

Reactor Neutrino Experiments

Jun Cao Institute of High Energy Physics

The 11th ICFA Seminar on Future Perspectives in High-Energy Physics

Institute of High Energy Physics, CAS, October 27-30, 2014

Reactor Neutrinos

- Discovery of neutrino in 1956
- Small θ_{13} in 1990s
- limit on neutrino magnetic moment
- Observation of reactor $\overline{\nu_e}$ disappearance in 2003
- Discovery of non-zero θ_{13} in 2012
- Mass hierarchy and precision measurements

Outline

- Latest results on θ_{13} and Δm_{ee}
 - 🔿 Daya Bay
 - ➡ Double Chooz
 - ⇒ RENO
- Measuring reactor neutrino flux and spectrum
- Search for sterile neutrinos
- Future experiments
 - ⇒ JUNO
 - ⇒ RENO-50
 - ⇒ Short baseline experiments for sterile neutrinos
- Summary

Neutrino Oscillation

The Daya Bay Experiment

- 6 reactor cores, 17.4 GW_{th}
- Relative measurement

 2 near sites, 1 far site
- Multiple detector modules
- Good cosmic shielding
 - 250 m.w.e @ near sites
 - 860 m.w.e @ far site
- Redundancy

Double Chooz

Ve

<mark>Chooz Reactors</mark> 4.27GW_{th} x 2 cores

edf

Near Detector L = 400m 10m³ target 120m.w.e. 2013 ~

Far Detector L = 1050m 10m³ target 300m.w.e. April 2011 ~

Detecting Reactor Antineutrino

Double Chooz

- 2011.4-2013.1 (460 days). No near site data until 2014.9
- Used spectrum analysis for both nGd & nH events
- Used Reactor-off data to directly measure backgrounds
- ♦ New analysis → less background and uncertainties, better flux prediction(²³⁸U), better energy reconstruction, ...

R+S: $\sin^2 2\theta_{13} = 0.090^{+0.032}_{-0.029}$, BG rate: $1.38 \pm 0.14 \text{ day}^{-1}$ RRM: $\sin^2 2\theta_{13} = 0.090^{+0.034}_{-0.035}$, BG rate: $1.56 \pm 0.17 \text{ day}^{-1}$ RRM (no BG constraint): $\sin^2 2\theta_{13} = 0.060 \pm 0.039$, BG rate: $0.93 \pm 0.40 \text{ day}^{-1}$

Backgrounds at DC

- Major backgrounds for reactor exp.
 - ⇒ Cosmogenic neutron/isotopes: ⁸He/⁹Li and fast neutron
 - ⇒ Ambient radioactivity: accidental coincidence
- Direct measurement of backgrounds:
 - → 7 events in 7.24 days
 - \Rightarrow 12.9^{+3.1}_{-1.4} expected
 - \Rightarrow Tension @ ~ 2 σ \Rightarrow no room for unknown backgrounds

DC Near Site

• the second detector was inaugurated on September 25, 2014

Fill this summer \rightarrow Neutrinos in september/October Buffer closed main tank to be closed this week

<u>RENO</u>

- 2011.8-2013.12 (800 days)
- Also reactor rate modulation analysis
- Shape analysis is on the way
- Reduced systematics butworsened by ²⁵²Cf contamination
 - \Rightarrow Data before contamination 0.012 (sys) \rightarrow 0.007 (sys)
 - \Rightarrow Data after contamination $\rightarrow 0.018$ (sys)

Seo, Neutrino14

RENO results

- Rate analysis result: preliminary $sin^2(2\theta_{13}) = 0.101 \pm 0.008 (stat.) \pm 0.010 (sys.)$
- Very preliminary result on n-H IBD analysis: Very preliminary $sin^2(2\theta_{13}) = 0.095 \pm 0.015 \text{ (stat.)} \pm 0.025 \text{ (sys.)}$

<u>Daya Bay</u>

- 2011.12-2013.11 (621 days)
- Detailed and precise corrections for E non-linearity
- Continue to improve: reduced backgrounds and systematics
- Rate + Shape analysis for nGd events
- Rate analysis for nH events

C.Zhang, Neutrino14 & W.Wang, ICHEP14

Daya Bay Results

C.Zhang, Neutrino14 & W.Wang, ICHEP14

Systematics at Daya Bay

Side-by-side calibration: Multiple detectors at near sites

Remarkable Improvements on θ₁₃

Y.F.Wang, Nufact2014

Jetter, Tau2014

Future Prospects

Absolute Reactor Flux and Spectrum

19

5 MeV Bump on Reactor Spectrum

- Significance ~ 4σ
- Events are reactor power related & time independent
- Events are IBD-like:
 - ⇒ Disfavors unexpected backgrounds
- No effect to θ₁₃ at DYB, RENO; under control at DC
- Possibly due to forbidden decays (PRL112, 2021501, 2014, arXiv:1407.1281)

Search for Sterile Neutrinos

- Precise reactor neutrino spectrum from Daya Bay near site can test the sterile neutrino hypothesis
- But ~400 m baseline is not ideal for the reactor anomaly
- In addition to accelerator and radioactive source experiment for sterile neutrinos, we also need experiments very close to the reactor (exp.) for sterile neutrinos:
 - ✓ Proposals around → Next page

$$\begin{split} P(\bar{\nu}_e \rightarrow \bar{\nu}_e) \simeq & 1 - \cos^4 \theta_{14} \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{ee}^2 L}{4E_{\nu}} \right) \\ - \sin^2 2\theta_{14} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E_{\nu}} \right) \end{split}$$

Daya Bay: PRL113, 141802, 2014

Measurement by shape distortion

Future Reactor Exp. for Sterile Neutrino

Different technologies: (Gd, Li, B) (seg.)(movable)(2 det.)

SOLID@BR2, Belgium

Most have sensitivity 0.02~0.03 @∆m~1eV² @90%CL

Prospect@HFIR, ORNL

Nucifer@Osiris, Saclay

Stereo@ILL Grenoble

> DANSS@KNPP Udomlya

Posseidon@PIK, Gatchina,~ 2 y delay Neutrino4@SM-3, Dimitrovgrad

🗙 Korean project

CARR site, Beijing (Not funded)

NuLat@NIST And later on ship

J. Learned

Lhuillier, Neutrino 2014

Mass Hierarchy

The JUNO Experiment

 Jiangmen Underground Neutrino Observatory, a multiple-purpose neutrino experiment, approved in Feb. 2013. ~ 300 M\$.

- 20 kton LS detector
- **3% energy resolution**
- 700 m underground
- Rich physics possibilities
 - Reactor neutrino for Mass hierarchy and precision measurement of oscillation parameters
 - ⇒ Supernovae neutrino
 - ➡ Geoneutrino
 - Solar neutrino
 - ⇒ Atmospheric neutrino
 - ⇒ Exotic searches

Talk by Y.F. Wang at ICFA seminar 2008, Neutel 2011; by J. Cao at Nutel 2009, NuTurn 2012; Paper by L. Zhan, Y.F. Wang, J. Cao, L.J. Wen, PRD78:111103, 2008; PRD79:073007,2009

High-precision, Giant LS detector

	KamLAND	BOREXINO	JUNO
LS mass	1 kt	0.5 kt	20 kt
Energy Resolution	$6\%/\sqrt{E}$	$5\%/\sqrt{E}$	$3^{0}/\sqrt{E}$
Light yield	250 p.e./MeV	511 p.e./MeV	1200 p.e./MeV

Signals & Backgrounds

- Estimated IBD signal event rate: ~60/day
- Overburden 700m: E μ ~ 211 GeV, R μ ~ 0.003 Hz/m²
 - \Rightarrow Muon efficiency > 99.5% (Daya Bay > 99.8%)
- Liquid Scintillator without Gd-loading ($\tau \sim 200 \ \mu s$) for
 - \Rightarrow Better attenuation length \rightarrow better resolution
 - ➡ Lower irreducible accidental backgrounds from LS
 - ⇒ Singles: 5 Hz by LS and 5 Hz by PMT
- Backgrounds:

Event Type	Raw rate	Reduction
Accidentals	~410/day	→ 1.1 /day w/ prompt-delayed distance $R_{p-d} < 1.5m$. Negligible.
Fast neutron	0.01/day	0.01/day (σ=100%)
⁹ Li/ ⁸ He	80/day	1.8/day after muon veto (σ=20%)
(a <i>,</i> n)	3.8/day (acrylic) 0.2/day (balloon)	→ 0.05 /day (acrylic), FV cut (σ =50%) → negligible (balloon), FV cut

MC Study: Energy Scale & Resolution

Resolution: based on DYB MC:

- ⇒ JUNO Geometry
- ⇒ 80% photocathode coverage
- ▷ PMT QE from 25% → 35%
- Attenuation length of 20 m → abs. 60 m + Rayleigh scatt. 30m
- Energy non-linearity
 - ⇒ By introduce a self-calibration (based on ∆m²_{ee} periodic peaks), effects can be corrected and sensitivity is un-affected

Y.F. Li et al., arXiv:1303.6733

- ⇒ Application of this method: Relatively insensitive to continuous backgrounds, non-periodic structures. Assumed 2% uncer. →
- ⇒ DYB non-linearity ~ 1%

Physics Reach

Thanks to a large θ_{13}

- Mass hierarchy
- Precision measurement of mixing parameters
- Supernova neutrinos
- Geoneutrinos
- Solar & atmospheric neutrinos
- Sterile neutrinos

	Current	JUNO
Δm_{12}^2	4%	0.6%
Δm_{23}^2	5%	0.6%
$sin^2\theta_{12}$	5%	0.7%
$sin^2\theta_{23}$	10%	N/A
$sin^2\theta_{13}$	6% → 3%	~ 15%

For 6 years, mass hierarchy can be determined at 4σ level, if $\Delta m^2_{\mu\mu}$ can be determined at 1% level

Detector size: 20kt Energy resolution: 3%/√E Thermal power: 36 GW

JUNO Central Detector

Detector

- → Target: 20 kt LS
- Backgrounds/reactor signal: Accidentals (~10%), ⁹Li/⁸He (<1%), fast neutrons (<1%)</p>

• A huge detector in a water pool:

- ⇒ Default option: acrylic tank (D~35m) + SS truss (D~39m)
- Alternative option: SS tank (D~39m) + acrylic structure + balloon (D~35m)

Challenges:

- ➡ Engineering: mechanics, safety, lifetime, ...
- ⇒ LS: high transparency, low background
- → PMT: high QE, high coverage
- Design & prototyping underway

Liquid Scintillator in JUNO

- Recipe LAB+PPO+bisMSB (no Gd-loading)
- Increase light yield
 - → Optimization of fluors concentration
- Increase transparency
 - ➡ Good raw solvent LAB
 - Improve production processes: cutting of components, using Dodecane instead of MO, improving catalyst, etc
 - ⇒ Online handling/purification
 - Distillation, Filtration, Water extraction, Nitrogen stripping, ...
- Reduce radioactivity
 - ➡ Less risk, since no Gd
 - Instrinsic singles < 3Hz (above 0.7MeV), if ⁴⁰K/U/Th <10⁻¹⁵ g/g (TCF)

Linear Alky Benzene (LAB)	Atte. Length @ 430 nm	
RAW	14.2 m	
Vacuum distillation	19.5 m	
SiO ₂ coloum	18.6 m	
Al ₂ O ₃ coloum	22.3 m	
LAB from Nanjing, Raw	20 m	
Al ₂ O ₃ coloum	25 m	
	30	

High QE PMT

• 20" PMTs under discussion:

- ➡ MCP-PMT with Chinese Industry
- ⇒ Photonics-type PMT: 8"→ 12" → 20"
- ➡ Hammamatzu R5912-100 (SBA)

MCP-PMT development:

- → Technical issues mostly resolved
- Successful 8" prototypes
- → A few 20" prototypes

	R5912	R5912-100	MCP-PMT
QE@410nm	25%	>30%	~ 30%
Rise time	3 ns	3.4ns	5ns
SPE Amp.	17mV	18mV	17mV
P/V of SPE	>2.5	>2.5	> 2.5
TTS	5.5ns	1.5 ns	3.5 ns

Current Status & Brief Schedule

- Project approved by CAS for R&D and design
- Geological survey completed
 - ⇒ Granite rock, tem. ~ 31 °C, little water
- EPC contract signed:
 - ⇒ Engineering design by Aug.
- Paper work towards the construction:
 - ⇒ Land, environment, safety, …
- Ground breaking in Jan. 2015

Schedule:

Civil preparation: 2013-2014 Civil construction: 2014-2017 Detector component production: 2016-2017 PMT production: 2016-2019 Detector assembly & installation: 2018-2019 Filling & data taking: 2020

Collaboration Established

Europe (22)*

APC Paris IPHC Strasbourg Charles U. JINR CPPM Marseille LLR Paris FZ Julich **INFN-Frascati INFN-Ferrara** TUM **INFN-Milano U.Hamburg INFN-Padova U.Mainz INFN-Perugia U.Oulu INFN-Roma 3 U.Tuebingen**

U. libre de Bruxelles (Observer) HEPHY (Observer) **Asia** (25)

Nankai U.HNatl. Chiao-Tung U.ONatl. Taiwan U.ONatl. United U.INCEPUHPekin U.OShandong U.IShanghai JT U.JSichuan U.N

BNU CAGS, CIAE DGUT ECUST Guangxi U. IHEP Jilin U. Nanjing U.

SYSU Tsinghua U. UCAS USTC Wuhan U. Wuyi U. Xi'an JT U.

* Some subject to funding agency approval

RENO-50

 An underground detector consisting of 18 kton ultra- low-radioactivity liquid scintillator & 15,000 20" PMTs, at 50 km away from the Hanbit (Yonggwang) nuclear power plant

• Goals :

- \Rightarrow Precision meas. of θ_{12} and Δm_{21}^2
- Determination of mass hierarchy
- Study neutrinos from reactors, (the Sun), the Earth, Supernova, and any possible stellar objects
- Budget : \$ 100M for 6 year(Civil engineering: \$ 15M, Detector: \$ 85M)

Summary

- Significant improvement on Sin²2θ₁₃ precision from the Daya Bay, Double Chooz and RENO experiments.
- Ultimate precision of Sin²2θ₁₃ will reach ~ 3-4%
- A precision measurement of the absolute neutrino flux and spectrum from Daya Bay.
- A bump around 5 MeV observed by all three experiments.
- Sterile neutrinos have been studied by Daya Bay.
- Reactor neutrinos will play important roles on:
 - → Mass hierarchy
 - Precision measurement of 3/6 mixing parameters up to
 < ~1% level → unitarity test of the mixing matrix
 - ⇒ Sterile neutrinos
 - ⇒ Other Neutrino properties

Thanks !