Quark-Gluon Plasma: from RHIC to LHC energies

a wealth of results from LHC Run1 and from RHIC (see recent QM 2014 conference in Darmstadt 31 plenary and 180 parallel talks, 300 posters))
a personal selection of just a few observables with thanks to my colleagues from ALICE, ATLAS, CMS, PHENIX, STAR
where are we and where do we go from here?

the objective:

study the phase diagram of
 strongly interacting matter
properties of the quark-gluon plasma matter
nature of the QCD phase transition

Johanna Stachel – Universität Heidelberg

11th ICFA Seminar on Future Perspective in High-Energy Physics, Beijing, Oct 2014

Heavy ion runs at RHIC and LHC

LHC: PbPb at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ ALICE, ATLAS, CMS 2010 about 9 µb⁻¹ 2011 about 150 µb⁻¹ $\cong 10^9$ collisions pPb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ ALICE, ATLAS, CMS, LHCb 2013 about 30 nb-1 $\cong 5.10^{10}$ collisions total of about 12 weeks in 3 years of running

RHIC: AuAu at $\sqrt{s_{NN}} = 7.7 - 200 \text{ GeV}$ BRAHMS*, PHENIX, PHOBOS*, STAR from 2000 77 nb⁻¹ about 60% of it in 2014! other nuclei 71 nb⁻¹ dAu 510 nb⁻¹ total of 132 weeks in 15 year of running

*completed

Particle identification is a key tool

Production of hadrons and nuclei at LHC

model: J.S., A. Andronic, P. Braun-Munzinger, K. Redlich, arXiv: 1311.4662

statistical model of hadronization employing full QCD statistical operator (partition function) reproduces hadron and nuclei yields over 9 orders of magnitude protons 2.7 sigma low – is it an indication of incompletely know baryon spectrum?

Production of hadrons and nuclei at LHC

hadron yields for Pb-Pb central collisions from LHC Run1 are well described by assuming equilibrated matter at

T = 156 MeV and μ_b < 1 MeV, very close to predictions from lattice QCD for T_c

multi-hadron collisions in dense regime near Tc bring hadrons into equilibrium (JS, P.Braun-Munzinger, K. Wetterich)

Fluctuations in net baryon number

in lattice QCD dip near critical point expected because χ₄ negative, χ₂ positive (preserved for chiral cross over)
could lower point(s) near 20 GeV be due to fluctuations near a critical point? intriguing
such studies will be priority for PES. If at PHIC

• such studies will be priority for BES-II at RHIC

Johanna Stachel

moments of (p-pbar) distribution can be linked to quark number susceptibilities from lattice QCD

 $\begin{aligned} \text{variance} &: \sigma^2 = \chi_2 \\ \text{kurtosis} : \kappa = \chi_4/\chi_2^2 \\ \kappa \sigma^2 &= \chi_4/\chi_2 \\ \chi_{lmn}^{BSQ} &= \frac{\partial^{l+m+n} p/T^4}{\partial (\mu_B/T)^l \partial (\mu_S/T)^m \partial (\mu_Q/T)^n} \end{aligned}$

Azimuthal anisotropy of transverse spectra

Fourier decomposition of momentum distributions rel. to reaction plane:

$$\frac{dN}{dp_t dy d\phi} = N_0 \cdot \left[1 + \sum_{i=1}^{N} 2v_i (y, p_t) \cos(i\phi)\right]$$

quadrupole component v_2 "elliptic flow" effect of expansion (positive v_2) seen from top AGS energy upwards

the v_n are the equivalent of the power spectrum of cosmic microwave rad.

Johanna Stachel

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Elliptic flow of charged particles at LHC

figure modified from B. Muller, J. Schukraft, B. Wyslouch, arXiv:1202.3233v1 Llow Coefficient < elliptic flow (v_2) as Pb-Pb 2.76 TeV Centrality 30-40% function of p_t: v₂{EP} ALICE preliminary - excellent agreement v₂{EP} CMS preliminary between all 3 LHC v₂{EP} ATLAS experiments v_{3} {SP} ALICE ($|\Delta|\eta > 1.0$) prel. - same for v₃ v₃{EP} ATLAS preliminary 0.05 0 15 5 10 20 p_{_} (GeV/c) hydrodynamic regime jet fragmentation regime v₂ driven by pressure gradient v₂ driven by energy loss

Sensitivity to viscosity of the fluid

viscosity suppresses v₂ higher moment suppressed more strongly in hydro regime v_2 driven by initial condition and properties of the liquid \rightarrow ratio of viscosity to entropy density η/s

Elliptic flow for identified hadrons

 v_2 {SP, | $\Delta \eta$ | > 0.9}

ALICE 10-20% Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV

beyond v_2 for charged particles, data available for identified hadrons

- mass ordering observed
- characteristic feature of hydrodynamic expansion

Elliptic flow of identified hadrons compared to hydrodynamics

the quest to extract the ratio of shear viscosity over entropy density η/s note: minimum value of $1/4\pi \approx 0.08$ predicted with AdS/CFT correspondence

calculations: (2+1)-D hydro plus UrQMD (VISHNU) H. Song, S. Bass and U. W. Heinz, Phys. Rev. C **89**, 034919 (2014)

mass dependence is a genuine prediction of hydrodynamics calculations with $\eta/s = 0.20$ reproduce data very well but: uncertainty due to initial condition color glass initial condition \leftrightarrow Glauber $\eta/s = 0.20 \leftrightarrow 0.08$

Higher flow harmonics and their fluctuations

data: ATLAS JHEP 1311 (2013) 183 calc: B. Schenke, R. Venugopalan, Phys. Rev. Lett. 113 (2014) 102301

Sensitivity of temperature dependence of eta/s

E. Molnar, H. Holopainen, P. Huovinen, H. Niemi, arXiv:1407.8152 (3+1)-D viscous hydro, initial cond fixed to dN/deta, freeze-out to spectra, EOS from lattice QCD

on the other hand, can always rescale η/s to reproduce data at one energy and centrality **recipe: multi-differential measurements**

 v_2 , v_4 , as function of rapidity and p_t fix hadron gas $\eta/s(T)$ with RHIC data then proceed to extract $\eta/s(T)$ for QGP with LHC data as well as minimal value

Shape and orientation of colliding nuclei - U+U collisions

- for tip-on-tip collisions expect 20% increase in energy density
- selection of near-complete overlap via (absence of) forward neutrons in ZDC, then look for highest multiplicity events
- reveals sensitivity to initial condition color glass initial condition (IP Glasma) ok

Does fluctuating shape of overlap region affect viscosity?

Ridge in pPb and dAu collisions

:1

Softening of the equation of state: v₁

- v₁ (sideways kick) considered sensitive to equation of state
- a softest point (very strong minimum in v₁)
 predicted 20 years ago (D. Rischke et al.)
- now an effect observed for the first time, albeit much weaker

could it be a signal of a first order phase transition?study this in smaller centrality bins in BES-II

Jet quenching – parton energy loss in QGP

Extracting the jet quenching parameter

$$\frac{dE/dx \propto \rho \sigma \langle k_t^2 \rangle L}{density of color charge carriers}$$
ransport coefficient $\hat{q} \propto \rho \sigma \langle k_t^2 \rangle$

determine transport coefficient from comparing transport model calculations to R_{AA} data at center of nuclear fireball at τ_0 =0.6 fm/c obtain for RHIC and LHC $\hat{q} = \frac{1.2\pm0.3 \text{ GeV}^2/\text{fm}}{1.9\pm0.7 \text{ GeV}^2/\text{fm}} \text{ at T} = 370 \text{ MeV}$

2 orders of magnitude larger than in nuclear matter (from DIS)!

Suppression of identified hadrons

all converge at high p_t (within current errors) in few GeV range see radial flow (expansion velocity) effects

Jet quenching: where does lost energy go?

Johanna Stachel

CMS prospects for Run2/Run3

upgraded Level 1 trigger system for jet triggers high statistics photon-jet, Z-jet measurements first measurement of top production in PbPb collisions

Charm quarks thermalize to large degree in QGP

On the way towards transport coefficients for c-quarks

models constrained by simultaneous fit of R_{AA} and v_2

Energy loss and flow of charm quarks at RHIC energy

STAR D⁰ production in $\sqrt{s_{NN}}=200$ GeV AuAu

PRL 113 (2014) 142301

! measurement down to pt close to 0 !

current LHC data start above 2 GeV/c but elliptic flow of D mesons reproduced by the same approach wo new parameters calc: A. Beraudo et al. 1407.5918, 1410.6082

calculations with charm quark energy loss in QGP using Langevin equation with weak coupling transport coefficients and hadronization in an expanding medium lead to enhancement in low p_t region

Johanna Stachel

Charm measurements at even lower energy

an indication of R_{AA}>1 and elliptic flow for electrons from heavy flavor decays
do charm quarks thermalize in the medium at this low energy and get dragged along by the collective expansion?

calculations suggest that coupling of charm quark to expanding medium could be strongest near T_c drives interest in AuAu and pp collisions at $\sqrt{s_{NN}} = 62$ GeV for 2016 RHIC run

What about b-quark energy loss and thermalization?

so far in PbPb only measured in CMS via J/ψ from B-decay above 7 GeV/c CMS recent result: first B-meson direct reconstruction in pPb collisions!

important baseline for PbPb data - to be repeated in Run2 for PbPb

W-production tests: is energy loss a QGP medium effect?

arXiv:1408.4674

data compared to a NLO pQCD calculation: agreement at all collision centralities more on electroweak probes to come from Run2 and Run3

Suppression only for strongly interacting hard probes

photons, Z and W scale with number of binary collisions in PbPb – not affected by medium \rightarrow demonstrates that hadron and jet suppression is medium effect: energy loss in QGP

Charmonia as a probe of deconfinement

the original idea (Matsui and Satz 1986): implant charmonia into the QGP and observe their modification (Debye screening of QCD), in terms of suppressed production in nucleus-nucleus collisions; larger states are suppressed at lower T – sequential melting

new insight (Braun-Munzinger, J.S. PLB490(2000)186): QGP may screen all charmonia, but charmonium production takes place at the phase boundary, enhanced production at colliders

- signal for deconfinement

J/psi production in PbPb collisions: LHC relative to RHIC

Johanna Stachel

RUPRECHT-KARLS-UN

Energy Density

J/psi and statistical hadronization

- production in PbPb collisions at LHC consistent with deconfinement and subsequent statistical hadronization within present uncertainties
- need to view this relative to shadowing from pPb collisions: forward y: $R_{AA} = 0.76(12)$ mid-y $R_{AA} = 0.72(15)$
- main uncertainties for models: open charm cross section

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

a first try at the total ccbar cross section in pp at LHC

- good agreement between ALICE, ATLAS and LHCb
- large syst. error due to extrapolation to low pt, need to push measurements in that direction
- data factor 2 ± 0.5 above central value of FONLL but well within uncertainty
- beam energy dependence follows well FONLL
- soon more accurate 4π extrapolation at 7 TeV
- aim for 10% syst error with Run3 data

Outlook open heavy flavor – LHC Run3

new high performance ITS plus rate increase (TPC upgrade)

elliptic flow of J/psi vs pt

J/psi elliptic flow outlook

psi' to J/psi at LHC

for statistical hadronization expect suppression of higher charmonia due to Boltzmann factors, so for ψ' relative to pp factor 3 reduction

CMS sees value larger 1 for pt>3 GeV ALICE for pt 0-3 only upper limit for central collisions

not yet conclusive

Excited charmonia - outlook

in fact here one can distinguish between the transport models that form charmonia already in QGP and statistical hadronization at phase boundary!

Johanna Stachel

Suppression of Upsilon states

< 0.1

3S/1S

95% C.L.

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

the Upsilon could also come from statistical hadronization

SHM/thermal model: Andronic, Braun-Munzinger, Redlich, J.S.

in this picture the entire Upsilon family is formed from deconfined b at hadronization but: need to know first – do b-quark thermalize at all?

- total b-cross section in PbPb

future measurements in Run2 and Run3, focus for ALICE, ATLAS and CMS

Direct photon excess and elliptic flow at RHIC

data: S. Mizuno, PHENIX, QM2014 calc: van Hees et al: PRC **84**, 054906 (2011) and Linnyk et al.: PHSD model (priv. comm.)

new measurements using photon conversions extend data to significantly lower p_t confirm earlier measurements, different systematics the challenge for theories remains

direct photons in PbPb collisions at the LHC

a hot photon (300 MeV) source, the QGP - or are they blueshifted photons from a later stage? elliptic flow of photons a puzzle, v_2 measurement very good, but significance of direct photon signal at low p_t ? measurements in Run2 and Run3:

- reduction of systematic error
- measurement of complementary observable: virtual photon to e+e-

Direct photons at LHC (and RHIC) challenge models

pPb collisions

1. for hard probes proper normalization to include nuclear effects on parton distributions (shadowing)

example: J/psi production

ALICE forward/backward arXiv:1308.6726 good agreement with LHCb arXiv:1308.6729 ALICE mid-y hard probes 2013

2. pPb collisions for very high multiplicity events - collective features?

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Conclusions and outlook

results from Run1 at the LHC and 15 years of RHIC:

LHC has already surpassed luminosity goal at Run1 \sqrt{s} , RHIC has reached unanticipated luminosities

experiments zeroing in on the properties of the Quark-Gluon Plasma

- transport coefficients
- deconfinement

RHIC will much increase low √s performance by cooling STAR and PHENIX – BES-II fluctuations, possible effects of critical point, heavy flavor with new vertex trackers, MPC-EX for forward photons, PHENIX new detector proposal, explore regime of possibly strongest coupling with jet observables

LHC expect continuous increase in PbPb luminosity, 50 kHz for Run3 ATLAS and CMS precision measurements at medium and high p_t , jets in QGP ALICE low p_t heavy flavor, electron pairs, and photons, upgrade during LS2

Production of hadrons and nuclei at LHC

hadron yields for Pb-Pb central collisions from LHC run1 are well described by assuming equilibrated matter at T = 156 MeV and $\mu_b < 1$ MeV, very close predictions from lattice QCD for T_c

Need for additional coalescence mechanism?

peak in A/K needs no additional mechanism statistically hadronizing string segments get pushed by collective flow could be the entire picture

Quarkonium as a Probe for Deconfinement at the LHC the Statistical Hadronization Picture

charmonium enhancement as fingerprint of deconfinement at LHC energy only free parameter: open charm cross section in nuclear collision Braun-Munzinger, J.S., Phys. Lett. B490 (2000) 196 and Andronic, Braun-Munzinger, Redlich, J.S., Phys. Lett. B652 (2007) 659

Johanna Stachel

Decision on Regeneration vs. Sequential Suppression from LHC Data

J/psi as probe of deconfinement

thinner ITS reduced radiation tail

both affect signal extraction

Johanna Stachel

0

p_T (GeV/c)

J/psi vs pt in PbPb collisions relative to pPb collisions

at low pt yield in nuclear collisions above pPb collisions J/psi production **enhanced** in nuclear collisions **over mere shadowing effect**

Direct photon excess and elliptic flow at low pt at RHIC

models underpredict photon yield and even more the photon v2

Electron pairs of low and intermediate mass • experimentally very difficult – so far not addresses in PbPb at LHC

- new ITS allows suppression of Dalitz, conversion and charm contributions
- continuous TPC read-out with 50 kHz in run3 increases event rate by a factor 100
- allows detailed investigation of thermal radiation from hadronic phase and QGP