Heavy Flavor, Quarkonium Production and Decay

Tomasz Skwarnicki

Syracuse University

(weak decays of heavy flavors: see Tom Browder's talk)

Charmonium – narrow (i.e. long-lived) states

- Simple positronium-like level structure:
 - Relative importance of fine and hyperfine splitting magnified by $(\alpha_s/\alpha)^2 \sim 10^3$
 - Non-degenerate 2S,1P energies (not a Coulomb potential)
- Masses precisely reproducible with simple phenomenological potentials
- Gluon annihilation widths roughly predictable via perturbative QCD

1974 November revolution:

• Quark Model and $q\bar{q}$ hypothesis for mesons firmly established!

3

More long-lived states

4

- The spin-averaged mass splitting of lowest excitations are as expected from charmonium and flavor independence of strong interactions
- Decreased magnitude of fine and hyperfine splitting reflects decrease of magnetic effects due to the slower quark speeds
- Major photon transition rates predictable without relativistic corrections

Heavy flavors and theory

 Semiclassical approach with purely phenomenological potential models in early years

5

• Effective Field Theories in recent years:

Separation of scales leads to factorization:

`` ^

$$\begin{array}{cccc} m_Q \gg \Lambda_{QCD} \\ \mbox{Perturbative QCD at} & & \mbox{Nonperturbative low-energy terms} \\ \mbox{heavy parton level} & & \mbox{(extracted from the data, phenomenological} \\ \mbox{models or lattice QCD} \\ \mbox{Weather of } & models or lattice QCD} \\ \mbox{Q}\overline{q} & & \mbox{Heavy Quark Symmetry (HQS):} \\ \mbox{Properties of bound states independent of } & \mbox{flavor and its} & \mbox{m_Q} \rightarrow \infty \\ \mbox{spin orientation} & & \mbox{HQET} & \mbox{$1/m_Q$} \rightarrow \infty \\ \mbox{Q}\overline{Q} & & \mbox{m_Q} \gg \mbox{m_Q} \mathcal{V}(>\mbox{m_Q} \mathcal{V}^2) >, \sim \Lambda_{QCD} \\ \mbox{Momentum transfer Kinetic and potential} \\ \mbox{between partons} & \mbox{Kinetic and potential} \\ \mbox{i.e. binding) energy} & \mbox{$1/m_Q$, $1/$$$$ U $corrections \\ \mbox{$Corrections$} \end{array}$$

 In recent years also full lattice calculations for charm quarks without the factorization approach (bottom too heavy for present sizes of lattice spacing).

QQ states and their energy scales ∧⁰(r),(GeV) 1.5 1.5 1.5 1.5 1.5 1.5 r bb **4S 3S** 2S,2P **1P** 0.75 **1S** 0.5 **3S** 0.25 0 **2S** -0.25 **1P** CC **1S** Open flavor -0.5 l/r -0.75 $r^{1.4}$ (fm) $\sim 1/m_0 v$ 0.4 0.8 1.2 0.2 0.6 1

non-perturbative corrections small large

Breakdown of NRQCD due to couplings to new degrees of freedom (open flavor decays, molecules, possibly tertraquarks, hybrids etc.)

6

WAY BELOW OPEN FLAVOR THRESHOLD STATES

7

 $(\alpha_s, m_Q \text{ determinations})$ \rightarrow Kronfeld's talk)

9

Now good agreement with the predictions. Theory error larger than the experimental.

Hyperfine splitting of bb(2S)

BELOW OPEN FLAVOR THRESHOLD STATES

Singlet bb(1,2P) states

Studies of π⁺π⁻ transitions at "Υ(5S)" led also to the first observations of h_b(1¹P₁),h_b(2¹P₁) states

Masses of bottomonium states from Lattice NRQCD

A. Gray, I. Allison, C.T.H. Davies, Emel Dalgic, G.P. Lepage, J. Shigemitsu, M. Wingate (HPQCD and UKQCD collaborations) **PRD**,**72**, **094507** (2005)

(hyperfine splitting in states other than Sstates is consistent with zero both experimentally and theoretically)

NEAR OPEN FLAVOR THRESHOLD STATES

- All measurements are consistent
- The new LHCb measurements have much improved errors
- The measured mass of the $\chi_b(3^3P_1)$ state is within a few MeV of the potential model predictions which are up to 26 years old !
 - Some theoretical models predict large mass shifts from couplings to virtual B^(*)B^(*) pairs due to the proximity of the open flavor threshold (e.g. Ferretti, Galata, arXiv:1401.4431)
 - It appears that such corrections are either small <u>or</u> well absorbed into an effective potential adjusted to the experimental data on the other bb states
 - Karliner, Rosner arXiv:1410.7729 (posted today!) think that χ_b(3³P₁) could have a substantial X_b *I=0* (analog of X(3872)) component, which may affect its decays. High statistics studies on 3P states needed to clarify this.

Recently discovered long-lived c \overline{c} **state:** $\psi_2(1D)$

Visible peak width is consistent with the detector resolution.

 The mass is above the DD threshold, but below DD*. This state is expected to be narrow since J^{PC}=2⁻⁻ cannot decay to DD

Radiative decays of X(3872) in LHCb

- The LHCb results are consistent with, but more precise than, the BaBar and Belle results
- The results are not consistent with the expectations for pure molecular X(3872)

Status of X(3872)

- Not a (pure) cc state:
 - Mass coincides with the $M(D^0)+M(D^{0*})$
 - $\ \mathsf{BR}(\mathsf{X}(3872) {\rightarrow} \rho^0 \mathsf{J}/\psi) \sim \mathsf{BR}(\mathsf{X}(3872) {\rightarrow} \omega \mathsf{J}/\psi)$
 - extreme case of isospin violation
 - Mass too low?
- Not a (pure) D⁰D^{*0} molecule:
 - Sizeable prompt production at Tevatron & LHC
 - $BR(X(3872) \rightarrow \gamma \psi(2S)) \sim BR(X(3872) \rightarrow \gamma J/\psi)$
- X(3872) is likely a mixture of a $\chi_{c1}(2^3P_{1++})$ charmonium state and of D⁰D^{*0} molecule or cusp (phenomenological model of such mixing have been constructed)
- Recently at least one lattice QCD calculation [S. Prelovsek L. Leskovec, PRL 111, 192001 (2013)] found evidence for X(3872) in *I=0* state when both cc and dimeson operators are included in the simulations:
 - More work is needed to clarify if tertra-quark (tight $Q\overline{Q}q\overline{q}$ bound state) operators should be included as well

TABLE 10: Quarkonium-like states at the open flavor thresholds. For charged states, the C-parity is given for the neutral members of the corresponding isotriplets.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \begin{array}{c cccc} \hline X(3872) & 3871.68 \pm 0.17 &< 1.2 & 1^{++} & B \rightarrow K(\pi^{+}\pi^{-}J/\psi) & \text{Belle [S10] [1030] (>10), BaBar [1031] (8.6) 2003 & Ok \\ p\bar{p} \rightarrow (\pi^{+}\pi^{-}J/\psi) \dots & \text{LHCb [1032] (1030] (1.6), D0 [1034] (5.2) 2003 & Ok \\ pp \rightarrow (\pi^{+}\pi^{-}J/\psi) \dots & \text{LHCb [1032] [1030] (1.6), D0 [1034] (5.2) 2003 & Ok \\ pp \rightarrow (\pi^{+}\pi^{-}J/\psi) \dots & \text{LHCb [1032] (103) (1.6), D0 [1034] (5.2) 2003 & Ok \\ B \rightarrow K(\pi^{+}\pi^{-}\pi^{-}D/\psi) \dots & \text{LHCb [1032] (103) (1.6), D0 [1034] (5.2) 2003 & Ok \\ Dp \rightarrow (\pi^{+}\pi^{-}J/\psi) \dots & \text{LHCb [1032] (103) (1.6), D0 [1034] (5.2) 2003 & Ok \\ B \rightarrow K(\pi^{+}\pi^{-}\pi^{-}D/\psi) \dots & \text{LHCb [1032] (103) (103) (2005 & Ok \\ B \rightarrow K(\pi^{+}\pi^{-}\pi^{-}D/\psi) & \text{Belle [1032] (1.6), BaBar [1033] (1.6), 2005 & Ok \\ B \rightarrow K(\pi^{+}\pi^{-}\pi^{-}D/\psi) & \text{Belle [1032] (2.0) 2008 & NC! \\ LHCb [1039] (5.5), BaBar [1040] (3.6), Belle [1039] (0.2) & 2008 & NC! \\ LHCb [1041] (4.4) & B \rightarrow K(\Omega\bar{D}^{+}) & Belle [1042] (6.4), BaBar [1043] (4.9) & 2006 & Ok \\ LHCb [1041] (4.4) & B \rightarrow K(\Omega\bar{D}^{+}) & Belle [1042] (6.4), BaBar [1043] (4.9) & 2006 & Ok \\ LHCb [1041] (4.4) & B \rightarrow K(2\pi^{-}\pi^{-}\pi^{+}J/\psi) & BES III [1042] (8.9) & 2013 & NC! \\ Z_{c}(3900)^{+} & 3891.2 \pm 3.3 & 40 \pm 8 & ?^{-} & Y(4260) \rightarrow \pi^{-}(\pi^{+}h_{c}) & BES III [1045] (8.9) & 2013 & NC! \\ Z_{c}(402)^{+} & 4022.9 \pm 2.8 & 7.9 \pm 3.7 & ?^{-} & Y(4260) \rightarrow \pi^{-}(\pi^{+}h_{c}) & BES III [1045] (8.9) & 2013 & NC! \\ Z_{c}(402)^{+} & 4026.3 \pm 4.5 & 24.8 \pm 9.5 & ?^{-} & Y(4260) \rightarrow \pi^{-}(\pi^{+}h_{c}) & BES III [1048] (8.9) & 2013 & NC! \\ Z_{c}(402)^{+} & 4026.3 \pm 4.5 & 24.8 \pm 9.5 & ?^{-} & Y(4260) \rightarrow \pi^{-}(\pi^{+}h_{c}) (128.60) \rightarrow \pi^{-}(\pi^{+}h_{b}) (12,25,35)) & Belle [1050] (1052] (>10) & 2011 & Ok \\ \Upsilon(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P,2P)) & Belle [1051] (16) & 2011 & Ok \\ \Upsilon(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P,2P)) & Belle [1053] (8.8) & 2012 & NC! \\ \Upsilon(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P,2P)) & Belle [1053] (6.8) & 2012 & NC! \\ \Upsilon(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P,2P)) & Belle [1053] (6.8) & 2012 & NC! \\ \Upsilon(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P,2P)) & Belle [1053] (6.8) & 2012 & NC! \\ \Upsilon(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P,2P)) & Belle [1053] (6.8) & 2012 & $	State	M, MeV	Γ , MeV	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
$ \begin{array}{c} p\bar{p} \rightarrow (\pi^+\pi^-J/\psi) \dots \\ pp \rightarrow (\pi^+\pi^-J/\psi) \dots \\ pp \rightarrow (\pi^+\pi^-J/\psi) \dots \\ pp \rightarrow (\pi^+\pi^-J/\psi) \dots \\ B \rightarrow K(\pi^+\pi^-\pi^0J/\psi) \\ B \rightarrow K(\pi^+\pi^-\pi^0J/\psi) \\ B \rightarrow K(\gamma^+J/\psi) \\ B \rightarrow$	X(3872)	3871.68 ± 0.17	< 1.2	1++	$B \to K(\pi^+\pi^- J/\psi)$	Belle 810, 1030 (>10), BaBar 1031 (8.6)	2003	Ok
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) \dots$	CDF <u>1032</u> , <u>1033</u> (11.6), D0 <u>1034</u> (5.2)	2003	Ok
$\begin{array}{c} \begin{array}{c} B \rightarrow K(\pi^{+}\pi^{-}\pi^{0}J/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K(\gamma U/\psi) \\ B \rightarrow K(\gamma U/\psi) \\ \end{array} \\ \begin{array}{c} B \rightarrow K$	From N. Br	amhilla at al			$pp \rightarrow (\pi^+\pi^- J/\psi) \dots$	LHCb [1035] [1036] (np)	2012	Ok
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•		$B \to K(\pi^+\pi^-\pi^0 J/\psi)$	Belle <u>1037</u> (4.3), BaBar <u>1038</u> (4.0)	2005	Ok
$\begin{array}{c c} \mbox{LHCb} [1041] (> 10) \\ \mbox{Bara} [1040] (3.6), \mbox{Belle} [1039] (0.2) & 2008 & \text{NC!} \\ \mbox{LHCb} [1041] (> 10) \\ \mbox{Bara} [1040] (3.6), \mbox{Belle} [1039] (0.2) & 2008 & \text{NC!} \\ \mbox{LHCb} [1041] (4.4) \\ \mbox{Belle} [1042] (6.4), \mbox{Bara} [1043] (4.9) & 2006 & \text{Ok} \\ \mbox{Bess} [11] [1044] (np) & 2013 & \text{NC!} \\ \mbox{Bess} [1] [1044] (np) & 2013 & \text{NC!} \\ B$	arXiv:1404.3	3723			$B \to K(\gamma J/\psi)$	Belle <u>1039</u> (5.5), BaBar <u>1040</u> (3.5)	2005	Ok
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						LHCb $[1041]$ (> 10)		
$\begin{array}{c c} \begin{array}{c} LHCb \ [1041] \ (4.4) \\ \\ B \rightarrow K(D\bar{D}^{*}) \\ \\ Z_{c}(3885)^{+} \\ Z_{c}(3900)^{+} \\ \\ Z_{c}(3900)^{+} \\ Z_{c}(4020)^{+} \\ Z_{c}(4020)^{+} \\ Z_{c}(4020)^{+} \\ Z_{c}(4025)^{+} \\ Z_{b}(10610)^{+} \\ \\ Z_{b}(10650)^{+} \end{array} \begin{array}{c} B \rightarrow K(D\bar{D}^{*}) \\ 3883.9 \pm 4.5 \ 25 \pm 12 \ 1^{+-} \ Y(4260) \rightarrow \pi^{-}(D\bar{D}^{*})^{+} \\ Y(4260) \rightarrow \pi^{-}(\pi^{+}J/\psi) \\ \\ Y(4260) \rightarrow \pi^{-}(\pi^{+}J/\psi) \\ \\ Z_{c}(4025)^{+} \\ Z_{b}(10610)^{+} \\ Z_{b}(10650)^{+} \end{array} \begin{array}{c} B \rightarrow K(D\bar{D}^{*}) \\ 4022.9 \pm 2.8 \ 7.9 \pm 3.7 \ ?^{-} \ Y(4260, 4360) \rightarrow \pi^{-}(\pi^{+}h_{c}) \\ 4026.3 \pm 4.5 \ 24.8 \pm 9.5 \ ?^{-} \ Y(4260) \rightarrow \pi^{-}(D^{*}\bar{D}^{*})^{+} \\ 10607.2 \pm 2.0 \ 18.4 \pm 2.4 \ 1^{+-} \ Y(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P,2P)) \\ Y(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P,2P)) \\ Y(10860) \rightarrow \pi^{-}(\pi^{+}Y(1S, 2S, 3S)) \\ Y(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P,2P)) \\ Y(10860) \rightarrow \pi^{-}(B^{*}\bar{B}^{*})^{+} \\ \end{array} \begin{array}{c} LHCb \ 1041 \ (4.4) \\ Belle \ 10521 \ (4.9) \\ Belle \ 10545 \ (4.9) \\ Belle \ 10551 \ (16) \\ 2011 \ Ok \\ P(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P,2P)) \\ Y(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P,2P)) \\ Y(10860) \rightarrow \pi^{-}(B^{*}\bar{B}^{*})^{+} \\ \end{array}$					$B \to K(\gamma \psi(2S))$	BaBar $[1040]$ (3.6), Belle $[1039]$ (0.2)	2008	NC!
$ \begin{array}{c} B \to K(D\bar{D}^{*}) \\ Z_{c}(3885)^{+} \\ Z_{c}(3900)^{+} \\ Z_{c}(3900)^{+} \\ Z_{c}(4020)^{+} \\ Z_{c}(4020)^{+} \\ Z_{c}(4020)^{+} \\ Z_{c}(4025)^{+} \\ Z_{b}(10610)^{+} \\ Z_{b}(10650)^{+} \\ \end{array} \begin{array}{c} B \to K(D\bar{D}^{*}) \\ 3883.9 \pm 4.5 & 25 \pm 12 & 1^{+-} & Y(4260) \to \pi^{-}(D\bar{D}^{*})^{+} \\ 3891.2 \pm 3.3 & 40 \pm 8 & ?^{?-} & Y(4260) \to \pi^{-}(\pi^{+}J/\psi) \\ Z_{c}(4025)^{+} \\ 4022.9 \pm 2.8 & 7.9 \pm 3.7 & ?^{?-} & Y(4260, 4360) \to \pi^{-}(\pi^{+}h_{c}) \\ Z_{c}(4025)^{+} \\ 4026.3 \pm 4.5 & 24.8 \pm 9.5 & ?^{?-} & Y(4260) \to \pi^{-}(D^{*}\bar{D}^{*})^{+} \\ 10607.2 \pm 2.0 & 18.4 \pm 2.4 & 1^{+-} & \Upsilon(10860) \to \pi^{-}(\pi^{+}fh_{c})(1P, 2P)) \\ Z_{b}(10650)^{+} \\ 10652.2 \pm 1.5 & 11.5 \pm 2.2 & 1^{+-} & \Upsilon(10860) \to \pi^{-}(\pi^{+}\Upsilon(1S, 2S, 3S)) \\ Z_{b}(10650)^{+} \\ 10652.2 \pm 1.5 & 11.5 \pm 2.2 & 1^{+-} & \Upsilon(10860) \to \pi^{-}(\pi^{+}\Upsilon(1S, 2S, 3S)) \\ \Upsilon(10860) \to \pi^{-}(\pi^{+}fh_{b}(1P, 2P)) \\ \Upsilon(10860) \to \pi^{-}(B^{*}\bar{B}^{*})^{+} \\ \end{array} \begin{array}{c} Belle \ \underline{1050}, \ \underline{1051} \ (>10) \\ Belle \ \underline{1050}, \ \underline{1051} \ (>10) \\ 2011 & Ok \\ 2011 & Ok \\ \Upsilon(10860) \to \pi^{-}(B^{*}\bar{B}^{*})^{+} \\ \end{array}$	Jan t be Q	Q!			_	LHCb [1041] (4.4)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$]			$B \to K(D\bar{D}^*)$	Belle $[1042]$ (6.4), BaBar $[1043]$ (4.9)	2006	Ok
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Z_c(3885)^+$	3883.9 ± 4.5	25 ± 12	1^{+-}	$Y(4260) \to \pi^{-}(DD^{*})^{+}$	BES III <u>1044</u> (np)	2013	NC!
$ \begin{array}{c} Z_{c}(4020)^{+} \\ Z_{c}(4025)^{+} \\ Z_{b}(10610)^{+} \end{array} \begin{array}{c} 4022.9 \pm 2.8 & 7.9 \pm 3.7 & ?^{?-} \\ 4026.3 \pm 4.5 & 24.8 \pm 9.5 & ?^{?-} \\ Z_{b}(10610)^{+} \end{array} \begin{array}{c} 4026.3 \pm 4.5 & 24.8 \pm 9.5 & ?^{?-} \\ 10607.2 \pm 2.0 & 18.4 \pm 2.4 & 1^{+-} \\ T(10860) \rightarrow \pi^{-}(D^{*}\bar{D}^{*})^{+} \\ Z_{b}(10650)^{+} \end{array} \begin{array}{c} \text{BES III} \ \hline 1049 \ (10) \\ 10607.2 \pm 2.0 & 18.4 \pm 2.4 & 1^{+-} \\ T(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P,2P)) \\ T(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P,2P)) \\ T(10860) \rightarrow \pi^{-}(\pi^{+}Y(1S,2S,3S)) \\ T(10860) \rightarrow \pi^{-}(\pi^{+}Y(1S,2S,3S)) \\ T(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P,2P)) \\ T(10860) \rightarrow \pi^{-}(B^{*}\bar{B}^{*})^{+} \\ \end{array} \begin{array}{c} \text{Belle} \ \boxed{1053} \ (6.8) \\ \text{Belle} \ \boxed{1053} \ (6.8) \\ \text{2012} \text{NC!} \end{array}$	$Z_c(3900)^+$	3891.2 ± 3.3	40 ± 8	??-	$Y(4260) \to \pi^-(\pi^+ J/\psi)$	BES III <u>1045</u> (8), Belle <u>1046</u> (5.2)	2013	Ok
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						T. Xiao et al. [CLEO data] [1047] (>5)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Z_c(4020)^+$	4022.9 ± 2.8	7.9 ± 3.7	??-	$Y(4260, 4360) \to \pi^-(\pi^+h_c)$	BES III <u>1048</u> (8.9)	2013	NC!
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Z_c(4025)^+$	4026.3 ± 4.5	24.8 ± 9.5	??-	$Y(4260) \to \pi^- (D^* \bar{D}^*)^+$	BES III 1049 (10)	2013	NC!
$Z_{b}(10650)^{+} 10652.2 \pm 1.5 \ 11.5 \pm 2.2 \ 1^{+-} \begin{array}{c} \Upsilon(10860) \rightarrow \pi^{-}(\pi^{+}h_{b}(1P,2P)) \\ \Upsilon(10860) \rightarrow \pi^{-}(B\bar{B}^{*})^{+} \end{array} \begin{array}{c} \text{Belle} \ \underline{1051} \ (16) \\ \text{Belle} \ \underline{1053} \ (8) \\ 2012 \ \text{NC!} \end{array} \begin{array}{c} \text{Ok} \\ 2012 \ \text{NC!} \\ 2011 \ \text{Ok} \\ 2012 \ \text{NC!} \end{array}$	$Z_b(10610)^+$	10607.2 ± 2.0	18.4 ± 2.4	1+-	$\Upsilon(10860) \to \pi(\pi\Upsilon(1S, 2S, 3S))$	Belle $[1050 + 1052]$ (>10)	2011	Ok
$Z_{b}(10650)^{+} 10652.2 \pm 1.5 \ 11.5 \pm 2.2 \ 1^{+-} \begin{array}{c} \Upsilon(10860) \to \pi^{-}(B\bar{B}^{*})^{+} \\ \Upsilon(10860) \to \pi^{-}(\pi^{+}\Upsilon(1S,2S,3S)) \\ \Upsilon(10860) \to \pi^{-}(\pi^{+}h_{b}(1P,2P)) \\ \Upsilon(10860) \to \pi^{-}(B^{*}\bar{B}^{*})^{+} \end{array} \begin{array}{c} \text{Belle} \ \underline{1053} \ (8) \\ \text{Belle} \ \underline{1051} \ (16) \\ \text{Belle} \ \underline{1053} \ (6.8) \\ 2011 \ \text{Ok} \\ 2011 \ \text{Ok} \\ 2012 \ \text{NC!} \end{array}$					$\Upsilon(10860) \to \pi^-(\pi^+h_b(1P,2P))$	Belle <u>1051</u> (16)	2011	Ok
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					$\Upsilon(10860) \to \pi^- (B\bar{B}^*)^+$	Belle [1053] (8)	2012	NC!
$\begin{array}{ll} \Upsilon(10860) \to \pi^-(\pi^+ h_b(1P, 2P)) & \text{Belle } \underline{1051} \ (16) & 2011 & \text{Ok} \\ \Upsilon(10860) \to \pi^-(B^* \bar{B}^*)^+ & \text{Belle } \underline{1053} \ (6.8) & 2012 & \text{NC!} \end{array}$	$Z_b(10650)^+$	10652.2 ± 1.5	11.5 ± 2.2	1+-	$\Upsilon(10860) \to \pi^-(\pi^+\Upsilon(1S, 2S, 3S))$	Belle [1050, 1051] (>10)	2011	Ok
$\Upsilon(10860) \to \pi^- (B^* \bar{B}^*)^+$ Belle [1053] (6.8) 2012 NC!					$\Upsilon(10860) \to \pi^-(\pi^+h_b(1P,2P))$	Belle [1051] (16)	2011	Ok
					$\Upsilon(10860) \to \pi^- (B^* \bar{B}^*)^+$	Belle [1053] (6.8)	2012	NC!

WAY ABOVE OPEN FLAVOR THRESHOLD STATES

First-discovered charged four-quark candidate: Z_c(4430)⁺

Z_c(4430)⁺ companion : Z_c(4200)⁺

Z_c⁺(4430) as rescattering effect?

P. Paklov, T. Uglov arXiv:1408.5295 (2014)

Phase running in opposite way to Breit-Wigner.

The same rescattering mechanism can be used to generate 1⁺ structure at lower masses $(\rightarrow Z_c^+(4200))$

• Such models should be put into amplitude fits by experimentalists, to see if can be discriminated against resonant interpretation

More mass peaks well above the open flavor thresholds

TABLE 12: Quarkonium-like states above the corresponding open flavor thresholds. For charged states, the C-parity is given for the neutral members of the corresponding isotriplets.

State	M, MeV	Γ, MeV	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
Y(3915)	3918.4 ± 1.9	20 ± 5	$0/2^{?+}$	$B \rightarrow K(\omega J/\psi)$	Belle 1088 (8), BaBar 1038, 1089 (19)	2004	Ok
				$e^+e^- ightarrow e^+e^-(\omega J/\psi)$	Belle [1090] (7.7), BaBar [1091] (7.6)	2009	Ok
$\chi_{c2}(2P)$	3927.2 ± 2.6	24 ± 6	2^{++}	$e^+e^- ightarrow e^+e^-(D\bar{D})$	Belle [1092] (5.3), BaBar [1093] (5.8)	2005	Ok
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	??+	$e^+e^- \rightarrow J/\psi \left(D\bar{D}^* \right)$	Belle [1086] [1087] (6)	2005	NC!
Y(4008)	3891 ± 42	255 ± 42	1	$e^+e^- \rightarrow (\pi^+\pi^- J/\psi)$	Belle 1046, 1094 (7.4)	2007	NC!
$\psi(4040)$	4039 ± 1	80 ± 10	1	$e^+e^- \to (D^{(*)}\bar{D}^{(*)}(\pi))$	PDG [I]	1978	Ok
				$e^+e^- ightarrow (\eta J/\psi)$	Belle [1095] (6.0)	2013	NC!
$Z(4050)^+$	4051^{+24}_{-43}	82^{+51}_{-55}	??+	$\bar{B}^0 \to K^-(\pi^+\chi_{c1})$	Belle [1096] (5.0), BaBar [1097] (1.1)	2008	NC!
Y(4140)	4145.8 ± 2.6	18 ± 8	??+	$B^+ \rightarrow K^+(\phi J/\psi)$	CDF 1098 (5.0), Belle 1099 (1.9),	2009	NC!
					LHCb [1100] (1.4), CMS [1101] (>5)		
					D0 [1102] (3.1)		
$\psi(4160)$	4153 ± 3	103 ± 8	1	$e^+e^- \to (D^{(*)}D^{(*)})$	PDG I	1978	Ok
				$e^+e^- ightarrow (\eta J/\psi)$	Belle [1095] (6.5)	2013	NC!
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$e^+e^- \rightarrow J/\psi \left(D^*\bar{D}^*\right)$	Belle [1087] (5.5)	2007	NC!
$Z(4200)^+$	4196^{+35}_{-30}	370^{+99}_{-110}	1+-	$B^0 \rightarrow K^-(\pi^+ J/\psi)$	Belle [1103] (7.2)	2014	NC!
$Z(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	??+	$B^0 \rightarrow K^-(\pi^+\chi_{c1})$	Belle [1096] (5.0), BaBar [1097] (2.0)	2008	NC!
Y(4260)	4250 ± 9	108 ± 12	1	$e^+e^- \rightarrow (\pi\pi J/\psi)$	BaBar [1104, 1105] (8), CLEO [1106, 1107] (11)	2005	Ok
					Belle 1046 1094 (15), BES III 1045 (np)		
				$e^+e^- \rightarrow (f_0(980)J/\psi)$	BaBar [1105] (np), Belle [1046] (np)	2012	Ok
				$e^+e^- \to (\pi^- Z_c(3900)^+)$	BES III [1045] (8), Belle [1046] (5.2)	2013	Ok
				$e^+e^- \rightarrow (\gamma X(3872))$	BES III [1108] (5.3)	2013	NC!
Y(4274)	4293 ± 20	35 ± 16	??+	$B^+ \rightarrow K^+(\phi J/\psi)$	CDF 1098 (3.1), LHCb 1100 (1.0),	2011	NC!
					CMS [1101] (>3), D0 [1102] (np)		
X(4350)	$4350.6^{+4.6}_{-5.1}$	13^{+18}_{-10}	$0/2^{?+}$	$e^+e^- ightarrow e^+e^-(\phi J/\psi)$	Belle [1109] (3.2)	2009	NC!
Y(4360)	4354 ± 11	78 ± 16	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1110] (8), BaBar [1111] (np)	2007	Ok
$Z(4430)^+$	4458 ± 15	166^{+37}_{-32}	1^{+-}	$\bar{B}^0 \to K^-(\pi^+\psi(2S))$	Belle [1112, 1113] (6.4), BaBar [1114] (2.4)	2007	Ok
					LHCb [1115] (13.9)		
				$B^0 \to K^-(\pi^+ J/\psi)$	Belle [1103] (4.0)	2014	NC!
X(4630)	4634_{-11}^{+9}	92^{+41}_{-32}	1	$e^+e^- ightarrow (\Lambda_c^+ \bar{\Lambda}_c^-)$	Belle [1116] (8.2)	2007	NC!
Y(4660)	4665 ± 10	53 ± 14	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1110] (5.8), BaBar [1111] (5)	2007	Ok
$\Upsilon(10860)$	10876 ± 11	55 ± 28	1	$e^+e^- \to (B^{(*)}_{(s)}B^{(*)}_{(s)}(\pi))$	PDG [I]	1985	Ok
225 - 224				$e^+e^- \rightarrow (\pi\pi\Upsilon(1S, 2S, 3S))$	Belle 1051, 1052, 1117 (>10)	2007	Ok
From N. Brombillo et al			a	$e^+e^- \rightarrow (f_0(980)\Upsilon(1S))$	Belle 1051, 1052 (>5)	2011	Ok
FIUITIN. DIATIDITA EL AL			ai.	$e^+e^- \rightarrow (\pi Z_b(10610, 10650))$	Belle [1051] [1052] (>10)	2011	Ok
arXiv:1	404.3723			$e^+e^- \rightarrow (\eta \Upsilon(1S, 2S))$	Belle [986] (10)	2012	Ok
		1000000		$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(1D))$	Belle <u>986</u> (9)	2012	Ok
$Y_{b}(10888)$	10888.4 ± 3.0	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \to (\pi^+\pi^-\Upsilon(nS))$	Belle [1118] (2.3)	2008	NC!

Plethora of mass states near or above the open flavor thresholds!

Many need confirmation.

M<u>any</u> of them can't be QQ states (charged!)

They require survey of their decay channels and, broad ones, high statistics phase studies to clarify if they originate from dimeson rescattring or 4-quark (molecular or tetraquark) boundstates.Hybrids may be present too.

Need improvements in theoretical framework as well.

See also S. Olsen talk!

• Improvements in lattice calculations are needed (couplings to 4-quarks missing)

Production of quarkonium states

- Assume NRQCD factorization
 applies
 - Additional energy scale in the considerations: p_t

 $\sigma^{H}(p_{T}, m_{Q}) = \sum_{n} \sigma_{n}(p_{T}, m_{Q}, \Lambda) \langle 0 | \mathcal{O}_{n}^{H}(\Lambda) | 0 \rangle$

(theory)

Universal (?) long-distance probabilities ("LDMEs") of evolving from partons to given bound state

(data,models,...)

FIG. 33: The predictions of the J/ψ total e^+e^- cross section measured by Belle [1175], the transverse momentum distributions in photoproduction measured by H1 at HERA [1172, 1186], and in hadroproduction measured by CDF [1142] and ATLAS [1143], and the polarization parameter λ_{θ} measured by CDF in Tevatron run II [1160]. The predictions are plotted using the values of the CO LDMEs given in [771], [1182] and [1184] and listed in Table [13]. The error bars of graphs a–g refer to scale variations, of graph d also fit errors, errors of graph h according to [1182]. As for graphs i–l, the central lines are evaluated with the default set, and the error bars evaluated with the alternative sets of the CO LDMEs used in [1184] and listed in Table [13]. From [1187].

Polarization and other measurements from LHC

- Many other new production measurements from the LHC experiments: J/ψ, ψ(2S), χ_{cJ}(1P), X(3872), Y(1,2,3S), χ_{bJ}(1,2,3S), B_c, doublecharm...
- The data should help to deal with cross-feed between various excitations and to improve the theory

Summary

Future

- Roadmap out of the new ZOO:
 - Experiments:
 - clean-up and survey of new states
 - precision phase evolution studies (amplitude fits) as improvement over peakology (though there are also dangers of fitology...)
 - pursue heavy-light spectroscopy since it impacts heavy-heavy states above the open flavor threshold
 - B_c⁺ spectroscopy vs heavy onia spectroscopy will expose role of annihilation corrections in the latter
 - The past record shows that all existing and new facilities will contribute (higher luminosity charm and beauty e⁺e⁻, upgraded LHCb,...)

- Theory:

- phenomenological models are helpful, especially if they have predictive rather than postdictive power, but...
- need serious effort to move lattice QCD with dynamical charm quarks way above the open flavor threshold
- overcoming NRQCD limitations in failure to account for onia polarization measurements in inclusive production

(OCD – Obsessive Compulsive Disorder)

Road To Recovery