

Selected Snowmass 2013 CSS studies for a 100 TeV pp collider

Meenakshi Narain Brown University Coordinator – LPC @FNAL

Narain, CFHEP kick-off, Feb 2014

Snowmass CSS Experiences

- LPC@FNAL contribution to Snowmass 2013 CSS Energy Frontier effort
 - LPC is a remote analysis center for US physicists
 - (enjoy co-operation with PKU, many students resident at LPC over the years)
- Defining the tools for simulation (Delphes updates and tuning)
- Generate background MC for future hadron colliders in partnership with the Open Science Grid (established snowmass VO, develop tools etc)
- Snowmass whitepapers
 - Snowmass detector and simulation
 - partnership with some ATLAS members
 - Novel methods for Standard Model event generation
 - partnership with some ATLAS members and SLAC theory group
 - Use of OSG for event generation for snowmass
- Snowmass studies relevant to 100 TeV (SUSY, Heavy Top, 2HDM, dijets...)
- On Jan 31st regrouped to asses how to contribute to the global FCC effort.
- Organization of a workshop in the works

hadron collider facilities

facility	\sqrt{s}	L	<i>∫î≣Ldt</i>	time scale
LHC	14 TeV	10 ³⁴	300/fb	2015-2021
HL-LHC	14 TeV	5x10 ³⁴ .	3000/fb	2023-2030
HE-LHC	26-33 TeV	2x10 ³⁴	300/fb/year	>2035
VHE-LHC	42-100 TeV			>2035

European Strategy for Particle Physics Preparatory Group: Physics Briefing Book, CERN-ESG-005

- arXiv:1309.1057, arXiv:1307.6346
- Simulate generic LHC-like detector with Delphes3 for 14, 33 and 100 TeV pp studies
 - 0, 50, 140 pileup interactions per bunch crossing
 - tuned to reproduce full simulation at 8 TeV.
- For 100 TeV, used the combined snowmass detector for 14/33 TeV

 not an optimal choice, but a reasonable start to understand the limitations of the current detectors and provide a base for future designs.

SM Samples at 100 TeV

• SM background categories generated (arXiv:1308.1636)

Aram Avetisyan,¹ John M. Campbell,³ Timothy Cohen,² Nitish Dhingra,⁴ James Hirschauer,³ Kiel Howe,⁵ Sudhir Malik,⁶ Meenakshi Narain,⁷ Sanjay Padhi,⁸ Michael E. Peskin,² John Stupak III,⁹ and Jay G. Wacker²

Dataset Name	Main Processes	Final States	Order		
Dominant Backgrounds					
B-4p, Bj-4p ^{a}	vector boson $+$ jets	V + nJ	$\mathcal{O}(\alpha_s^n \alpha_w)$		
BB-4p	divector + jets	VV + nJ	$\mathcal{O}(lpha_s^n lpha_w^2)$		
TT-4p	top pair + jets	TT + nJ	$\mathcal{O}(lpha_s^{2+n})$		
TB-4p	top pair off-shell $T^* \to Wj + jets$	TV + nJ	$\mathcal{O}(\alpha_s^{n+1}\alpha_w)$		
TJ-4p	single top (s and t-channel) $+$ jets	T + nJ	$\mathcal{O}(\alpha_s^{n-1}\alpha_w^2)$		
LL-4p	off-shell $V^* \to LL + jets$	$LL + nJ \ [m_{ll} > 20 \ \text{GeV}]$	$\mathcal{O}(\alpha_s^n \alpha_w^2)$		
Subdominant Backgrounds					
TTB-4p	top pair + boson	(TTV + nJ), (TTH + nJ)	$\mathcal{O}(\alpha_s^{2+n}\alpha_w)$		
BLL-4p	off-shell divector $V^* \to LL + \text{jets}$	$VLL + nJ \ [m_{ll} > 20 \ GeV]$	$\mathcal{O}(lpha_s^n lpha_w^3)$		
BBB-4p	tri-vector $+$ jets, Higgs associated $+$ jets	(VVV + nJ), (VH + nj)	$\mathcal{O}(lpha_s^n lpha_w^3)$		
H-4p	gluon fusion $+$ jets	H + nJ	$\mathcal{O}(\alpha_s^n \alpha_h)$		
BJJ-vbf-4p	vector boson fusion + jetsain	$(V+nJ), (H+nJ) \ [n \ge 2]$	$\mathcal{O}(lpha_s^{n-2}lpha_w^3)$		

SM Samples at 100 TeV

SM background – distributions.

SM MC Production

- A challenging task intensive computing resources are needed. Harness the resources via OSG
 - about 8M CPU hours and 900M events simulated with 0, 50, 140 pileup.

Many thanks to: John Stupak, Sanjay Padhi, Nitish Dhingra, Marko Sylz, Jim Hirschauer, Aram Avetisyan

A few Physics Studies:

sensitivity studies for snowmass @ 100 TeV

LPC meeting on future 100 TeV proton collider

chaired by Sanjay Padhi (Univ. of California San Diego (US))

Friday, 31 January 2014 from **08:30** to **15:20** (America/Chicago) at **Fermilab (Sunrise)**

Dijet Studies

Felix Yu, Jake Anderson (FNAL)

- Quark Compositeness, Excited Quark, Dijet Resonances:
- At a hadron collider the strongly produced dijet resonance is among the first particle searches published.
- Probing quark compositeness is a natural model.
 - 1 eV⁻¹ \approx 0.2 µm so 1 TeV⁻¹ \rightarrow 0.2 \times 10⁻¹⁸
- At 95% CL, one could exclude q* masses up to almost 50 TeV.
 - This is probing the structure of quarks down to 4×10^{-21} m.
- 5sigma discovery reach for resonances upto 40 TeV

• T w/charge 2/3

optimization necessary to identify boosted top quark jets.

Heavy Higgs: 2HDM Models

Craig, Dhingra, Narain, Stupak

- Important to fully explore the Higgs sector
- Precision measurement of h(125) couplings can constrain parameter space of the 2HDM
 - Little (no) sensitivity near (at) alignment limit
- Direct search offers unique potential to probe regions of parameter space near the alignment limit
- Important to pursue both coupling measurements and direct search
- Study H ZZ 4I and A Zh II+bb/tautau

• Direct Stop Production – can probe upto 6 TeV

S. Padhi (UCSD)

Top reconstruction:

 highly boosted jets, constituents of top quark not resolved. Need to revisit the top-tagging and jet substructure algorithms,

R.Calkins et al arxiv:1308.0963

EF Detector Challenges

- As beam energy increases, we are still looking at ewk scale phenomena involving W and Z bosons and their decay products
- We would like to detect all "well known" stable particles including products of short lived objects decays: pions, kaons, muons, etc.
 - Need 4π detector with layers of tracking, calorimeter and muon system
- maintain acceptance to relatively soft particles
- maintain large angular acceptance to minimize theoretical uncertainties and retain sensitivity to distinguish between different models should we find something new
- superior spatial and time resolution for pattern recognition in high occupancy environment

- Central tracker
 - Most challenging need to preserve momentum resolution for ~10 times higher momentum tracks
- Calorimetry
 - Getting better with energy: hadronic energy resolution ~50%/VE, 2% at 1TeV
 - Length of shower increase has log(E) dependence –not major issue
- Muon system
 - Main challenge is momentum resolution and showering of muons as they are becoming "electrons" due to large γ factor

Radiation Doses

- Radiation in the center region scales with luminosity, not energy
- Occupancies and radiation doses
 - For 10³⁵ cm⁻²sec⁻¹, challenging for both due to pileup and radiation aging
- Detectors for 100 TeV collider are challenging

D. Denisov (VLHC study)

challenges

- interaction rate
 - increase rejection power of trigger system
 - low power, high bandwidth data links
- pileup
 - pixelization
 - precision timing
- radiation damage
 - radiation hard detector technologies
 - operate at low temperatures

features:

next generation tracker

- thin, highly pixelated sensors
- time measurement (for pileup reduction)
 - thin, low capacitance sensors
- radiation hard (LHC fluence 2x10¹⁶ cm⁻²)
 - operate at low temperature
 - small depletion depth
 - materials other than silicon
- low mass
 - thin sensors
- power for increased channel count and speed
 - multipurpose support structure
 - more efficient cooling

monolithic pixels

- MAPS (monolithic active pixel sensors)
 - sensor and readout circuitry implanted in same Si wafer
 - ☑ thin, low mass, high granularity, low capacitance
- SOI (silicon on insulator sensors)
 - thin CMOS layer, oxide bonded to a thick silicon handle wafer used as sensor and connected to electronics by vias through oxide
 - ☑ large, fast signal, high granularity, low capacitance
 - ☑ radiation hardness, thinning of handle wafer, coupling of digital electronics and sensor
- 3D integration
 - vertical stacking of wafers by vias, bonding, thinning, interconnection
 - ☑ similar advantages as SOI and MAPS, separate optimization of sensor and electronics
 - ☑ availability of technology, how to fabricate large devices at low cost
 Narain

U. Heintz (snowmass IF summary)

3D pixel sensors

- planar sensors collect charge with implant pixels on sensor surface
- 3D sensors collect charge with implant columns in bulk
 - smaller depletion depth
 - faster charge collection
 - lower leakage current
 - lower depletion voltage
 - lower power dissipation
 - radiation tolerant ($V \downarrow dep \propto d \uparrow 2$)

ATLAS IBL sensors - CERN

diamond sensors

- chemical vapor deposition (CVD) diamond
 - band gap 5.5 eV (silicon: 1.1 eV)
 - displacement energy 42 eV/atom (silicon: 15 eV)
 - only 60% as many charge carriers as silicon
 - intrinsically radiation tolerant
 - low Z
 - do not require extensive cooling
- issues
 - availability
 - currently two viable industrial suppliers
 - small signal
 - reduced charge collection after irradiation

- combine precise spatial resolution with ps time resolution
 - thinned silicon (≈5 µm)
 - charge multiplication in bulk
- R&D required
 - wafer processing options
 - n-bulk vs p-bulk,
 - planar vs 3D sensors
 - epitaxial vs float zone
 - depth and lateral doping profile

- applicable for calorimeters and trackers
- potentially low cost, low mass, large area, high granularity, fast, radiation hard
- plasma panel sensors (PPS)
 - resemble plasma-TV display panels, modified to detect gas ionization in the individual cells
- resistive plate chambers (RPC)
 - improve rate capabilities, granularity
- flat panel microchannels
- gas electron multipliers (GEMs)
- micromegas
- R&D needed
 - reduce readout cost by developing highly integrated, radiation-hard front-end electronics

Narain

- materials with resistance to aging
- cost-effective construction techniques

U. Heintz (snowmass IF summary)

dream calorimeter features

- radiation hard
- high rate capability
- detect and accurately measure e/ γ and jets in the presence of large background/pileup
 - need $\sigma/E \leq 30\%/\sqrt{E}$ to separate W \rightarrow qq and Z \rightarrow qq
 - jet resolution limited by fluctuations in hadronic showers
 - compensating calorimeters
 - same response for EM and hadronic component
 - neutrons liberated in hadronic interactions \rightarrow slow
 - new calorimeter techniques

particle flow calorimetry

- reconstruct individual particles in shower
- apply particle specific corrections
 - measure charged particles in tracker
 - measure photons in em calorimeter
 - measure neutral hadrons in hadron calorimeter
- imaging calorimeters
 - particle flow requires detailed image of shower

Narain

- requires high granularity detectors
- micro-pattern gas detectors
- planned for e+e- collider detectors
- can it be made to work at high rate, high background hadron colliders?

U. Heintz (snowmass IF summary)

Typical topology of a simulated 250GeV jet in CLIC ILD

dual readout calorimetry

- measure EM/had ratio using CerenkovFraction Energy of Particles in Jets light (EM) and scintillation light (EM +had)
- resolution limit $\sigma/E \le 15\%/\sqrt{E}$
- sampling calorimeter

 e.g. Pb/Cu + scintillating fibers
- homogeneous calorimeter
 - need dense and low cost material
- photodetectors
 - sensitive over large frequency range

U. Heintz (snowmass IF summary)

Narain

emerging technologies

- graphene
 - high e mobility at room temperature
 - high thermal conductivity
 - strength and rigidity at low mass
 - applications: integrated circuits, switching optical devices (modulators)
- silicene
 - similar to graphene based on silicon
- amorphous nanocrystalline thin-film silicon
 - radiation hard
 - low cost
 - incorporate nanocrystalls of crystalline silicon to achieve detector grade properties

Narain

conclusion

- Simulation tools exist
 - evolve detector description, object performances
- MC generation is resource intensive
 - continue to use the OSG infrastructure for snowmass
 - update SM samples with the modified simulation and detector responses.
- the challenges at energy frontier facilities will be substantial
 - there are many ideas for instrumentation that can address these challenges
- in order to realize our physics goals, we need to invest in technology R&D
 - need a funding structure that enables detector R&D

(https://cp3.irmp.ucl.ac.be/projects/delphes)

- Delphes3 supports addition of PU events
- Many improvements were motivated based on current studies
- For Snowmass studies, plan to use Delphes3 framework
 - use best expected performance
- pileup subtraction will be the key

solid state photo detectors

- Silicon Photomultipliers (SiPM)
 - Geiger-mode APDs
 - low power
 - low voltage
 - low noise (compared to APDs)
 - compact
 - excellent timing resolution
 - insensitive to magnetic fields
- R&D directions
 - Si is sensitive to radiation
 - need to cool devices to keep leakage current down
 - GaAs or InGaAs
 - Si has small attenuation length for UV light
 - needed to detect Cerenkov light
 - SiC (bandgap = 3.2 eV)

SiPM mounting card - CMS

U. Heintz (snowmass IF summary)

Narain

32

ASICs

- small size
- lower power dissipation
- radiation tolerant
- R&D to develop
 - high-speed waveform sampling
 - pico-second timing
 - low-noise high-dynamic-range amplification and shaping
 - digitization and digital data processing
 - high-rate data transmission
 - low temperature operation

ASICs

BROWN