Charged Lepton Flavor Violation & Dipole Moments

T. Mori The University of Tokyo

ICFA Seminar 2014, Beijing

- This talk reviews the experimental searches for new physics through the extensive studies of:
 - charged lepton flavor violation (cLFV) of muons,*
 - electric dipole moments (EDM),
 - and magnetic dipole moments (g-2)

* cLFV of taus are not discussed.

We know LF & CP are violated: so this should occur!

...but practically no cLFV or EDM in SM

neutrinos are too light

TeV scale new physics help them occur !

We can probably observe them!

A new source of CPV must exist for the birth of our Universe!

cLFV & EDM

- Definite evidence of new physics if discovered
 - can probe very early stages of Universe (matter-antimatter asymmetry, GUT, seesaw)
 - A complementary and similar (or better) sensitivity to new physics than the LHC experiments

How could New Physics have hidden herself without leaving any trace anywhere?

There is a >3\sigma evidence!

muon's anomalous magnetic moment g_{μ} -2

There is a >3σ evidence!

muon's anomalous magnetic moment g_{μ} -2

There is a $>3\sigma$ evidence!

muon's anomalous magnetic moment g_{μ} -2

muon (g-2) anomaly

There is a generic relation with BR($\mu \rightarrow e\gamma$):

$$\mathcal{B}(\mu \to e\gamma) \approx 10^{-4} \left(\frac{\Delta a_{\mu}}{200 \times 10^{-11}}\right)^2 |\delta_{LL}^{12}|^2$$

unknown cLFV constant | $\delta_{LL}^{12} \models 10^{-4}$ assumed here

G.Isidori et al. PRD75, 115019

muon (g-2) anomaly

G.Isidori et al. PRD75, 115019

There is a generic relation with BR($\mu \rightarrow e\gamma$):

$$\mathcal{B}(\mu \to e\gamma) \approx 10^{-4} \left(\frac{\Delta a_{\mu}}{200 \times 10^{-11}}\right)^2 |\delta_{LL}^{12}|^2$$

unknown cLFV constant | $\delta_{LL}^{12} \models 10^{-4}$ assumed here

New FNAL g_µ-2 Experiment

 $\begin{array}{c} \text{BNL} \rightarrow \text{FNAL} \\ [54 (stat.) \oplus 33 (syst.) \rightarrow 11 (stat.) \oplus 11 (syst.)] \times 10^{-11} \\ 0.54 \text{ ppm} \rightarrow 0.14 \text{ ppm} \end{array}$

Need improvements in theoretical prediction: hadronic vacuum polarization expected to improve by x2

Future improvements for a_{μ}^{HVP} : T. Teubner @Lepton Moments 2014

- Most important 2π:
 - close to threshold important; possible info also from space-like
 - better and more data
 - understand discrepancy between sets, especially `BaBar puzzle'
 - possibility of direct scan & ISR in the same experiment(s)

• √s > 1.4 GeV:

higher energies will improve with input from SND, CMD-3, BESIII, BaBar

- With channels more complete, test/ replace iso-spin corrections
- Very good prospects to significantly squeeze the dominant HLO error!

Pie diagrams from HLMNT 11:

Can expect significant improvements:

2π: error down by about 30-50%
subleading channels: by factor 2-3
√s > 2 GeV: by about a factor 2

→ I believe we can half the HVP error in time for the new g-2

period of $33\mu s$ (5 x lifetime)

Silicon

Tracker

Muon

storage

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

BNL/Fermilab Approach

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

BNL/Fermilab Approach

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

BNL/Fermilab Approach

$$a_{\mu} - \frac{1}{\gamma^2 - 1} = 0$$

$$\gamma_{\text{magic}} = 29.3$$

 $p_{\text{magic}} = 3.09 \text{ GeV/}c$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

BNL/Fermilab Approach

$$\gamma_{\text{magic}} = 29.3$$

 $p_{\text{magic}} = 3.09 \text{ GeV/c}$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

BNL/Fermilab Approach

$$a_{\mu} - \frac{1}{\gamma^2 - 1} = 0 \qquad \qquad \eta \approx 0$$

14m diameter

$$\gamma_{\text{magic}} = 29.3$$

$$p_{\text{magic}} = 3.09 \text{ GeV/}c$$

22

Complimentary Approaches

F

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

SNL/Fermilab Approach
$$a_{\mu} - \frac{1}{\gamma^{2} - 1} = 0 \qquad \eta \approx 0$$

$$\gamma_{magic} = 29.3$$

$$p_{magic} = 3.09 \text{ GeV/c}$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$
SNL/Fermilab Approach
$$a_{\mu} - \frac{1}{\gamma^{2} - 1} = 0$$

$$\eta \approx 0$$

$$\gamma_{\text{magic}} = 29.3$$

$$p_{\text{magic}} = 3.09 \text{ GeV/c}$$

$$\vec{\omega}_{a} = -\frac{e}{m} a_{\mu}\vec{B}$$

$$13$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$
SNL/Fermilab Approach
$$a_{\mu} - \frac{1}{\gamma^{2} - 1} = 0 \qquad \eta \approx 0$$

$$f_{magic} = 29.3$$

$$p_{magic} = 3.09 \text{ GeV/c}$$

$$\vec{\omega}_{a} = -\frac{e}{m} a_{\mu}\vec{B}$$
13

22

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$
BNL/Fermilab Approach
$$J$$
-PARC Approach
$$\vec{a}_{\mu} - \frac{1}{\gamma^{2} - 1} = 0 \qquad \eta \approx 0$$

$$\vec{\mu}_{magic} = 29.3$$

$$p_{magic} = 3.09 \text{ GeV/c}$$

$$\vec{\omega}_{a} = -\frac{e}{m} a_{\mu}\vec{B}$$
13

B

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$
NL/Fermilab Approach

$$a_{\mu} - \frac{1}{\gamma^{2} - 1} = 0 \qquad \eta \approx 0$$

$$\vec{P}_{magic} = 29.3$$

$$p_{magic} = 3.09 \text{ GeV/c}$$

$$\vec{\omega}_{a} = -\frac{e}{m} a_{\mu} \vec{B}$$

$$13 \qquad 22$$

N. Saito

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$
BNL/Fermilab Approach
$$a_{\mu} - \frac{1}{\gamma^{2} - 1} = 0 \qquad \eta \approx 0$$

$$\vec{\mu} = 0 \qquad \vec{E} = 0 \qquad \vec{\omega} = \vec{\omega}_{a} + \vec{\omega}_{\eta}$$

$$\vec{\mu}_{magic} = 29.3$$

$$p_{magic} = 3.09 \text{ GeV/c}$$

$$\vec{\omega}_{a} = -\frac{e}{m} a_{\mu}\vec{B}$$

Status of J-PARC muon g-2/ EDM expriment

 Efficient muonium production target was developed

· 10 times more yield than before

· Preparation of Mu- acceleration test

using J-PARC LINAC RFQ around 2015

· Muon storage magnet design being finalized

- · 1ppm local uniformity
- verified in Muon Hyper-fine experiment in 2015 at J-PARC

muon EDM experimental reach

→ The g-2 anomaly should be checked as well as EDM search

N. Saito

 g_e-2 to check $g_{\mu}-2$?

$$\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = 2.90\,(90) \times 10^{-9}$$

PRA 89, 52118 (2014)

In case of SUSY with $m_{\tilde{e}} \neq m_{\tilde{\mu}}$

 $\Delta a_e \approx 10^{-12}$

can be predicted,

(saturates the current limit, 0.24 ppb)

Electric Dipole Moment (EDM)

P. Ritz, Ann Phys 318 (05) 119 [updated by TM]

P. Ritz, Ann Phys 318 (05) 119 [updated by TM]

Many Research Activities Going on Various EDMs

Many Research Activities Going on Various EDMs

Many Research Activities Going on Various EDMs

Technique to measure EDM

precesses with Larmor freq

$$\omega_B = -\frac{2\mu_B B}{\hbar}$$

additional precession

$$\omega_E = \frac{2d_E E}{\hbar}$$

• flip E and measure the difference

$$\omega_{E\parallel B} - \omega_{Eanti-\parallel B} \equiv \Delta \omega = \frac{4d_E E}{\hbar}$$

EDM of dipolar molecules

- Easier to polarize molecules than atoms
- Enhances effective E field seen by the unpaired electron by a factor up to 10⁵ (~84GV/cm for ThO*)
- Look for interferometer phase shift of the two spin states (hyperfine levels of the ground state) when E reversed
- "Schiff shielding" strongly violated by relativistic effects especially in heavy atoms

$|d_e| < 10.5 \times 10^{-28} ecm$ (90% C.L.)

Nature 473 (2011) 493

 a pioneering work of the new method, though a modest 1.5× improvement over the previous TI experiment

- still statistically limited
- ×10 improvement within a few years;
 ×100 expected eventually
 - several groups working

an excerpt from my review talk at EPS 2011

 a pioneering work of the new method, though a modest 1.5× improvement over the previous TI experiment

- still statistically limited
- ×10 improvement within a few years;
 ×100 expected eventually
 - several groups working

an excerpt from my review talk at EPS 2011

YES!

$|d_e| < 8.7 \times 10^{-29} e cm (90\% C.L.)$

by ACME collaboration using ThO*

Nature 343 (2014) 269

 a pioneering work of the new method, though a modest 1.5× improvement over the previous TI experiment

still statistically limited

×10 improvement within a few years;
 ×100 expected eventually

Very hopeful

several groups working

many improvements foreseen: molecule beam, spin state preparation, etc

an excerpt from my review talk at EPS 2011 + updates

Neutron EDM projects

(Essentially all of them aiming at 1-2 orders of magnitude improvement)

R&D and construction

- cryoEDM@ILL @RCNP/TRIUMF
- @FRM-2
- @SNS
- @PNPI
- @LANL
- Possible future projects
 @J-PARC
 @PIK
 @ESS

Operating: ILL PF-2 (turbine)

LANL (sD2) PSI (sD2) TRIGA Mainz (sD2)

RCNP (SF-He) ILL SUN (SF-He) [ILL: GRANIT, cryoEDM] [NIST: lifetime] R&D and construction ILL SuperSUN TRIUMF/RCNP PNPI WWR-M NCSU PULSTAR FRM-2 SNS-EDM

Possible projects
J-PARC
PIK
ESS

neutron EDM - Prospects

Sensitivity is expected to improve

by a factor of 5 in a couple of years

 by two orders of magnitude within the next decade

an excerpt from my review talk at EPS 2011

neutron EDM - Prospects

Sensitivity is expected to improve

by a factor of 5 in a couple of years

 by two orders of magnitude within the next decade
 Perhaps I meant ~5 years here

an excerpt from my review talk at EPS 2011

Presently ~3 UCN sources worldwide (ILL, LANL, PSI, etc) in a user mode (state of the art is still below 100 cm⁻³ in reasonable volumes; potential improvements up to 1000 cm⁻³)

Around 5-10 more projects and ideas for improved sources, some of which aim at the order of 10'000 cm⁻³

2 nEDM experiments are taking data, 5 or more may come online in the next 5 years

nEDM@PSI may hopefully deliver an improved result in 2016? if things go well.

These are complex installations and difficult experiments – experience tells us that they need time.

Some efforts may join forces in the future.

High Intensity Proton accelerator & UCN Source at the Paul Scherrer Institut Solid D₂ **590 MeV Proton Cyclotron** 2.2 .. 2.4 mA Beam Current ("performance improving consolidation") **Excellent performance of HIPA** and regular beam delivery to Ultra Cold Neutron Source UCN during many weeks in 2012, 2013 **UCN-Source** 20.0 MW ACC Status 12°C Wed 17.0ct.2012 18:04:00 µА <-12Н 2500 6H Now> - 1st test: 12/2010 1516 - Safety approval: 06/2011 2178 1500 2186 - UCN start 08/2011 1000 - Improvements in cryo-system 500 during winter shutdown 11/12 Inj-2: production - Reliable performance 2012 production Ring : SINQ : in operation - UCN to nEDM 2012; 2013 UCN : 4 sec pulses every 480 sec. 1% duty factor **nEDM** -> intensity 90 times over 2010 -> ctd. improvements

Klaus Kirch

Features of nEDM@PSI

UH

(pc

Hg-199 co-magnetometer

improved S/N by factor >4

laser read-out proven, being implemented

CsM array

16 scalar sensors in operation (6 HV)

vector CsM proven

B-field

- homogeneity (T2~1000s)
- reproducibility (~50pT), after degaussing (~200pT)

Simultaneous spin analysis

Known systematics well under control down to ~2 x 10⁻²⁷ ecm

Superthermal Production of UCN

R.Golub and J.M.Pendlebury, Phys.Lett.A 62,337,(77)

8.9 Å cold neutrons get down-scattered in superfluid ⁴He by exciting elementary excitation
Up-scattering process is

suppressed by a large Boltzman factor

No nuclear absorption

- Expect a production of ~ 0.2-0.3 UCN/cc/s
- With a 500 second lifetime, ρ_{UCN} ~100-150/cc and N_{UCN} ~3-4x10^5 for each of the two 3 liter cells

Charged Lepton Flavor Violation (cLFV) in *Muons*

Muon cLFV Sensitivity comparisons

$BR = 4 \times 10^{-14} : 1 \times 10^{-16} : 2 \times 10^{-16}$

~MEG II goal

for AI target

Some models have "four-fermion" terms which strongly enhance $\mu N
ightarrow eN \quad \mu
ightarrow 3e$

The MEG Experiment

LXe Gamma-ray Detector

COBRA SC Magnet

DC Muon Beam

Drift Chamber

~60 collaborators

Timing Counter

L

1.3MW Proton Cyclotron at PSI

The Unique Place for $\mu \rightarrow e\gamma$ Search

Provides world's most powerful DC muon beam > 10⁸/sec

COBRA Positron Spectrometer

Gradient B field helps to manage high rate e⁺

 thin-walled SC solenoid with a gradient magnetic field: 1.27 - 0.49 Tesla

compensation coils

2.7t Liquid Xenon Photon Detector

High resolution detector

- Scintillation light from 900 liter liquid xenon is detected by 846 PMTs mounted on all surfaces and submerged in the xenon
- fast response & high light yield provide good resolutions of E, time, position
- kept at 165K by 200W pulsetube refrigerator
- gas/liquid circulation system to purify xenon to remove contaminants

Drift Chambers

- 16 radially aligned modules, each consists of two staggered layers of wire planes
- 12.5um thick cathode foils with a Vernier pattern structure
- He:ethane = 50:50
 differential pressure
 control to COBRA He
 environment
- ~2.0 x 10⁻³ X₀ along the positron trajectory

filled with He inside COBRA

Blind & Likelihood Analysis

(Ey, Ee, Tey, θey , ϕey) \rightarrow signal, acc BG, RD BG

- Blind analysis
 - Optimization of analysis and BG study are done in sidebands

PDFs mostly from data

accidental BG: side bands signal: measured resolution radiative BG: theory + resolution

a few examples of events

2009-2011 Combined MEG Data

1, **1**.64, 2σ contours

2009-2011 Combined MEG Data

1, 1.64, 2σ contours

muon (g_µ-2) anomaly

G.Isidori et al. PRD75, 115019

muon's anomalous magnetic moment

muon (g_µ-2) anomaly

 $|\delta_{LL}^{12}|=10^{-4}$ assumed

G.Isidori et al. PRD75, 115019

muon's anomalous magnetic moment

muon (g_µ-2) anomaly

tighter limit on this $|\delta_{LL}^{12}| = 10^{-4}$ assumed

G.Isidori et al. PRD75, 115019

muon's anomalous magnetic moment

MEG II to start in 2016

Expected performance and sensitivity

5x10⁻¹⁴ in 3 years DAQ EG II performance

Resolution (Gaussian σ) and efficiencies for MEG upgrad		
PDF parameters	Present MEG	Upgrade scenario
$\sigma_{E_{e^+}}$ (keV)	380	110
$e^+ \sigma_{\theta}$ (mrad)	9	5
$e^+ \sigma_{\phi} (\mathrm{mrad})$	11	5
$e^+ \sigma_Z / \sigma_Y$ (core) (mm)	2.0/1.0	1.2/0.7
$\frac{\sigma_{E_{\gamma}}}{E_{\gamma}}$ (%) w>2 cm	1.6	1.0
γ position at LXe $\sigma_{(u,v)}$ - σ_w (mm)	4	2
γ - e^+ timing (ps)	120	80
Efficiency (%)		
trigger	≈ 99	~ 99
γ reconstruction	60	60
e^+ reconstruction	40	95
event selection	80	85

21–26 July, Manchester, England

wada

Sensitivity prospect

21-26 July Manchester England

SUS

SUSV2014

cLFV in further future $\mu \rightarrow e$ conversion at 5×10⁻¹⁷

muonic atom

e-

μ-

- Graded-field solenoid to collect pions w/ 10³ times higher muon intensity (~10¹¹/sec)
- Curved solenoid to transport and select low energy negative muons $\mu^- + N \rightarrow e^- + N$

- Short pulsed beam that matches capture lifetime
- Data taken in a delayed time window to avoid beam-related BG
- "beam extinction"

- Graded-field solenoid to collect pions w/ 10³ times higher muon intensity (~10¹¹/sec)
- Curved solenoid to transport and select low energy negative muons $\mu^- + N \rightarrow e^- + N$

- Short pulsed beam that matches capture lifetime
- Data taken in a delayed time window to avoid beam-related BG
- "beam extinction"

- Graded-field solenoid to collect pions w/ 10³ times higher muon intensity (~10¹¹/sec)
- Curved solenoid to transport and select low energy negative muons

- Short pulsed beam that matches capture lifetime
- Data taken in a delayed time window to avoid beam-related BG
- "beam extinction"

- Graded-field solenoid to collect pions w/ 10³ times higher muon intensity (~10¹¹/sec)
- Curved solenoid to transport and select low energy negative muons

- Short pulsed beam that matches capture lifetime
- Data taken in a delayed time window to avoid beam-related BG
- "beam extinction"

The Muon Facility

Schedule

J. Miller, BU - Lepton Moments

COMET Phase-I

Staged approach

- Phase-I 10⁻¹⁴ sensitivity, 3.2kW 90 days DAQ in 2017 +BG study
- Phase-II 10⁻¹⁶ sensitivity, 56kW 1 year DAQ around 2020

COMET Status

Facility construction

SC coil winding

Mu3e - Enabling Technology

 No experiment since ~a quarter century

- Precision reconstruction of 3-body decay µ→3e in high rate environment of 2x10⁹ muons/sec sounds daunting.
- Scattering & E loss dominate — Minimum material required for O(10 MeV) tracking.

 HV-MAPS: < 50µm possible, Advanced R&D underway

Staged Program

HiMB project @PSI

- Next generation High Intensity Muon Beam project
- Extract muon produced at the target of spallation neutron (SINQ)
- **I** in excess of $O(10^{10})$ surface μ^+/s

Feasibility study going onOperation not before 2019

PAUL SCHERRER INSTITUT

- A must for Mu3e to achieve 10⁻¹⁶
- An opportunity for "MEG III" for O(10⁻¹⁵) $\mu \rightarrow e\gamma$?
 - A preliminary study is underway.
 - A design used in a Snowmass study (arXiv1309.7679) does not seem feasible → Needs a much better design!

Beyond Mu2e/COMET

- $\mu \rightarrow e\gamma$ experiment for O(10⁻¹⁵) at HiMB (PSI) ?
 - Needs a clever experimental design based on new technology
- $\mu \rightarrow 3e$ needs a higher intensity source than HiMB
 - Mu3e-type experiment still feasible?
- µ→e conversion experiments have a potential for a higher sensitivity if a higher intensity muon source becomes available.
 - Perhaps better to think after looking at what will happen at Mu2e/COMET

- No cLFV / EDM has been found yet.
- A great progress in electron EDM: de < 8.7×10⁻²⁹ @90% C.L.
 - Further improvement expected
 - Other EDM searches continue to move ahead
- MEG /MEG II leading cLFV: BR(µ→eγ) < 5.7×10⁻¹³ @90% C.L.
 - Final MEG result (x2 statistics) by end of this year
 - A full lineup of cLFV experiments in next decade: MEG II / DeeMe / Mu3e / COMET / Mu2e
- Stay tuned for the outcome of the new Muon g-2 experiments
- Great opportunities for Discoveries waiting ahead

