

Electroweak interactions

Manuella G. Vincter (Carleton University) presenting results from ATLAS, CMS, LHCb, CDF, and D0

Parton distribution functions f of the proton (pdf)

 x_1, x_2 = momentum fraction of partons

SM Z, W, t production EW interactions at TeV scale Z/γ^* pQCD

$$\sigma = \sum_{a,b,k} \int dx_1 dx_2 f_a(x_1, Q^2) \quad \widehat{\sigma}_{a,b,k}(x_a, x_b) \quad f_b(x_1, Q^2)$$

Via hard scatter, can produce massive EW states in $pp/p\bar{p}$ collisions

Global fits to extract PDFs

- Feed e.g. W^{\pm} , Z/γ^{*} , ... cross section information into global fits to extract PDFs
 - All data have differing sensitivity to different aspects of the proton's PDFs.
 - EW boson production sensitive to valence and sea quark distributions

₹¢

Outline of presentation

- Single W, Z/γ* production
 - Z/γ^* : $m_{\ell\ell}$, $y_{\ell\ell}$ dependence
 - Lepton and W charge asymmetry
 - m_w
- Multiple W, Z, γ production
 - Neutral and charged aTGC
 - VBS: W[±]W[±]jj production
- Top physics
 - Quark pair, single-top cross sections, |V_{tb}|
 - Mass

Will show an illustrative experimental result per topic, but many of these measurements done at all experiments: D0, CDF, CMS, ATLAS (too many to show!)

SINGLE W, Z/γ* PRODUCTION

$m_{\ell\ell}$ dependence of Z/ γ^* production

Very wide mass range measured at the LHC: $m_{\ell\!\ell} \sim 12\text{-}2000~\text{GeV}$

- $d\sigma/dm_{\ell\ell}$, $d^2\sigma/dm_{\ell\ell} d|y_{\ell\ell}|$
- Low-mass DY: dominated by EM coupling of γ* to qq̄
 q̄
 γ*
- Different sensitivity to u, d-type qq than on peak

High-mass DY shape can be modified by new physics

Measurements compared to fixed-order calculations like FEWZ, including higher-order EW corrections, and various PDFs

PDFs: MSTW2008, HERADPDF1.5, CT10, CT10W,AMB11, NNPDF2.1,2.3, JR09, ABKM09, ...

JHEP12(2013)030

$y_{\ell\ell}$ and $m_{\ell\ell}$

- CMS 7TeV: (1/σ_z) dσ/dm_e: ee+μμ channel normalised to peak region
 - Comparisons including LO and NLO EW corrections
- Dimuon (1/σ_z) dσ/d|y_{ll} normalised to peak region in m_{ll} bins compared to FEWZ using various PDF sets
 - Test compatibility of PDFs with low-to-high-mass DY
- Also ratio of born-level $(1/\sigma_Z) d\sigma/dm_{\ell}$ at 8TeV to 7TeV

CMS

 $\gamma^*/Z \rightarrow ee, \mu\mu$

Ldt = 4.8 fb⁻¹ ee, Ldt = 4.5 fb⁻¹ µµ at √s = 7 TeV

/σ₂ dσ/dm [GeV

10

10

10-6

10-7

10-8

10-9

1.5

0.5

1.5

Data/theory

leony

 목법 0.5 15 Data

30

FEWZ, NNLO CT10+LO EW

FEWZ, NNLO CT10+NLO EW

FEWZ, NNLO CT10+LO EW

60

120

240

600

m [GeV]

arXiv:1312.6283 PRL112(2014)191802 arXiv:1408.4354

LHC lepton-charge asymmetry

- Dominant W production mechanisms at LHC:
 - valence+sea antiquark: $d\overline{u} \rightarrow W^-$ and $ud \rightarrow W^+$
 - W⁺, W⁻ production asymmetry due to valence content
 - R_{W^+/W^-} 1.39 ± 0.01(stat) ± 0.02(syst) (CMS at 8TeV)
- Lepton charge asymmetry vs. pseudorapidity η can provide information on PDFs:

$$\mathcal{A}(\eta) = \frac{\frac{\mathrm{d}\sigma}{\mathrm{d}\eta} (\mathrm{W}^+ \to \ell^+ \nu) - \frac{\mathrm{d}\sigma}{\mathrm{d}\eta} (\mathrm{W}^- \to \ell^- \overline{\nu})}{\frac{\mathrm{d}\sigma}{\mathrm{d}\eta} (\mathrm{W}^+ \to \ell^+ \nu) + \frac{\mathrm{d}\sigma}{\mathrm{d}\eta} (\mathrm{W}^- \to \ell^- \overline{\nu})}$$

- d/u ratio and sea antiquarks (including strangeness)
- CMS measurement at 8TeV with $W \rightarrow \mu \nu$ and $p_T^{\ell} > 25 \text{GeV}$
 - Agreement with CT10, NNPDF2.3, HERAPDF1.5
 - Less so: MSTW2008 |η|<1 (MSTW2008CPdeut better)</p>
- LHCb measurement at 7TeV with $W \rightarrow \mu \nu$ and $p_T^{\ell} > 20 \text{GeV}$
 - Forward acceptance: unique rapidity coverage for PDFs
 - Excellent agreement with NNLO + different PDFs except at highest η where some predictions undershoot the data.

Tevatron W charge asymmetry

- Lepton charge asymmetry is convolution of W asymmetry and V-A structure of W decay
 - Leptons at given η originate from a range of W rapidity y_W and hence wide x range
- **D0 at Tevatron**: use v weighting method to extract W charge asymmetry
 - Assuming m_W value gives two possible solutions to missing information on p^v_z, which can be partially resolved on a statistical basis from known V-A decay distributions, assigning probabilities to p^v_z solutions
- 9.7fb⁻¹ at √s=1.96TeV
 - Comparison to MC@NLO +
 - NNPDF2.3, MSTW2008NLO
 - Good agreement except slight overshoot of predictions at low |y_w|
 - Expt uncert << NNPDF2.3 uncert</p>
 - Results can significantly constrain
 PDF predictions

The mass of the W boson: m_w

- EW sector of SM relates important parameters such as m_W , α_{EM} , G_F and $sin^2\theta_W$
- Quantum corrections to m_w dominated by contributions depending quadratically on the top mass m_t and logarithmically on the Higgs mass m_H

- Precision measurements of m_w were first used to predict m_H before the Higgs was observed
- Now use comparisons of predicted m_H to measured m_H to look for new physics!
- Extraction of m_W from hadron collisions
 - $u\bar{d} \rightarrow W^+(\rightarrow \ell^+ v) + X \rightarrow Can't$ fully reconstruct the final state!
 - Transverse plane balance: $\vec{p}_{T}^{v} = -\vec{p}_{T}^{\ell} \vec{u}_{T}$
- Use variables sensitive to m_w :

•
$$p_T^{\ell}$$
, E_T^{miss} , $m_T = \sqrt{2 p_T^{\ell} p_T^{\nu} [1 - \cos (\phi_{\ell} - \phi_{\nu})]}$

- Simulate what these variables should look like as measured in the detector, scanning over a range of possible m_w values
- Perform a fit of these templates to data

 p_T^{ℓ}

e

Hadronic recoil \vec{u}_{T}

Fermilab Tevatron measurements

■ D0: W→ev, 4.3fb⁻¹, 1.68M evts (+earlier 1fb⁻¹) [PRD89 (2014) 012005, PRL108 (2012) 151804]

Dominant expt sys: lepton E scale & hadronic recoil, dominant theo uncert: knowledge of PDF

• $\delta m_W^{D0} = 23 MeV, \ \delta m_W^{CDF} = 19 MeV$

World avg: known to 15MeV!

TABLE II. Uncertainties for the final combined result on M_W .

Source CDF	Uncertainty (MeV)		
Lepton energy scale and resolution	7		
Recoil energy scale and resolution	6		
Lepton removal	2		
Backgrounds	3		
$p_T(W)$ model	5		
Parton distributions	10		
QED radiation	4		
W-boson statistics	12		
Total	19		

Future prospects for m_w

Use global fits of EW sector of the SM to compare measured and predicted masses

• Even with precision of $\delta m_W = 15 MeV$,

indirect determination of m_W better by factor of ~2

- Calls for better measurements
- Projected final Tevatron precision: $\delta m_W \sim 9 MeV$?
- Can LHC do better? A real challenge!
 - Higher pileup environment
 - Momentum scale, recoil model, PDF
 - will need to be well known

Note on theo uncertainties on mass: ATL-PHYS-PUB-2014-015 14

MULTIPLE W,Ζ,γ PRODUCTION

Multiple Gauge-Boson Couplings

- Self interactions between gauge bosons
 - Will talk about anomalous Triple Gauge Couplings (aTGC)
 - Anomalous quartic gauge boson couplings aQGC also being measured
- SM diboson production is also a source of background for:
 - Higgs production (e.g. H→WW, ZZ)
 - Searches for new physics
 - Deviations: new resonances decaying to gauge bosons, other non-SM processes?
- At tree level, some TGCs are non-zero in the SM
 - γWW, WWZ
- Other TGCs are zero at tree level but have non-zero contributions at the higher loop levels
 - e.g. γZZ O(10⁻⁴) contributions at one-loop SM. Some BSM models are O(10⁻³-10⁻⁴)
- Precision measurements could reveal new physics!
- Will review processes with ZZ, WW, WZ, Wγ, Zγ final states
 - Ieptonic decays of W,Z ($W \rightarrow \ell v, Z \rightarrow \ell \ell, vv$)

aTGC: nomenclature

- Introduce a general V V' V'' vertex
 - γ WW, WWZ, Z $\gamma\gamma$, ZZ γ , ZZZ
- Coupling nomenclature:
 - Define couplings such that SM values are 0 or 1
 - For SM couplings that are 1: define deviation △ from SM
 - Test for any aTGC
- Note: Many terms in Lagrangian would give cross sections as a function of √s leading to unitarity violation. As this is not possible, new physics interactions at scale Λ needed to counter the effect
 - Use form factor parameterisation that leads to couplings that vanish at high \sqrt{s}

 $f_{i}^{V} = f_{i0}^{V} / (1 + \hat{s} / \Lambda^{2})^{n}$

Charged				
Couplings	Vertex (Final state)			
$λ_{\gamma}$, Δ $κ_{\gamma}$	γWW (WW, Wγ)			
$\lambda_{z}, \Delta \kappa_{z}, \Delta g_{1}^{z}$	ZWW (WW, WZ)			
Neutral				
Couplings	Vertex (Final state)			
h_{3}^{γ} , h_{4}^{γ}	γγΖ (Ζγ)			
h_{3}^{2} , h_{4}^{2}	ΖΖγ (Ζγ)			
$f_4^{\gamma}, f_5^{\gamma}$	γZZ (ZZ)			
f_{4}^{Z}, f_{5}^{Z}	ZZZ (ZZ)			

aTGC: methodology

- Measure diboson production cross section vs. variables sensitive to aTGCs
 - $W \rightarrow \ell \nu: p_T^{\ell}$
 - $Z \rightarrow \ell \ell$: $m_{4\ell}(ZZ)$ or p_T^{ℓ} of leading Z
- Presence of aTGC would distort shape
- Use MC to reweight / interpolate to distributions with anomalous couplings
- Set limits on aTGCs on each coupling:
 - assuming others are zero or
 - on pairs assuming others are zero

Charged aTGC limits

Snap shot of aTGCs: LHC 7TeV data + I FP + Tevatron

WWγ,\	NWZ
-------	-----

Feb 2013

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

LEP still sets stringent limits in some cases, LHC limits comparable to **Tevatron**

Coupling Strength

JHEP03(2013)128

Vector boson scattering (VBS): W[±]W[±]jj

- VBS VV \rightarrow VV where V=W or Z: key process to probe nature of EW symmetry breaking
 - Without a SM Higgs, longitudinally polarised VBS amplitude violates unitarity at ~1TeV!

 Z/γ , W, H, 4-pt

- Newly discovered Higgs boson could unitarise process
- V+V+jet+jet in final state \rightarrow both EW and strong processes
 - Same sign WW: EW process dominates
- W[±]W[±]jj production: ATLAS 20.3fb⁻¹ at 8TeV
 - Enhanced VBS region: $e^{\pm}e^{\pm}$, $\mu^{\pm}\mu^{\pm}$, $\mu^{\pm}e^{\pm}$, +
 - \geq 2 well separated jets in $|\Delta y_{ii}|$, high invariant mass m_{ii}>500GeV

- Deviations from SM quartic gauge couplings:
 - Parameterised by α_4, α_5 : limits set

TOP PHYSICS

Top production and decay: the many properties

Top quark pair production and decay

00000

- Top quark pair $(t\bar{t})$ production is via the strong interaction
 - $t \in t \leftarrow 15\%$ LHC 85% $\to g^{6}$

 \leftarrow 85% Tevatron 15%→

- Top quark subsequently decays ~100% to W + b: $t\bar{t} \rightarrow W^+W^-b\bar{b}$
 - W decays are hadronic or leptonic
- Dilepton channel: very clean but low rate
- Lepton+jets: clean and good rate
- Measure $t\bar{t}$ production cross section $\sigma(t\bar{t})$
 - Precise $\sigma(t\bar{t}) \rightarrow$ measurement of SM parameters: m_t and α_s

SUSY decays?

New physics could be hidden? New production modes or decays?

SM predictions: -->

 \mathbf{q}

00000

- Will be a trade off:
 - stats vs. sys

√s [TeV]	σ(<i>tī</i>) (NNLO+NNLL) [pb] (m _t =172.5GeV)		Uncert. [%]
2	7.35		
7	177.3		4 4 9 4
8	252.8	x100	~4-0%
13	824.2		

t'or \tilde{t} ? New heavy quarks?

Dileptons

.epton+jets

~45%

~10%

All jets

~45%

24

g 70000

g 00000

l⁺, q

 W^+

Combined results

 7.09 ± 0.83

 $\textbf{7.82} \pm \textbf{0.56}$

7.21±1.28

 7.63 ± 0.50

 7.90 ± 0.74

 7.56 ± 0.59

 7.60 ± 0.41

TOPLHCWG

 $241 \pm 2 \pm 31 \pm 9 \text{ pb}$

 $\pm 0.49 \pm 0.67$

 \pm 0.38 \pm 0.41 $\textbf{7.32} \pm \textbf{0.71}$

 \pm 0.36 \pm 0.61

 \pm 0.50 \pm 1.18

 $\pm 0.31 \pm 0.39$ 7.36 ± 0.85

 $\pm 0.20 \pm 0.56$

 $\pm 0.20 \pm 0.36$

8.8 fb⁻¹

4.6 fb⁻¹

4.6 fb⁻¹

2.9 fb⁻¹

5.4 fb⁻¹

5.3 fb⁻¹

Sep 2014

- stat. uncertainty total uncertainty

σ., ±(stat) ±(syst) ±(lumi)

PRD89

(2014)

07200

Tevatron Run II

.

-let

8

7

Tevatron Run II combined results

 $228 \pm 9^{+29}_{-26} \pm 10 \text{ pb}$ $257 \pm 3 \pm 24 \pm 7 \text{ pb}$ 242.4 ± 1.7 ± 5.5 ± 7.5 pb 239.0 ± 2.1 ± 11.3 ± 6.2 pb $241.5 \pm 1.4 \pm 5.7 \pm 6.2 \ \text{pb}$ Effect of LHC beam energy uncertainty: 4.2 pb not included in the figure 250 300 350 400 σ,, [pb] stat << sys \cong lumi \rightarrow tot = 3.5%

25

Single-top production

	SM prediction [pb] arXiv:1311.0283				
√s [TeV]	t	Wt	S	Tot.	
2	2.08 (62%)	0.25 (7%)	1.05 (31%)	~3	
8	87.8 (76%)	22.2 (19%)	5.55 (5%)	~115	
14	248 (72%)	83.6 (24%)	11.86 (4%)	~343	
Meas. precision	~10% LHC	~20% LHC	~20% Tevatron		
CMS Preliminary $ V_{tt} $ Summary August 2014					
CMS tW, 7 TeV, 4.9 fb ⁻¹ , PRL110 (2013) 02203 1.010 $^{+0.160}_{-0.130}$ (exp) $^{+0.030}_{-0.040}$ (th) CMS tW, 8 TeV, 12.2 fb ⁻¹ , PRL 112 (2014) 231802 1.030 \pm 0.120(exp) \pm 0.040(th) CMS t-ch., 7 TeV, 1.17/1.56 fb ⁻¹ , JHEP12 (2012) 035 1.029 \pm 0.046(exp) \pm 0.017(th) CMS t-ch., 8 TeV, 19.7 fb ⁻¹ , JHEP06 (2014) 090 0.979 \pm 0.045(exp) \pm 0.016(th) CMS t-ch., 7 and 8 TeV combined, JHEP06 (2014) 090 0.998 \pm 0.038(exp) \pm 0.016(th)					
CMS tī R _b , 8 TeV, 19.7 fb ⁻¹ , PLB 736 (2014) 33 1.007 ± 0.016(stat+syst)					
L					

Single top: t and s channel

- t-channel: CMS @ 8TeV (19.7fb⁻¹)
- Lepton + 2 jets (1 b jet)
- Template fit on the untagged jet

 $\sigma_{t-ch}(\bar{t}) = 27.6 \pm 1.3 \text{ (stat)} \pm 3.7 \text{ (syst) pb}$

- s-channel: CDF full run 2 9.5fb-1
- I+jet and E_T^{miss}+jet

s-channel cross section [pb]

MVA discriminants, sensitive to s-channel

- m_t is a fundamental parameter: m_W, m_t, m_H together test the consistency of the SM
- Many techniques to extract m_t
 - Decay kinematic fits or likelihood compatibility with top hypo, template fit to reco mass
- Matrix element technique: D0 I+jet (full run 2, 9.7fb⁻¹)
 - From kinematic info in the event, use LH technique per-event probability densities
 - Calculate probability that each event results from a $t\bar{t}$ or bkg
 - Overall JES is calibrated by constraining in-situ mass of hadronically decaying W

 $m_t = 174.98 \pm 0.58(\text{stat+JES}) \pm 0.49(\text{syst}) \text{ GeV}$ $m_t = 174.98 \pm 0.76 \text{ GeV} \text{ [0.43\%]}$

Single and diboson production is interesting on so many levels

- Probes of
 - pQCD, PDFs, consistency of the SM
 - $m_{\mu'}|y_{\mu}|$ dependence of Z/γ^* production, W charge asymmetry, m_W
- Underlying foundation of many new physics searches
 - e.g. critical to better understand backgrounds and PDFs for LHC at higher energy/luminosity
- Sensitive venues for new physics: aT/QGCs

Top quark physics

- Tevatron and LHC: top factories
 - Top mass known to better than 1GeV
 - Moving into realm of precision measurements of top (differential) properties, not limited by statistics
- Precision top physics will be taken to a new level at future colliders!

ADDITIONAL MATERIAL

Z cross section vs. ϕ_n^*

• A better variable to probe low-p_T Z: ϕ_{η}^{\star}

 $\phi_{\eta}^* \equiv \tan(\phi_{\mathrm{acop}}/2) \cdot \sin(\theta_{\eta}^*)$

where $\phi_{\rm acop}\equiv\pi-\Delta\phi,~(\phi~{\rm between}~2~{\rm leptons})$

and $\cos(\theta_{\eta}^{*}) \equiv \tanh[(\eta^{-} - \eta^{+})/2]$ (η between 2 leptons)

Probes same physics as Z p_T but with better precision

 $p_T^{Z} m_Z \phi_{\eta}^{*}$

- Depends uniquely on direction of lepton tracks (which is better measured than their momenta)
- Significant improvement in the understanding of electron track parameters in 2011/2012 really helped this analysis!

p_T dependence of Z/ γ^* production

Near Z pole $m_{\ell\ell} = \cong 90 \text{GeV}$ within a mass window of $\sim \pm 25 \text{GeV}$

• $d\sigma/dp_T^{\ell}$, $d^2\sigma/dp_T^{\ell}d|y_{\ell}|$

- Low p_T^{ll}: region of ISR and intrinsic k_T of partons
- modeled through softgluon resummation or parton showers (PS)
 - e.g. ResBos (NLO,NNLO)+NNLL

- High p_T^{*l*}: region dominated by radiation of high p_T gluons/quarks
- Sensitive to gluon PDF
- Modeled with fixedorder calculations like FEWZ @NLO,NNLO & DYNNLO (with NLO,NNLO EW corrs)

arXiv:1406.3660 Phys. Lett. B720 (2013) 32

A tool for tuning: $p_{T}^{\ell\ell}$

ATLAS 7TeV: $(1/\sigma^{fid}) d\sigma^{fid}/dp_{T}^{\ell}$, inclusively in $y_{\ell\ell}$ (ee and $\mu\mu$)

FEWZ, DYNNLO (top), ResBos (bot)

Parton-shower tunes: determine sensitivity of $d\sigma/dp_{\tau}^{\ell}$ to PS models

Include measurement of ϕ_n^* , highly correlated to p_T^Z but depends on direction of tracks (better measured than momenta) Prediction/Da

OWHEG+PYTHIA8 4C

vs = 7 TeV; Ldt = 4.7 fb⁻¹

10

0.9

0.8

 $p_T^{Z} m_Z \phi_n^{*}$

- e.g. compare POWHEG+PYTHIA8 new tune AZNLO with base tune 4C
 - Primordial k_{T} and ISR cut-off have been tuned
 - Consistent tune with $p_T^{\ell\ell}$ and ϕ_n^* in agreement within 2% with data for $p_T \ell < 50 \text{GeV}$

33

PDF extraction in the **HERAFITTER** framework

ATLAS: JHEP05 (2014) 068 CMS: arXiv:1312.6283

- Use HERA inclusive DIS data with LHC W data to better constrain PDFs, in particular valence and strange
- ATLAS: HERA + [W+charm]
 - Repeat HERAPDF1.5 fit making $f_s = \overline{s}/(\overline{d} + \overline{s})$ ~free while constraining other params to HERAPDF1.5 fit results
 - $r_s \equiv 0.5(s+\overline{s})/\overline{d}$ ~1 at starting scale Q²=1.9GeV²
- CMS: HERA + $\mathcal{A}(\eta)$ + [W+charm]
 - Adding $\mathcal{A}(\eta)$ improves valence precision, changes shape
 - Free-s fit where dbar and sbar parameterised separately

• $R_s = (s + \overline{s})/(\overline{u} + \overline{d})$, just below 1

Within framework, ATLAS&CMS strange fraction definition similar at starting scale... R_s & r_s can be directly compared: ~consistent

