

Xiangwei Meng, Guoming Chen

Institute of High Energy Physics, CAS, Beijing

Jun. 03, 2008

2008-06-03

CMS B-physics Group Meeting 06,03,2008

CSA07 Data Samples Muon efficiency: M.C. Truth Tag&Probe

- Acceptance
- Unfolding
- Ongoing work

CMSSW_1_6_11

CMS CSA07 M.C. data samples

b2J/psi		<pre>/BtoJpsi/CMSSW_1_6_0-PreCSA07-HLT-A4/GEN-SIM-DIGI-RECO 556324 events, 154 files, 18 block(s), 858.3GB /BtoJpsi/CMSSW_1_6_0-PreCSA07-A1/GEN-SIM-DIGI-RAW 563463 events, 156 files, 16 block(s), 719.8GB /BbartoJpsi/CMSSW_1_6_0-PreCSA07-HLT-A4/GEN-SIM-DIGI-RECO 509527 events, 141 files, 16 block(s), 786.6GB /BbartoJpsi/CMSSW_1_6_0-PreCSA07-A1/GEN-SIM-DIGI-RAW S20373 events, 144 files, 14 block(s), 665.0GB</pre>
p-J/psi	•	/Charmonium_Pt_0_20/CMSSW_1_6_0-PreCSA07-HLT-A4/GEN-SIM-DIGI-RECO3pb-11021134 events, 160 files, 21 block(s), 1.0TB3pb-1/Charmonium_Pt_0_20/CMSSW_1_6_0-PreCSA07-A1/GEN-SIM-DIGI-RAW1039884 events, 163 files, 19 block(s), 895.3GB/Charmonium_Pt_20_inf/CMSSW_1_6_0-PreCSA07-HLT-A4/GEN-SIM-DIGI-RECO400pb-11012650 events, 362 files, 37 block(s), 1.8TB/Charmonium_Pt_20_inf/CMSSW_1_6_0-PreCSA07-A1/GEN-SIM-DIGI-RAW1040964 events, 372 files, 32 block(s), 1.5TBCSA08 p-J/Psi: ~10 pb-1
QCD		/Muon_ppMuX/CMSSW_1_6_0-PreCSA07-HLT-B3/GEN-SIM-DIGI-RAW 20697806 events, 5502 files, 29.3TB /Muon_ppMuX/CMSSW_1_6_0-PreCSA07-B2/GEN-SIM-DIGI-RAW 21365589 events, 5679 files, 25.9TB /Muon_ppMuX/CMSSW_1_6_7-CSA07-1197906039/GEN-SIM-DIGI-RAW 5555458 events, 5487 files, 9.6TB

from p-JPsi sample

dR: trig & reco vs. gen

M.C. Truth

L1, L1*L3, Sta,Glb & Tk: muon Eff. vs. pT

M.C. Truth

LI, LI*L3, Sta,Glb & Tk: muon Eff. vs. η

CMSSW_1_6_11

Efficiencies from data: Tag&Probe

□ Tag-and-Probe

- Successfully used in experiments: CDF and DØ
- Current availability of code
 - Egamma:

EgammaAnalysis/EgammaEfficiencyAlgos

Muon: MuonAnalysis/TagAndProbe

adapt code to use under CMSSW_16X with PAT

Efficiency Measurements: Tag&Probe

The overall dimuon efficiencies of the measurement are assumed to be the product of several parts

$$\mathcal{E} = \mathcal{E}_{acceptance} \times \mathcal{E}_{trigger} \times \mathcal{E}_{offline}^{2}$$
$$\mathcal{E}_{trigger} = \mathcal{E}_{L1} \times \mathcal{E}_{HLT}$$
$$\mathcal{E}_{offline} = \mathcal{E}_{global} \times \mathcal{E}_{isolation} \times \mathcal{E}_{id}$$

2

$$\varepsilon_{\text{global}} = \varepsilon_{\text{standalone}} \times \varepsilon_{\text{tracker}} \times \varepsilon_{\text{matching}}$$

- Choose a *tag* muon
 - A "high quality" reconstructed muon
- □ Choose a *probe* track
 - A probable muon in tracker or muon system
- Requiring $M_{\mu\mu}$ consistent with $M_{J/\Psi}$ yileds a high-purity and almost unbiased sample of *probe* muons

Description of Tag and Probe

ТАС	Global muon with $p_T > 5 GeV$
TAG	Associated to a L3 muon

Probe Type	Description
<u>G</u> olden	Global muon that is also a TAG
<u>Matched</u>	Global muon that is not a TAG
<u>U</u> nmatched	Tracker track AND Standalone muon found, but they are not associated with a Global Muon
<u>T</u> racker Only	Only a tracker track
Stand Alone Muon	Only a standalone muon

With the five types of probes, we get five combinations of tagand-probe: GG, GM, GU, GS, GT

Tracking and Matching Efficiencies I

Standalone, Tracking, and Matching efficiencies calculated with simple event counting

$$\begin{split} \boldsymbol{\varepsilon}_{\text{standalone}} &= \frac{2N_{GG} + N_{GM} + N_{GU}}{2N_{GG} + N_{GM} + N_{GU} + N_{GT}} \\ \boldsymbol{\varepsilon}_{\text{tracker}} &= \frac{2N_{GG} + N_{GM} + N_{GU}}{2N_{GG} + N_{GM} + N_{GU} + N_{GS}} \\ \boldsymbol{\varepsilon}_{\text{matching}} &= \frac{2N_{GG} + N_{GM}}{2N_{GG} + N_{GM} + N_{GU}} \end{split}$$

$$\mathcal{E}_{\text{global}} = \mathcal{E}_{\text{standalone}} \times \mathcal{E}_{\text{tracker}} \times \mathcal{E}_{\text{matching}}$$

Tracking and Matching Efficiencies II

2008-06-03

Glb Muon efficiency I

Glb Muon efficiency II

 \bullet The inclusive b-> J/ ψ cross-section is calculated by

$$\frac{d\sigma}{dp_T} \cdot \operatorname{Br}(J/\psi \to \mu^+ \mu^-) = f_b(p_T) \cdot \frac{N_{reco}(p_T) \cdot (1 - A')}{\int L dt \cdot A \cdot \varepsilon_{trig} \cdot \varepsilon_{offline} \cdot \Delta p_T}$$

- **1.** $\int L dt$: the integral luminosity
- **2.** f_b : fraction for J/ Ψ from b
- 3. ΔP_T : the size of the P_T bin.
- 4. N_{reco} : the number of reconstructed J/ ψ signals
- 5. A, A': the acceptance and relative acceptance
- 6. ϵ_{trig} : trigger efficiency
- 7. $\epsilon_{offline}$: off-line reconstruction efficiency

Acceptances I

Acceptances include the detector geometric acceptances and kinematic acceptances, Can be obtained by Monte Carlo simulation. is treated and defined as:

$$A(p_T, \eta | J/\psi) = \frac{N^{rec}(p_T(J/\psi), | \eta(J/\psi) | < 2.4)}{N^{gen}(p_T(J/\psi), | \eta(J/\psi) | < 2.4)}$$

* Kinematic acceptance is related with J/ψ 's polarization considered, not included.

 $N^{gen}(P_T, |\eta^{gen}| < 2.4)$ total number of J/ ψ events generated within $|\eta^{gen}| < 2.4$.

- □ The differential *b*-hadron cross section vs. pT(H_b) is extracted from the measured differential ones of H_b ->J/ΨX
- □ Distortions between *b*-hadron pT distribution and J/Ψ pT's from b-hadrons

Unfolding methods I

- Bin-to-bin correction: no into account migrations a bin to the others; neglect correlation between adjacent bins.
- The matrix method: solve the problem of migrations; singular problem; statistical fluctuations; results unstable.
- Regularized unfolding: satisfactory results but technical complications; only with one dimension

Unfolding Method II: Bayes'

A Multidimensional unfolding method based on Bayes' theorem by G.D'Agostini, Nucl. Instr. Meth. A362 (1995) 487-498. -- Model independent method

$$P(\mathbf{C}_i | \mathbf{E}_j) = \frac{P(\mathbf{E}_j | \mathbf{C}_i) P_0(\mathbf{C}_i)}{\sum_{l=1}^{n_{\mathbf{C}}} P(\mathbf{E}_j | \mathbf{C}_l) P_0(\mathbf{C}_l)}.$$
$$\hat{n}(\mathbf{C}_i)|_{\text{obs}} = \sum_{j=1}^{n_{\mathbf{E}}} n(\mathbf{E}_j) P(\mathbf{C}_i | \mathbf{E}_j)$$

$$\hat{n}(\mathbf{C}_i) = \frac{1}{\epsilon_i} \sum_{j=1}^{n_{\mathbf{E}}} n(\mathbf{E}_j) P(\mathbf{C}_i | \mathbf{E}_j) \quad \epsilon_i \neq 0$$

Ci: cause in i-th bin_: Ej: effect in j-th bin P(Ci/Ej): corelation matrix for Ej to Ci

$$\hat{N}_{\text{true}} = \sum_{i=1}^{n_{\text{C}}} \hat{n}(\mathbf{C}_{i}),$$
$$\hat{P}(\mathbf{C}_{i}) \equiv P(\mathbf{C}_{i} | \mathbf{n}(\mathbf{E})) = \frac{\hat{n}(\mathbf{C}_{i})}{\hat{N}_{\text{true}}},$$
$$\hat{\epsilon} = \frac{N_{\text{obs}}}{\hat{N}}.$$

the unfolding can be performed through the following steps:

1) choose the initial distribution of $P_0(C)$ from the best knowledge of the process under study, and hence the initial expected number of events $n_0(C_i) = P_0(C_i)N_{obs}$; in case of complete ignorance, $P_0(C)$ will be just a uniform distribution: $P_0(C_i) = 1/n_C$;

2) calculate $\hat{n}(C)$ and $\hat{P}(C)$;

3) make a χ^2 comparison between $\hat{n}(C)$ and $n_0(C)$;

4) replace $P_0(C)$ by $\hat{P}(C)$, and $n_0(C)$ by $\hat{n}(C)$, and start again; if, after the second iteration the value of χ^2 is "small enough", stop the iteration; otherwise go to step 2. Some criteria about the optimum number of iterations will be discussed later.

Unfolding on M.C. data

Done & to do list

- □ Unbinned combined MLH fit & analysis method: Toy M.C.
- □ Unfolding method (test cnt.) improved!!!
- Acceptance and efficiency
- 1. Geometric & kinematic Acceptance: A(pT, η)
- Reco. Efficiency: local reco., matching & selection cuts, Glb muon, etc.
 Tag & Probe
- to use CSA07 data in process
- 3. Trig. Efficiency: L1 moun., HLT muon, etc. Tag & Probe
- Unbinned combined MLH fit & analysis method: M.C. data.
- □ Systematic uncertainties: sources & estimation

with CMSSW_1_6_11