Liao,^l Yi Liao,^m Chun Liu^j Ji-Yuan Liu,ⁿ Tao Liu,^o Cai-dian Lu,^b Ming-xin Luo,^g Wen-gan Ma,^h Cong-Feng Qiao,^p Hua-sheng Shao,^d Jing Shu,^j Zong-Guo Si,^a Jian-Xiong Wang,^b Kai Wang,^g Xiao-Hong Wu,^l Qi-shu Yan,^p Jinmin Yang,^j Li-lin Yang,^{d,e} Shuo Yang,^q Peng-fei Yin,^b Ren-you Zhang,^h Xin-min Zhang,^b Yu-Feng Zhou,^j Guo-huai Zhu,^g Shou-hua Zhu (convenor),^{d,e} more authors to be added^{xxx}

37 authors and 185pages, all figures in this talk are from the report

Contents

- Where are we?
- Report of 6 theory working groups
 - (1) Higgs physics
 - (2) SM tests
 - (3) BSM: Supersymmetry (SUSY)
 - (4) BSM: Non-SUSY (Composite Higgs,


Neutrino-motivated models, Extra dimension.....)

(5) Flavor physics

(6) TeV Scale Cosmology

Conclusion/Discussion

Where are we?

Clear Physics goal for CEPC/SPPC

- Is the X(125) the SM Higgs boson, by measuring its properties, mass/spin/CP nature/couplings with fermions/gauge bosons/itself...?
- Is there new physics, by discovering deviations from SM prediction/new decay modes of X(125)/new particles....?

Where are we (theory organization)

- 2012/11/7, the theory working group formed
- 2012/12/20, first group meeting at Tsinghua U
- 2013/8/25, small scale meeting at Dalian (TeV working group workshop)
- 2013/9/14, Kick-off meeting, adding "flavor" and "TeV cosmology" working groups
- 2013/11, second group meeting at Peking U
- 2013/12/16, preliminary report

General remarks for the theory workgroups

- Everyone are welcome to join and contribute!
- New results are encouraged to be published at journals

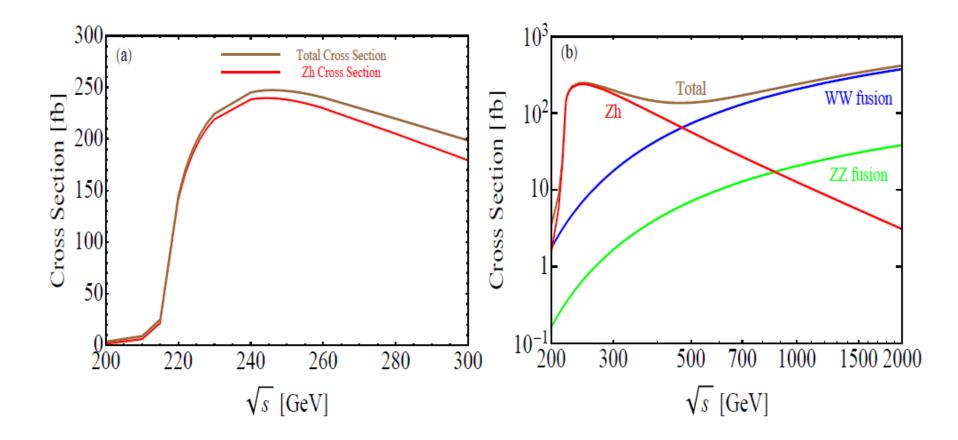
6+1 working groups

- Sm tests (conveners: Qing-hong Cao/Li-lin Yang/Zhao Li/Chong Sheng Li)
- Higgs Physics (Hong-jian He/Shou-hua Zhu)
- BSM: SUSY(Tianjun Li/Jin-min Yang)
- BSM: Non-SUSY(Qi-shu Yan/Jing Shu/Wen-Gan Ma/Li Liao)
- Flavor Physics(Cai-Dian Lu/Zong-Guo Si)
- MC tools(Qi-shu Yan)

1. Higgs physics

Hig	gs Phys	ics at the CEPC-SppC	1
1.1	Introd	uction	1
	1.1.1	General Strategies for Higgs Measurements	1
	1.1.2	Colliders of Next Generation	4
1.2	Theore	etical Overview on Higgs Physics	6
	1.2.1	Profile of the SM Higgs Boson	6
	1.2.2	Exotic Decays of the SM-like Higgs Boson	7
	1.2.3	SM + Scalar	7
	1.2.4	SM + Fermion	11
	1.2.5	SM + Vector	15
	1.2.6	Nonstandard Higgs Bosons	18
	1.2.7	SM + Singlet Scalar	19
	1.2.8	SM + Doublet Scalar	19
	1.2.9	SM + Triplet Scalar	25

1


1.3	The Cu	irrent Experimental Measurements	32
	1.3.1	The SM-like Higgs Boson at the LHC: Current Data and Global Fit	32
	1.3.2	Mass and Couplings	32
	1.3.3	Spin and CP Measurements	34
	1.3.4	Exotic Decays of the SM-like Higgs Boson	35
	1.3.5	Visible Decays	36
	1.3.6	Semi-visible Decays	38
	1.3.7	Invisible Decays	38
	1.3.8	Nonstandard Higgs Bosons	40
	1.3.9	$Q_e = 0$ Nonstandard Higgs Bosons	40
	1.3.10	$Q_e = 1$ Nonstandard Higgs Bosons	41
	1.3.11	$Q_e = 2$ Nonstandard Higgs Bosons	42
1.4	Higgs	Physics at the CEPC	43
	1.4.1	Production of SM-like Higgs boson	44
	1.4.2	Leading Higgs Production Channels at e^+e^- Colliders	44
	1.4.3	Sub-leading Higgs Production Channels at e^+e^- Colliders	45
	1.4.4	Probing the Higgs Couplings at e^+e^- Colliders	47
	1.4.5	Measurements at $\sqrt{s} = 240 - 250 \mathrm{GeV}$	47
	1.4.6	Comparison with the Measurements with Higher Energy Runs	48
	1.4.7	Measuring the CP Properties of the Higgs Boson	50
	1.4.8	Search for Exotic Higgs Decays at the CEPC	52
1.5	High E	Energy Upgrades: SppC	54
	1.5.1	Probing the Higgs Self-Coupling	54

	1.5.2	Probing Light Fermion Yukawa Couplings and Fermion Mass Generations	54
	1.5.3	Search for Non-standard Higgs Bosons at the SPPC	57
	1.5.4	Unitarity	59
	1.5.5	Higgs Boson: Fundamental vs. Composite	59
1.6	Conclu	ision	59

3 ways to probe new physics via Higgs

- probe I: precisely measuring the couplings between the SM-like Higgs boson and the SM particles, and its other properties
- probe II: searching for anomalous productions and exotic decays of the SM-like Higgs boson
- probe III: searching for nonstandard Higgs bosons predicted by new physics

SM Higgs production

Precision measurement

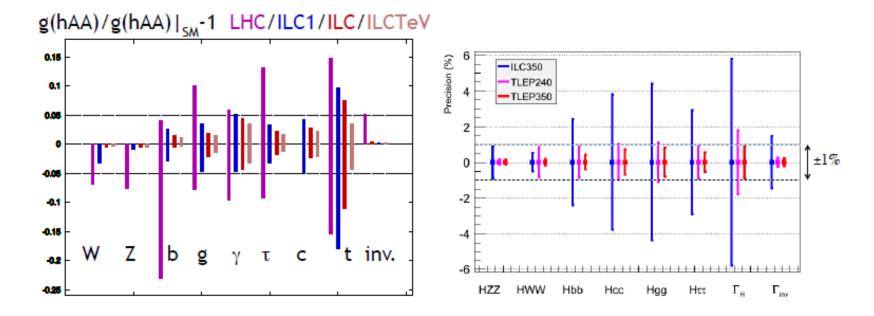


Figure 23. Left: The estimated accuracies of measuring the Higgs boson couplings between LHC and ILC experiments, with four sets of errors representing results for LHC-14 TeV ($300 \, \text{fb}^{-1}$ with one detector), the ILC-250 GeV, the ILC-500 GeV, and the extension of the ILC-1 TeV. Right: The estimated accuracies of measuring the Higgs boson couplings between ILC and TLEP experiments. The dashed lines indicate the $\pm 1 \%$ band, which are relevant for multi-TeV new physics.

From precision to underlying new physics

- Higgs Non-SM CP properties may explain the baryon asymmetry in the universe
- Yukawa couplings can help understand the mass origin of the SM fermions, and the Higgs
- Self-couplings can reveal how the electroweak (EW) symmetry gets broken.

Exotic decay

- category I: visible decays
- category II: semi-visible decays
- category III: invisible decays

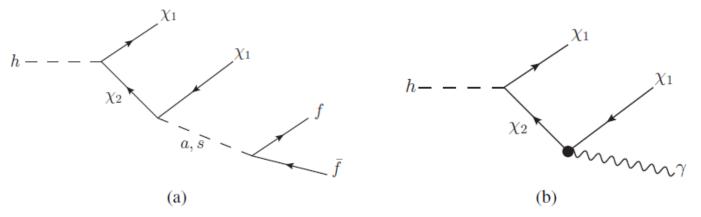
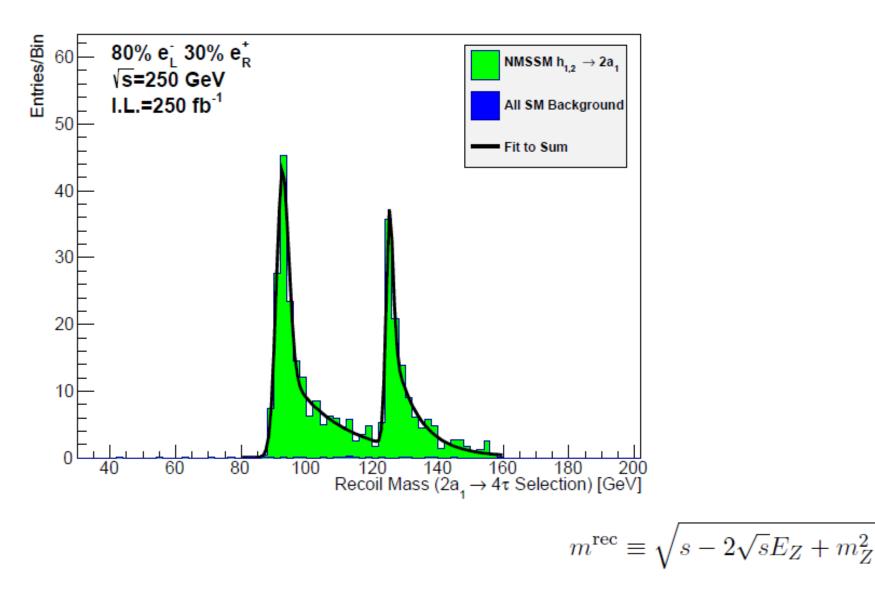
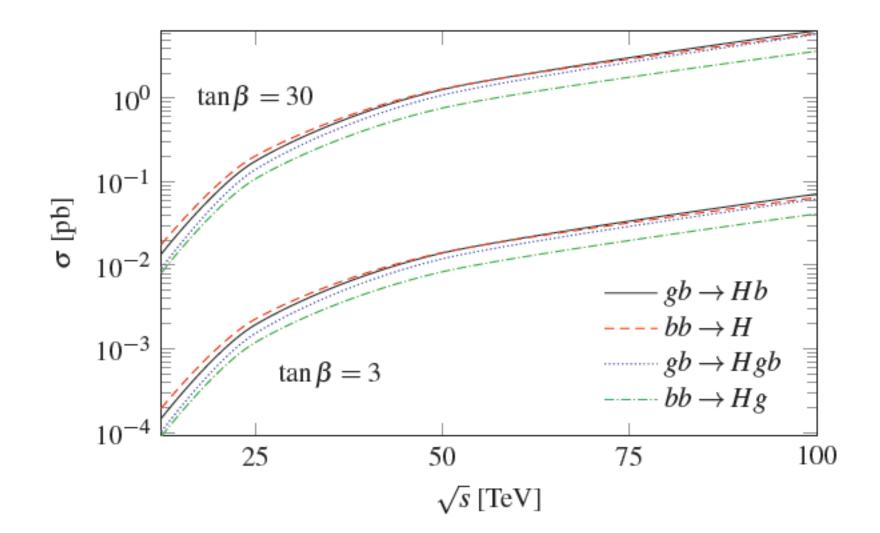
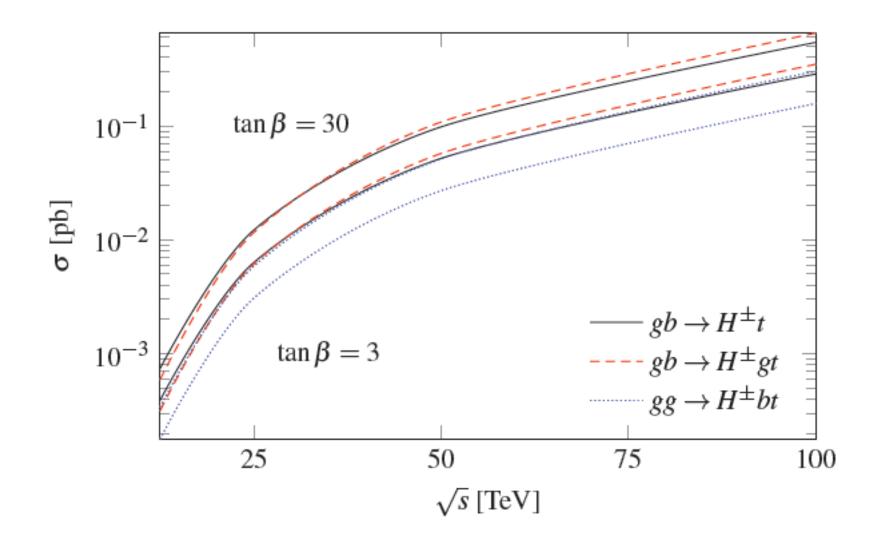
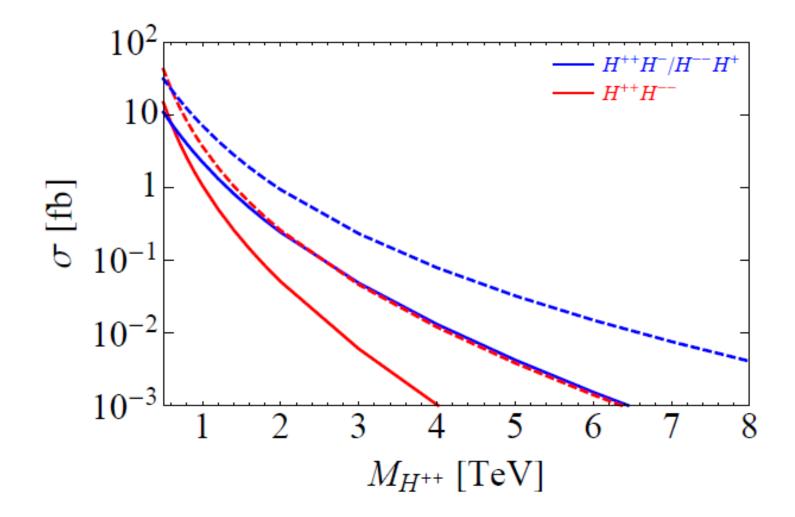




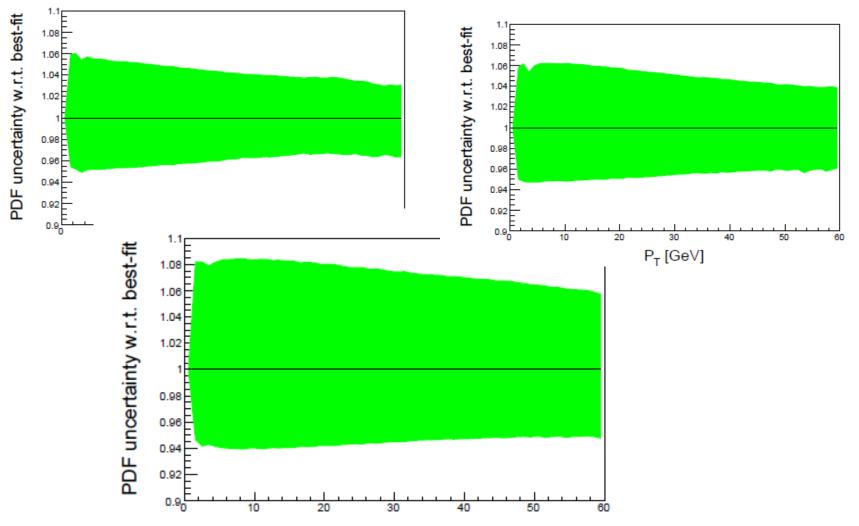
Figure 4. New decay topologies of the SM-like Higgs boson in the PQ symmetry limit with $\lambda \leq 0.1$. Non-negligible (b) requires $\min(m_s, m_a) > m_{\chi_2} - m_{\chi_1}$. (See [75, 76].)


Exotic visible decay


Neutral extra Higgs (1TeV)

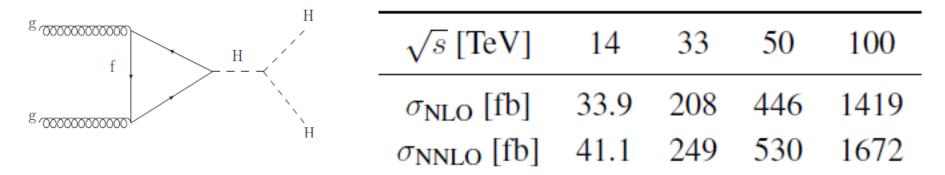
Charged Higgs (1TeV)

Doubly charged Higgs (50 vs 100 TeV)


2. SM test

2	Stan	ndard M	Iodel Test and New Physics	59
	2.1	Higgs	precision	59
		2.1.1	Higgs Boson Mass	60
		2.1.2	Spin and CP Parity	61
		2.1.3	Higgs Boson Couplings	62
	2.2	Effecti	ive Higgs Theory	63
		2.2.1	$e^+e^- \rightarrow Zh$ channel	64
		2.2.2	Collider sensitivity to effective couplings	64
		2.2.3	CP property measurements	64
		2.2.4	Polarized beams	64
		2.2.5	vector-boson-fusion channel $e^+e^- \rightarrow e^+e^-h$	64
		2.2.6	Collider sensitivity to effective couplings	65
		2.2.7	CP property measurements	65
		2.2.8	Polarized beams	65
	2.3	Triple	-Gauge-Boson Couplings	65
	2.4	Gauge	e couplings of Z -boson to bottom quark	65
	2.5	Leptor	n-philic Dark Matter	65
	2.6	Тор qı	uark physics	67
		2.6.1	Top-quark mass and width measurements	67
		2.6.2	Top-quark couplings to Z -boson	67
		2.6.3	Determining V_{tb}	67

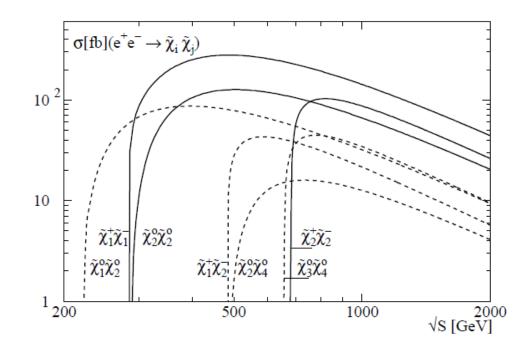
2.7	Inclusi	ve cross section of several benchmark channels in the SM at the SPPC	68
	2.7.1	PDF uncertanties	68
	2.7.2	Top-quark pair production	68
	2.7.3	Single top-quark production	68
	2.7.4	t-channel	68
	2.7.5	Wt-channel	68
	2.7.6	s-channel	68
	2.7.7	Higgs boson production	68
	2.7.8	gluon fusion channel	68
	2.7.9	vector boson fusion channel	68
	2.7.10	Vh associated channel	68
	2.7.11	$ht\bar{t}$ associated channel	68
	2.7.12	W-boson and Z-boson productions	68
	2.7.13	Vector boson pair production (WW, WZ, ZZ)	68
	2.7.14	Di-photon productions	


2.8	Inclusi	Inclusive cross section of several NP channels at the SPPC	
	2.8.1	Extra gauge bosons	68
	2.8.2	Sequential W'/Z' production	68
	2.8.3	G' or KK-gluon production	68
	2.8.4	Extra scalar productions	68
	2.8.5	Single production of neutral scalar (color singlet/sextet/triplet/octet scalar)	68
	2.8.6	Single production of charged scalar	68
	2.8.7	Associated production of charged scalar and top-quark	68
	2.8.8	Pair production of charged scalars	68
	2.8.9	Extra fermions	68
	2.8.10	Pair production of new heavy quarks via the QCD interaction	68
	2.8.11	Pair production of new heavy leptons via the EW interaction	69
	2.8.12	Single production of new heavy quark via anomalous couplings	69
2.9	PDF U	ncertainty for diphoton production at LHC and SppC	69
	2.9.1	Introduction	69
	2.9.2	Fixed order formula	70
	2.9.3	Resummation formula	73
	2.9.4	Numerical Results	75
	2.9.5	CONCLUSION	76
2.10	Higgs	self-coupling measurement	76
	2.10.1	Introduction	77
	2.10.2	Higgs pair production and decay	77
	2.10.3	Sensitivity to Higgs pair production at the high luminosity LHC	78
	2.10.4	Measuring the Higgs self-coupling using ratios of cross sections	80
	2.10.5	Extrapolating to higher energies	83

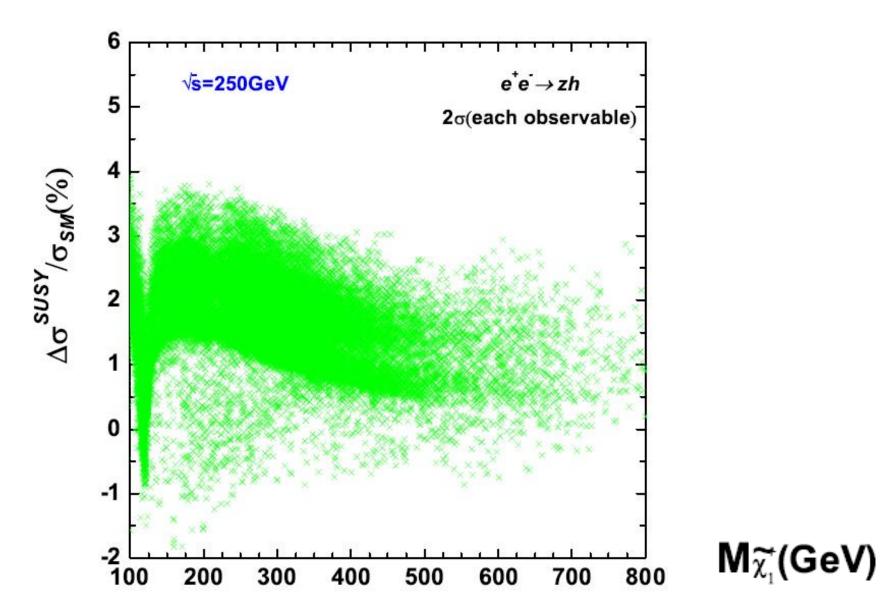
Larger PDF uncertainty at SPPC

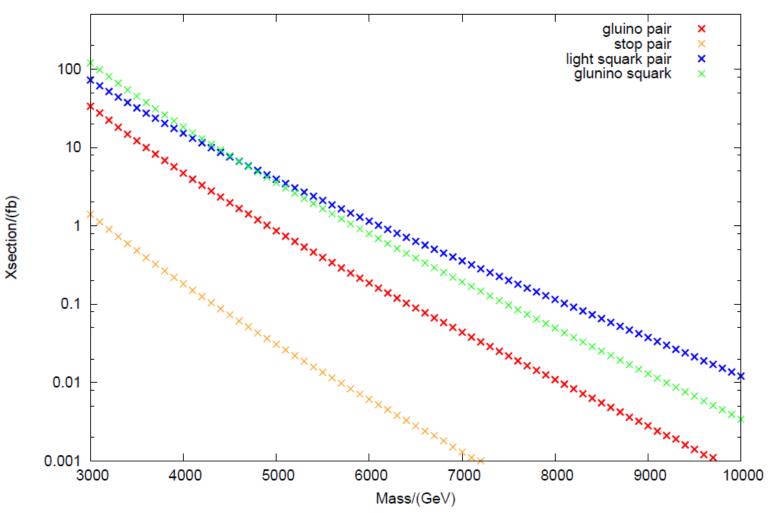
Figure 35. The transverse momentum distribution of diphoton pair at the 8 TeV LHC, 14 TeV LHC and 50 TeV SppC, respectively from top to bottom using CT10nlo PDF set.

Measuring the Higgs self-coupling using ratios of cross sections

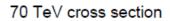

$$C_{HH} = \frac{\sigma(pp \to HH)}{\sigma(pp \to H)},$$

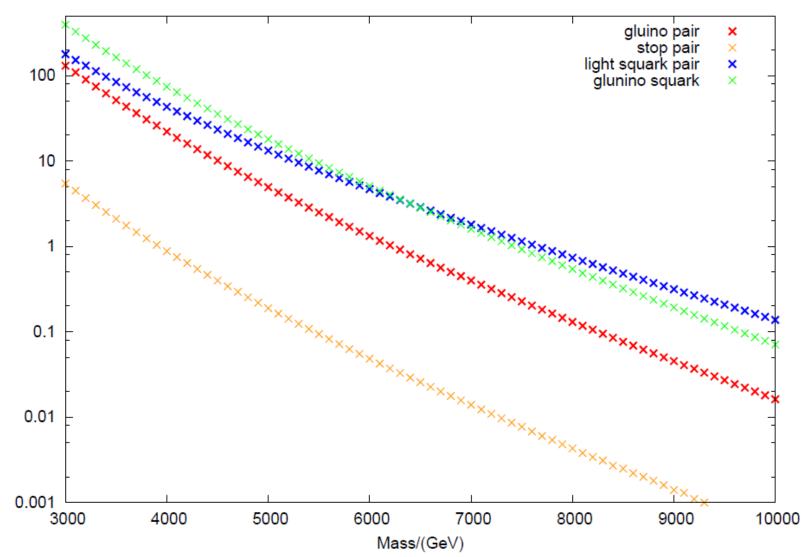
Channel	600 fb ⁻¹ (2 σ)	600 fb ⁻¹ (1 σ)	3000 fb ⁻¹ (2 σ)	3000 fb ⁻¹ (1 σ)
$b\bar{b}\tau^+\tau^-$	(0.22, 4.70)	(0.57, 1.64)	(0.42, 2.13)	(0.69, 1.40)
$b\bar{b}W^+W^-$	(0.04, 4.88)	(0.46, 1.95)	(0.36, 4.56)	(0.65, 1.46)
$b\bar{b}\gamma\gamma$	(-0.56, 5.48)	(0.09, 4.83)	(0.08, 4.84)	(0.48, 1.87)


Table 23. The expected confidence intervals for λ at 1σ and 2σ confidence levels with $y_t = 1$.


3: BSM: Supersymmetry

3	BSN	83	
	3.1	Introduction	84
	3.2	Sparticle Productions at the Higgs Factory	88
	3.3	SUSY effects in Higgs production at the Higgs Factory	90
	3.4	The Super Proton Proton Collider	90
	3.5	The Simplified Models at the Super Proton Proton Collider	91
	3.6	Conclusion	94




Figure 42. The cross subsections as a function of the collider energy for the benchmark point in Eqs. (3.8) and (3.9). The solid lines indicate cases where CP violating phases do not influence the explicitly CP conserving observable.

50 TeV cross section

Xsection/(fb)

4: BSM: Alternatives

4	BSM: Alternatives			94
	4.1	Comp	oosite Higgs Models	94
		4.1.1	Composite Models	95
		4.1.2	Higgs coupling deviation on the CHM	96
		4.1.3	Compositeness at the SPPC	98
	4.2	Fourth	h family models	99

4.3	Particle	es and Modes Search	100
	4.3.1	Charged Higgs	101
	4.3.2	Little Higgs models	102
	4.3.3	Effects on Higgs boson production and decay	102
	4.3.4	Probing different Little Higgs models via $\gamma\gamma \rightarrow h \rightarrow b\bar{b}$ measurement	102
	4.3.5	Production of lightest new gauge boson B_H	102
	4.3.6	LHM signature	102
	4.3.7	LHM effects on $e^-e^+ \rightarrow ZH$	103
	4.3.8	R-parity violation:	103
	4.3.9	Higgs leptonic flavor violating decay $h \rightarrow \mu \bar{\tau} + \tau \bar{\mu}$	103
	4.3.10	R-parity violation in $t\bar{c}(c\bar{t})$ production at e^-e^+ and $\gamma\gamma$ colliders	103
	4.3.11	Study on Neutralino/chargino physics	103
4.4	Randal	I-Sundrum models	104
	4.4.1	Introduction	104
	4.4.2	The Constraints	105
	4.4.3	CEPC	105
	4.4.4	SppC	106
	4.4.5	Conclusions	107

4.5	Neutrir	nos at Colliders: a brief and rough summary	107
	4.5.1	Status of neutrino parameters	107
	4.5.2	Origin of neutrino mass and mixing: seesaw mechanisms	108
	4.5.3	Type I seesaw model	109
	4.5.4	Type II seesaw model	109
	4.5.5	Type III seesaw model	110
	4.5.6	Tests of conventional seesaws	110
	4.5.7	Test of type I seesaw	111
	4.5.8	Test of type II seesaw	113
	4.5.9	Test of type III seesaw	114
	4.5.10	Going beyond conventional seesaws	116

Going beyond conventional seesaws

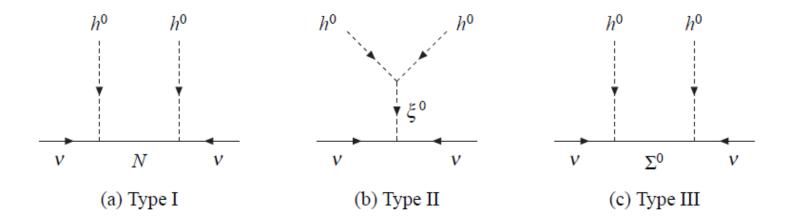


Figure 50. The neutrino mass generating mechanisms of three conventional seesaw models.

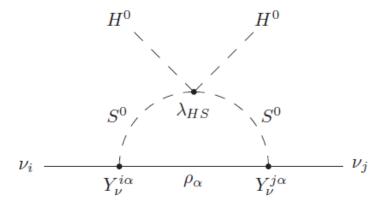


Figure 60. Feynman diagram for neutrino mass generation in the colored seesaw mechanism introducing a scalar colored octet $S \sim (8, 2, 1/2)$ and two fermionic octets $\rho_{\alpha} \sim (8, 1, 0)$ [348].

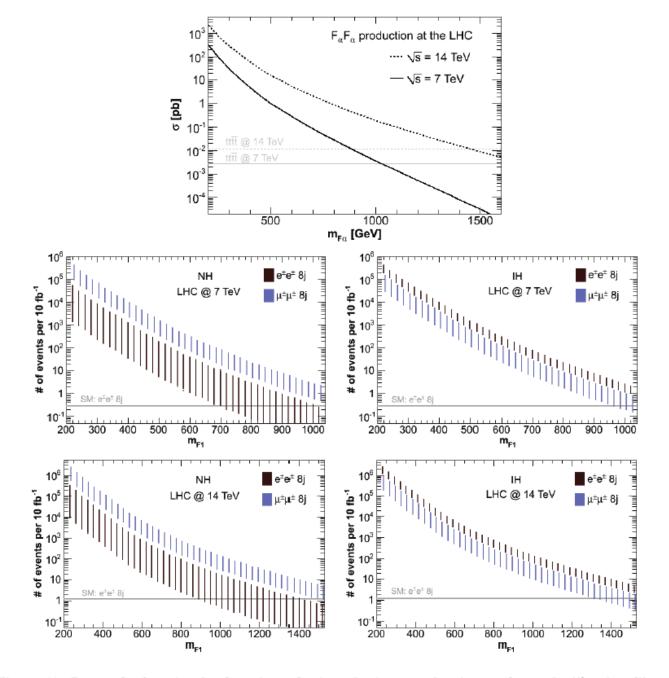


Figure 61. Cross subsubsection for the pair production of color octet fermions and rates for like-sign dilepton events in the color-octet seesaw model [348].

5: Flavor Physics

5	Heav	y Flavor Physics	121
	5.1	Introduction to B phyics	121
	5.2	Search for New Physics from CKM Matrix	123
	5.3	Neutral Meson Mixing	126
	5.4	Leptonic B Decays	128
	5.5	B Meson Semi-leptonic Decay	130
	5.6	B Meson Hadronic Decay	132
	5.7	B_c Studies	137
	5.8	Introduction to Top Quark Physics	141
	5.9	Top Quark Mass	141
	5.10	Top Quark Decay	141
	5.11	Single Top Production	141
	5.12	Top Quark Pair Production	141
		5.12.1 Total Cross section	141
		5.12.2 Charge Asymmetry	141
		5.12.3 Top Quark Spin Correlation	145

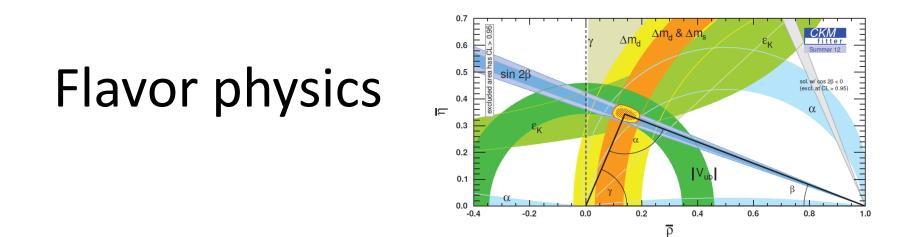


Figure 66. Unitarity triangle in the complex plane.

- New physics scale=Flavor scale? Complementary to high scale physics
- New CP violation sources ?
- SPPC as the top factory
- Rare decay modes of b/top?

6: TeV Cosmology

TeV Scale Cosmology		148
6.1	Brief introduction to dark matter	148
6.2	Theoretical models of dark matter	149
6.3	Collider Detection of dark matter particles	150
6.4	Detecting dark matter particles at the CEPC	151
	6.1 6.2 6.3	 TeV Scale Cosmology 6.1 Brief introduction to dark matter 6.2 Theoretical models of dark matter 6.3 Collider Detection of dark matter particles 6.4 Detecting dark matter particles at the CEPC

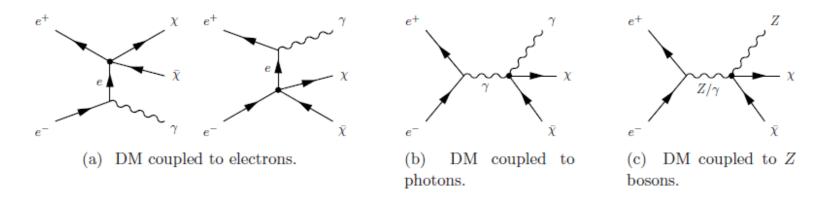
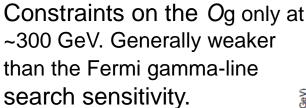
Constrain the effective interaction

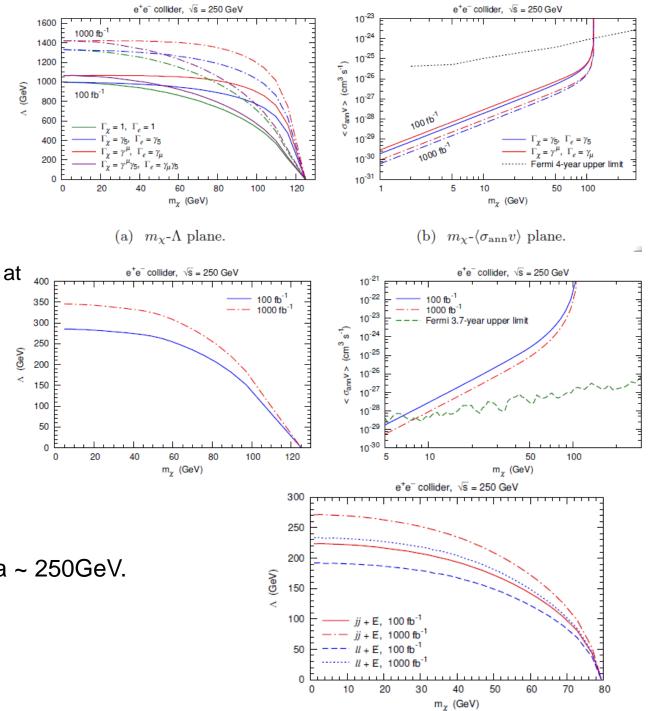
We have given an study to constrain the interaction between DM and SM particle with effective operators.

Operators:
$$\mathcal{O}_e = \frac{1}{\Lambda^2} \bar{\chi} \Gamma_{\chi} \chi \bar{e} \Gamma_e e, \quad \Gamma_{\chi}, \Gamma_e \in \{1, \gamma_5, \gamma^{\mu}, \gamma^{\mu} \gamma_5, \sigma^{\mu\nu}\},$$

 $\mathcal{O}_Z = \frac{1}{\Lambda_1^3} \bar{\chi} \chi B_{\mu\nu} B^{\mu\nu} + \frac{1}{\Lambda_2^3} \bar{\chi} \chi W^a_{\mu\nu} W^{a\mu\nu},$

Signals: mono-gamma, mono-Z


Figure 1. DM production processes $e^+e^- \rightarrow \chi \bar{\chi} \gamma$ and $e^+e^- \rightarrow \chi \bar{\chi} Z$.

We have simulated the signals and background with a ILD-like detector.

Constraints on O_e reach ~1.5 TeV, much stronger than indirect detection by Fermi.

EW baryogenesis at the CEPC

1, 1st order strong phase transition requires: 1) light scalar particle S ~ 100GeV or 2) considerable change of Higgs potential, therefore the Higgs self-coupling. \delta \lambda ~ 100%, while TLEP constrain \delta \lambda ~ 30% (CEPC may also give constraint with smaller luminosity.)

2, CP violation term may induce effective anomalous Higgs coupling to top or gauge bosons. We intend to check the anomalous coupling to constrain the scenario of EW baryogensis.

$$\mathcal{O}^{t} = c_{t} e^{i\xi} \frac{(\phi^{2} - \frac{v^{2}}{2})}{\Lambda^{2}} \Gamma_{t} \overline{\Psi_{L}} \tilde{\Phi} t_{R} \qquad \kappa c_{t} \sin \xi \geq 4 \times 10^{-2}$$
$$O_{W} = c_{W} \frac{g^{2}}{8\pi^{2}} \frac{\phi^{2}}{\Lambda^{2}} \operatorname{Tr} W_{\mu\nu} \tilde{W}^{\mu\nu} \qquad \operatorname{Taking} \Lambda \sim 1 TeV,$$
$$c_{w} \geq 0.1 - 1$$

3, the effective operators may lead to change of br of Higgs decay inevitably. The precise measurement of br will give strong constranits on the EW baryogensis scenario.

Conclusion/Discussion

- Great efforts by domestic theorists! First preliminary report/framework was available, need lots of more work!
- Need more domestic/foreign theorists input, worldwide efforts!
- Keep eyes on LHC new input!

Thanks for your attention!