Neutrino Physics at Colliders

Yi Liao

Nankai Univ

Special thanks to Dr. Ji-Yuan Liu for collaboration and help

Outline

- Basics about neutrinos
- 2 Conventional seesaws and tests
- Going beyond conventional seesaws
- 4 Summary and outlook

Outline

- 1 Basics about neutrinos
- 2 Conventional seesaws and tests
- 3 Going beyond conventional seesaws
- 4 Summary and outlook

- Precision data
 - 3 active, almost massless neutrinos interact as assigned in standard model (SM)
- Oscillation data
 neutrinos have nondegenerate masses m_{1,2,3}
 leptons mix in CC weak interactions θ_{ij}

$$\begin{array}{lll} V & = & U \cdot \mathrm{Diag}\{e^{ip}, \ e^{i\sigma}, \ 1\}, \\ \\ U & = & \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} \\ -c_{12}s_{23}s_{13} - s_{12}c_{23}e^{-i\delta} & -s_{12}s_{23}s_{13} + c_{12}c_{23}e^{-i\delta} & s_{23}c_{13} \\ -c_{12}c_{23}s_{13} + s_{12}s_{23}e^{-i\delta} & -s_{12}c_{23}s_{13} - c_{12}s_{23}e^{-i\delta} & c_{23}c_{13} \end{pmatrix} \end{array}$$

 $s_{ii} = \sin \theta_{ii}, c_{ii} = \cos \theta_{ii}, ij = 12, 23, 13$

Precision data

3 active, almost massless neutrinos interact as assigned in standard model (SM)

Oscillation data

neutrinos have nondegenerate masses $m_{1,2,3}$ leptons mix in CC weak interactions θ_{ij}

$$\begin{array}{lll} V & = & U \cdot \mathrm{Diag}\{e^{i\rho}, \ e^{i\sigma}, \ 1\}, \\ \\ U & = & \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} \\ -c_{12}s_{23}s_{13} - s_{12}c_{23}\mathrm{e}^{-i\delta} & -s_{12}s_{23}s_{13} + c_{12}c_{23}\mathrm{e}^{-i\delta} & s_{23}c_{13} \\ -c_{12}c_{23}s_{13} + s_{12}s_{23}\mathrm{e}^{-i\delta} & -s_{12}c_{23}s_{13} - c_{12}s_{23}\mathrm{e}^{-i\delta} & c_{23}c_{13} \end{pmatrix}, \end{array}$$

 $s_{ij} = \sin \theta_{ij}, \ c_{ij} = \cos \theta_{ij}, \ ij = 12, \ 23, \ 13$

■ Global 3v oscillation analysis for NH Fogli et al., 2012

Parameter	Best fit	1σ range	2σ range	3σ range	
$\delta m^2/10^{-5}~{\rm eV}^2$	7.54	[7.32, 7.80]	[7.15, 8.00]	[6.99, 8.18]	
$\Delta m^2/10^{-3}~\text{eV}^2$	2.43	[2.33, 2.49]	[2.27, 2.55]	[2.19, 2.62]	
$ heta_{12}$	33.6°	$[32.6^{\circ}, 34.8^{\circ}]$	$[31.6^{\circ}, 35.8^{\circ}]$	$[30.6^\circ, 36.8^\circ]$	
θ_{23}	38.4°	$[37.2^{\circ}, 40.0^{\circ}]$	$[36.2^{\circ}, 42.0^{\circ}]$	[35.1°,53.0°]	
θ_{13}	8.9°	$[8.5^{\circ}, 9.4^{\circ}]$	$[8.0^\circ, 9.8^\circ]$	[7.5°,10.2°]	

$$\delta m^2 \equiv m_2^2 - m_1^2$$
 and $\Delta m^2 \equiv m_3^2 - (m_1^2 + m_2^2)/2$.

■ Almost no knowledge on CP phases; neither on mass hierarchy: either $m_1 < m_2 < m_3$ – normal hierarchy (NH) or $m_3 < m_1 < m_2$ – inverted hierarchy (IH)

■ Global 3v oscillation analysis for NH Fogli et al., 2012

Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5}~{\rm eV}^2$	7.54	[7.32, 7.80]	[7.15,8.00]	[6.99, 8.18]
$\Delta m^2/10^{-3}~\text{eV}^2$	2.43	[2.33, 2.49]	[2.27, 2.55]	[2.19, 2.62]
$ heta_{12}$	33.6°	$[32.6^{\circ}, 34.8^{\circ}]$	[31.6°,35.8°]	$[30.6^\circ, 36.8^\circ]$
θ_{23}	38.4°	$[37.2^{\circ}, 40.0^{\circ}]$	$[36.2^{\circ}, 42.0^{\circ}]$	[35.1°,53.0°]
θ_{13}	8.9°	$[8.5^\circ, 9.4^\circ]$	$[8.0^\circ, 9.8^\circ]$	$[7.5^\circ,10.2^\circ]$

$$\delta m^2 \equiv m_2^2 - m_1^2$$
 and $\Delta m^2 \equiv m_3^2 - (m_1^2 + m_2^2)/2$.

Almost no knowledge on CP phases; neither on mass hierarchy: either $m_1 < m_2 < m_3$ – normal hierarchy (NH) or $m_3 < m_1 < m_2$ – inverted hierarchy (IH)

Constraints on absolute neutrino mass

- nuclear β decays: $m_{\beta} \equiv \sqrt{\sum |V_{ei}|^2 m_i^2}$ $m_{\beta} <$ 2.1 eV @ 95% C.L. Troitsk Collaboration 2011 $\Rightarrow m_{\beta} \sim$ 0.2 eV (90% C.L) KATRIN
- lepton-number violating $0v\beta\beta$ decays: $m_{\beta\beta} \equiv \left|\sum V_{\rm ei}^2 m_i\right|$ $m_{\beta\beta} \lesssim 0.4~{\rm eV}$ W. Rodejohann 2012 $\Rightarrow m_{\beta\beta} \sim 0.02~{\rm eV}$
- cosmological and astrophysical considerations: $\Sigma \equiv \sum m_i$ $\Sigma < 0.44 \text{ eV}$ @ 95% C.L. 9-year WMAP 2012 $\Sigma < 0.23 \text{ eV}$ @ 95% C.L. Planck 2013 $\Rightarrow \Sigma \sim 0.05 \text{ eV}$

- 4 ロ ト 4 間 ト 4 耳 ト 4 耳 - 4 9 9 9 9

What we experimentally know about v's relatives

- v and ℓ share CC weak interactions
- ⇒ gain info from lepton-flavor violating (LFV) transitions
- μ decays

$$BR(\mu \to e \gamma) < 5.7 \times 10^{-13} \ @ \ 90\% \ C.L. \quad \text{MEG 2013} \\ BR(\mu \to 3e) < 1.0 \times 10^{-12} \ @ \ 90\% \ C.L. \quad \text{SINDRUM 1988}$$

lacksquare μ – e conversion in nuclei

$$\begin{split} & \text{BR}(\mu^-\text{Ti} \to e^-\text{Ti}) < 4.3 \times 10^{-12} \,\, @ \,\, 90\% \,\, \text{C.L.} & \text{SINDRUM II 1993} \\ & \text{BR}(\mu^-\text{Au} \to e^-\text{Au}) < 7 \times 10^{-13} \,\, @ \,\, 90\% \,\, \text{C.L.} & \text{SINDRUM II 2006} \\ & \Rightarrow 10^{-16} \sim 10^{-18} & \text{COMET, PRISM/PRIME, Mu2e, Project-X} \end{split}$$

■ LFV decays of τ and of B mesons less restrictive: BRs $\sim 10^{-8}$ BaBar Belle

What we experimentally know about v's relatives

- v and ℓ share CC weak interactions
- ⇒ gain info from lepton-flavor violating (LFV) transitions
- μ decays

$${
m BR}(\mu o {
m e}\gamma) < 5.7 imes 10^{-13}$$
 @ 90% C.L. MEG 2013 ${
m BR}(\mu o 3{
m e}) < 1.0 imes 10^{-12}$ @ 90% C.L. SINDRUM 1988

 \blacksquare μ – e conversion in nuclei

$$\begin{split} &BR(\mu^- Ti \to e^- Ti) < 4.3 \times 10^{-12} \,\, @ \,\, 90\% \,\, C.L. & \text{SINDRUM II 1993} \\ &BR(\mu^- Au \to e^- Au) < 7 \times 10^{-13} \,\, @ \,\, 90\% \,\, C.L. & \text{SINDRUM II 2006} \\ &\Rightarrow 10^{-16} \sim 10^{-18} & \text{COMET, PRISM/PRIME, Mu2e, Project-X} \end{split}$$

■ LFV decays of τ and of B mesons less restrictive: BRs $\sim 10^{-8}$ BaBar, Belle, CDF

What we experimentally know about v's relatives

v and ℓ share CC weak interactions

- ⇒ gain info from lepton-flavor violating (LFV) transitions
- μ decays

$${
m BR}(\mu o e \gamma) < 5.7 imes 10^{-13}$$
 @ 90% C.L. MEG 2013 ${
m BR}(\mu o 3e) < 1.0 imes 10^{-12}$ @ 90% C.L. SINDRUM 1988

 \blacksquare μ – e conversion in nuclei

$$\begin{split} &BR(\mu^-\text{Ti} \to e^-\text{Ti}) < 4.3 \times 10^{-12} \,\, @ \,\, 90\% \,\, \text{C.L.} & \text{SINDRUM II 1993} \\ &BR(\mu^-\text{Au} \to e^-\text{Au}) < 7 \times 10^{-13} \,\, @ \,\, 90\% \,\, \text{C.L.} & \text{SINDRUM II 2006} \\ &\Rightarrow 10^{-16} \sim 10^{-18} & \text{COMET, PRISM/PRIME, Mu2e, Project-X} \end{split}$$

LFV decays of τ and of B mesons less restrictive: BRs $\sim 10^{-8}$ BaBar, Belle, CDF

What we suppose v to be

SM

assumes only left-handed (LH) neutrinos v_I

- Only Majorana v mass could be possible
- But gauge symmetries do not allow it!
- $\Rightarrow m_v \neq 0$ calls for phys beyond SM

Trivial extension

add right-handed (RH) v_R to form massive Dirac v as we do for ℓ must tolerate tiny Yukawa coupling of order or less than 10⁻¹¹ Why isn't it exactly zero at all?!

We need an understanding of tiny $m_{\nu}!$

What we suppose v to be

We are *apt to believe* a tiny number like m_{ν} is a remnant of some high-scale phys

We are not certain about what it is

but we can parameterize our ignorance systematically – regard SM as a low-energy EFT

 \Rightarrow $m_{
m v}$ may arise from an effective higher-dim interaction Weinberg 1980

$$\mathcal{L}_{int} = \frac{\lambda}{\Lambda} \frac{\sigma_5}{\sigma_5} + \text{h.c.}, \quad \sigma_5 = \left(\overline{F_L^C} \varepsilon H\right) \left(H^T \varepsilon F_L\right), \quad H = \left(\frac{H^+}{H^0}\right), \quad F_L = \left(\frac{v_L}{\ell_L}\right)$$

$$\Rightarrow \frac{\lambda}{\Lambda} \frac{v^2}{2} \overline{v_L^C} v_L + \text{h.c.}, \quad \text{via } \langle H^0 \rangle = \frac{v}{\sqrt{2}} \quad \text{Majorana mass}$$

Very roughly, for $v \sim 250 \text{ GeV}$, $\lambda \sim 1$, $m_v \sim 0.1 \text{ eV}$ requires

$$\Lambda \sim 10^{15}~\text{GeV}$$

What's the origin of such a tiny mass? Seesaw models?

Of Majorana nature as most seesaws assume?

Possible to test? At colliders?

Dilemma:

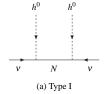
 $m_{\rm V}$ tends to demand extremely large Λ , while accessibility to new phys responsible for $m_{\rm V}$ relies on a not-too-high Λ

What to do with this tension?

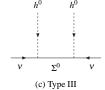
Even higher-dim interactions?

Outline

- 1 Basics about neutrinos
- 2 Conventional seesaws and tests
- 3 Going beyond conventional seesaws
- 4 Summary and outlook


Weinberg operator and its tree level realizations

Weinberg operator \mathcal{O}_5 for m_v is unique Weinberg 1980


Group theor. analysis shows that it has 3 and only 3 apparently different realizations of \mathcal{O}_5 at tree level Ma 1998

They hint at 3 different origins from an underlying theory

3 types of conventional seesaws

Type I seesaw

New particles: n_s sterile neutrinos N_R ; lepton # violated by 2 units

$$\cdots + \overline{N_R} i \partial N_R - \left[\overline{F_L} Y_N \tilde{H} N_R + \frac{1}{2} \overline{N_R}^C M_R N_R + \text{h.c.} \right]$$

Mass matrix for $n_s + 3$ neutral particles:

$$M_{\rm v} = \begin{pmatrix} 0 & M_{\rm D} \\ M_{\rm D} & M_{\rm R} \end{pmatrix}, \quad M_{\rm D} = {\rm Y}_{\rm N} {\rm v}/\sqrt{2}$$

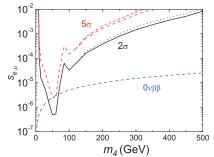
Seesaw limit: $|M_D| \ll |M_R|$; generally 3 light and n_s heavy:

$$M_{\text{light}} \simeq -M_D M_R^{-1} M_D^T, M_{\text{heavy}} \simeq M_R$$

 $n_s \ge 2$ to gain at least 2 massive light v's

Heavy neutrinos interact with SM particles only through Yukawa coupling Y_N and mixing with light neutrinos

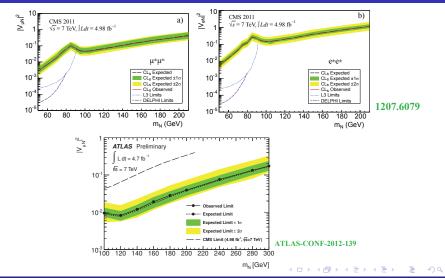
⇒ very hard to test a *genuine type I* seesaw!


Collider test of effective type I seesaw

- Most works study effective type I seesaw; assuming
 - · essentially one sterile neutrino at work
 - masses, mixing and couplings as free parameters, not restricted by theoretical relations as in genuine type I seesaw, but by various data: precision electroweak data, LFV processes, $0\nu\beta\beta$ decay, etc.
- Main signal: $pp \to W^{\pm} \to \ell^{\pm} N \to \ell^{\pm} \ell^{\pm} jj$ like-sign dilepton events
- Works differ mainly in background analysis.
- I show a few typical results.

$$\begin{split} &\sigma(pp\to\ell_1^\pm\ell_2^\pm W^\mp)\approx (2-\delta_{\ell_1\ell_2}) \frac{}{S_{\ell_1\ell_2}}\sigma_0 \quad \text{Han and Zhang 2006} \\ &\frac{}{S_{\ell_1\ell_2}}=\frac{|V_{\ell_1N}V_{\ell_2N}|^2}{\sum_{\ell}|V_{\ell N}|^2}, \ \sigma_0: \ \text{largely indept of mixing parameters} \end{split}$$

Sensitivity at 14 TeV LHC with 100 fb⁻¹ Atre et al 2009 $m_N \sim 375 \ (250) \ {\rm GeV}$ or $S_{eu} \sim 7 \times 10^{-7} \ (3 \times 10^{-6})$ for $2\sigma \ (5\sigma)$



Less optimistic due to large background from $b\bar{b}$ decays # of $\ell^{\pm}\ell^{\pm}jj$ events at LHC for 30 fb $^{-1}$: Aguila et al 2007 $m_N=150~{\rm GeV}$.(a) $V_{\mu N}=0.098$;(b) $V_{eN}=0.073$; (c) both

	Pre-selection				Selection		
	$\mu^{\pm}\mu^{\pm}$	$e^{\pm}e^{\pm}$	$\mu^{\pm}e^{\pm}$	ļ	$\iota^{\pm}\mu^{\pm}$	$e^{\pm}e^{\pm}$	$\mu^{\pm}e^{\pm}$
N (a)	113.6	0	0		59.1	0	0
N (b)	0	72.0	0		0	17.6	0
N (c)	78.4	25.5	82.6		41.6	4.7	22.4
$b\bar{b}nj$	14800	52000	82000		0	0	0
$c\bar{c}nj$	(11)	300	200		(0)	0	0
$t\bar{t}nj$	1162.1	8133.0	15625.3		2.4	8.3	7.7
tj	60.8	176.5	461.5		0.0	0.0	0.1
$Wb\bar{b}nj$	124.9	346.7	927.3		0.4	0.6	0.3
$Wt\bar{t}nj$	75.7	87.2	166.9		0.3	0.0	0.0
$Zb\bar{b}nj$	12.2	68.9	117.0		0.0	0.2	0.0
WWnj	82.8	89.0	174.8		0.5	0.1	0.7
WZnj	162.4	252.0	409.2		4.8	1.8	2.3
ZZnj	3.8	13.3	12.9		0.0	0.6	0.1
WWWnj	31.9	30.1	64.8		0.9	0.1	0.0

 5σ sensitivity for m_N up to 200 GeV with $V_{\mu N}=0.098$ 5σ sensitivity for m_N up to 145 GeV with $V_{eN}=0.073$

Collider test of effective type I seesaw: LHC data

New particles: scalar triplet Δ of Y = +2 doubly-charged, singly-charged, and neutral

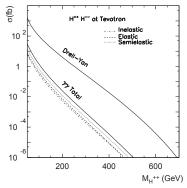
$$\mathcal{L} \supset \frac{1}{2} \text{Tr}(D^{\mu} \Delta)^{\dagger}(D_{\mu} \Delta) - \left[f_{ij} \overline{F_{Li}^{C}}(i\sigma_{2}) \Delta F_{Lj} + \text{h.c.} \right]$$

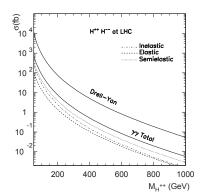
$$V \supset -m_{H}^{2} H^{\dagger} H + m_{\Delta}^{2} \text{Tr}(\Delta^{\dagger} \Delta) + \left[\mu(H^{\dagger} \Delta \tilde{H}) + \text{h.c.} \right]$$

$$+ \frac{1}{2} \lambda_{1} (H^{\dagger} H)^{2} + \lambda_{4} (H^{\dagger} H) \text{Tr}(\Delta^{\dagger} \Delta) + \lambda_{6} (H^{\dagger} \Delta \Delta^{\dagger} H)$$

vev's and Majorana v mass:

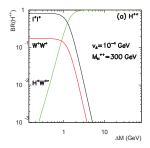
$$\langle H \rangle = v \simeq \sqrt{\frac{m_H^2}{\lambda_1}}, \ \langle \Delta \rangle = v_\Delta \simeq \frac{-\mu v^2}{m_\Delta^2 + (\lambda_4 + \lambda_6)v^2}$$
 $m_v = f v_\Delta$

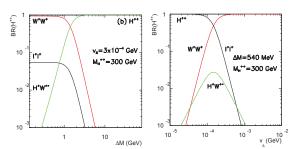

enjoy electroweak interactions


 \Rightarrow rich phenomenology expected, details depending on V_{\triangle} .

Collider test of type II seesaw

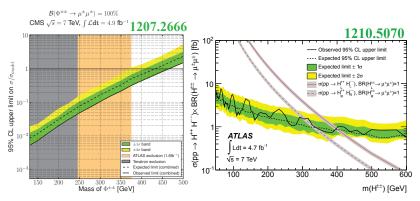
 $\sigma(pp(\bar{p}) \to H^{\pm\pm}H^{\pm\pm})$ by Drell-Yan and $\gamma\gamma$ fusion




Han, Mukhopadhyaya, Si and Wang, PRD76, 2007

Collider test of type II seesaw

 ${\rm Br}(H^{\pm\pm})$ vs mass splitting $\Delta M \equiv M_{H^{++}} - M_{H^+}$ and V_{Δ}



Fileviez Perez, Han, Huang, Li and Wang 2008

For $v_{\Delta} < 10^{-4}~{\rm GeV}$, $\ell^{\pm}\ell^{\pm}$ signals at LHC with 300 fb⁻¹ should be observable up to $M_{H^{++}} \sim 1~{\rm TeV}$.

Collider test of type II seesaw: LHC data

CMS: $m_{\Phi^{++}} \ge (204-459)$ GeV assuming BR($\Phi^{++} \to \ell^+ \ell'^+$) $\sim 100\%$ (383 – 408) GeV at 4 benchmark points

ATLAS: $m_{\Phi^{++}} \lesssim 409 \ (e^{\pm}e^{\pm})$, 398 $(\mu^{\pm}\mu^{\pm})$, 375 GeV $(e^{\pm}\mu^{\pm})$ excl. at 95% CL

□▶◀∰▶◀불▶◀불▶ 불 쒸९♡

Type III seesaw

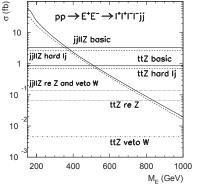
New particles: fermion triplet of Y = 0:

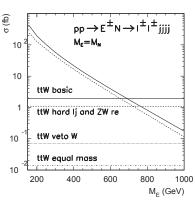
$$\begin{split} \Sigma_{R} &= \left(\begin{array}{cc} \Sigma_{R}^{0}/\sqrt{2} & \Sigma_{R}^{+} \\ \Sigma_{R}^{-} & -\Sigma_{R}^{0}/\sqrt{2} \end{array} \right) \\ \mathcal{L} \supset & \mathrm{Tr}\overline{\Sigma_{R}}i D \Sigma_{R} - \left[\frac{1}{2} \mathrm{Tr}\left(\overline{\Sigma_{R}} M_{\Sigma} \Sigma_{R}^{C}\right) + \overline{F_{L}} Y_{\Sigma} \tilde{H} \Sigma_{R} + \text{h.c.} \right] \end{split}$$

Mass matrix of neutral particles:

$$M_{\rm v} = \begin{pmatrix} 0 & M_{\rm D} \\ M_{\rm D} & M_{\rm \Sigma} \end{pmatrix}, \text{ where } M_{\rm D} = {\rm Y}_{\rm \Sigma} {\rm v}/\sqrt{2}$$

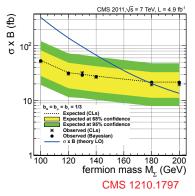
can be diagonalized as in type I seesaw

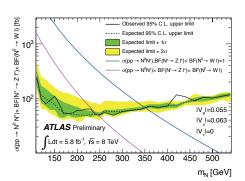

Differences to type I:


electroweak interactions; charged heavy-light mixing

Relatively less extensively studied

Collider test of type III seesaw


Li and He 2009


A displaced vertex of heavy triplet leptons could be visible at LHC.

Possible to detect them up to 1 TeV.

Collider test of type III seesaw: LHC data

 $M_{\Sigma} > 180 - 210 \text{ GeV at } 95\% \text{ CL}$

ATLAS-CONF-2013-019 $M_{\overline{5}} > 245 \text{ GeV at } 95\% \text{ CL}$

4 D > 4 P > 4 B > 4 B > 9 Q Q

A partial list of other papers on conventional seesaws

Type I seesaw at various colliders (ILC, CLIC, etc) Aguila et al 2005, 2006 (see backup pages)

Comparative study on 3 seesaws and importance of tri-lepton channel $\ell^{\pm}\ell^{\mp}$ for discovery Aguila et al 2009 (see backup pages)

Variants of 3 seesaws:

```
Type I+II: Chao, Si, Xing and Zhou 2008
```

```
Type I+III from SU(5): Bajc et al 2007; Arhrib et al 2010
```

```
Type I + ℓNH<sup>+</sup> interaction Bar-Shalom, Eilam, Han and Soni 2008
```

```
Type I + U(1)_{B-L} symmetry Fileviez Perez, Han and Li 2009
```

```
Type I + W' Han, Lewis, Ruiz and Si 2013
```

```
Type II + scalar multiplets Aguila and Chala 2013
```

.

Outline

- 1 Basics about neutrinos
- 2 Conventional seesaws and tests
- 3 Going beyond conventional seesaws
- 4 Summary and outlook

Why going beyond conventional seesaws

Tension between tiny m_V and accessibility of new phys (large mass of new particles or/and small couplings) can be relaxed in two basic approaches

• m_v induced radiatively: one loop (Zee '80), two loops (Zee '85, Babu '88), three loops (Krauss et al '03), ...

Usually amounts to higher-dim operators with additional small factors Global symmetries or new quantum numbers usually required to forbid lower-loop contri.

Why going beyond conventional seesaws

• m_v induced at tree level from higher-dim operators

Fields live in higher-dim reps so that seesaw operates in several steps to avoid lower-dim operators

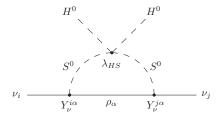
Global symmetries not necessary

Unique operator at each dim $\mathcal{O}_{5+2n} = \mathcal{O}_5(H^{\dagger}H)^n$ Liao 2010

I show one example for each approach

Radiatively induced m_{ν} : color-octet model

New particles:

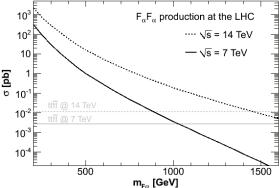

Fileviez Perez and Wise 2009

one scalar $S \sim (8,2,1)$ and two fermions $\rho_{\alpha} \sim (8,1,0)$

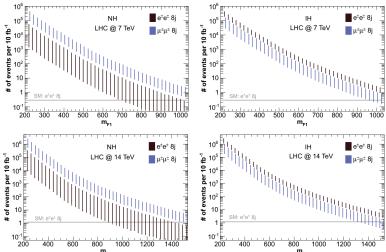
$$\mathscr{L} \supset -Y_{v}^{i\alpha}\overline{F_{Li}}\tilde{S}\rho_{\alpha} + \text{h.c.},$$

$$V \supset \frac{1}{2}\lambda_{HS}(S^{\dagger}H)^{2} + \text{h.c.}.$$

 m_{ν} induced by



Basics about neutrinos


Radiatively induced m_{ν} : color-octet model at LHC

Fileviez Perez, Han, Spinner and Trenkel 2010

Signal: like-sign dileptons via $F_{\alpha}F_{\alpha}$ production with $F_{\alpha} \rightarrow \ell tb \rightarrow \ell 4j$ Pair production cross section of octet fermions: $F_{\alpha} \equiv (\rho_{R\alpha}^{C}, \rho_{R\alpha})$

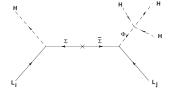
of like-sign dileptons per 10/fb exceeds bkg up to $m_{F_1} \approx m_{F_2} \sim 1 \text{ TeV}$ $m_S = 2 \text{ TeV}$, vertical line: scanning over parameters

New fields in higher-dim reps: higher seesaws at tree

Too many, arbitrary possibilities. Use as our criteria:

Liao 2010

- For a given set of fields, lowest-dim operator \mathcal{O}_{5+2n} dominates m_v
- For a given \mathcal{O}_{5+2n} , use as few new fields as possible.
- No symmetry other than SM gauge symmetry imposed.


Consequences:

- conventional seesaws.
- Can be classified according to whether SM H can Yukawa couple to Σ

New fields in higher-dim reps: (H, Σ) coupled $\Rightarrow e_7$

Unique option: one fermion $\Sigma = (1,2)$ plus one scalar $\Phi = (3/2,3)$ This is the model proposed in Babu et al 2009 *O*₇ from

LHC pheno briefly analysed: pair-production of multiply charged $\Phi^{\pm\pm\pm}$, $\Phi^{\pm\pm}\to$ multiple ℓ^{\pm} , W^{\pm} testability yet to be studied

New fields in higher-dim reps: (H, Σ) not coupled $\Rightarrow \theta_{5+4n}$

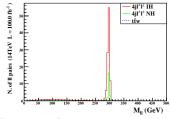
General case: cascade seesaw

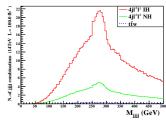
Liao 2010

one fermion $\Sigma = (n+1,0)$ with integral $n \ge 1$

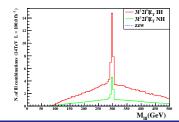
A sequence of scalars $\phi^{(m+\frac{1}{2})} = (m+1/2,1)$ with m=1, 2, ..., n

Consequences:


- Only $\Phi^{(n+\frac{1}{2})}$ can Yukawa couple to (Σ, F_t)
- Only $\Phi(\frac{3}{2})$ can directly develop a naturally small vev, while others develop smaller and smaller vev's by a cascading process:



• m_v from \mathcal{O}_{5+4n} without imposing a global sym


New fields in higher-dim reps: LHC pheno with ρ_9

of events of pp \rightarrow $\Phi^{++}\Phi^{+}$ \rightarrow 4 $i2\ell$ for $M_{\Phi^{++}\Phi^{+}}=300~{\rm GeV}$ at 14 TeV

of events of $pp \to \Sigma^{\pm}\Sigma^{0} \to 3\ell^{\pm}2\ell^{\mp} + \cancel{E}_{T}$ for $M_{\Sigma} = 300 \; \text{GeV}$ at 14 TeV

Ding et al 1403.xxxx see also Chen and Zheng 1312.7207

Outline

- 1 Basics about neutrinos
- 2 Conventional seesaws and tests
- 3 Going beyond conventional seesaws
- 4 Summary and outlook

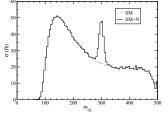
- Great progress in measurements on neutrino parameters, including the oscillation data, cosmological observations, and other low-energy experiments, is very helpful for us to do realistic collider phenomenology.
- Conventional seesaw models have been fully studied in the literature
- There are a variety of models beyond conventional seesaws, some of
- Neutrino phys at lepton colliders has been less intensively studied

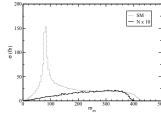
- Great progress in measurements on neutrino parameters, including the oscillation data, cosmological observations, and other low-energy experiments, is very helpful for us to do realistic collider phenomenology.
- Conventional seesaw models have been fully studied in the literature except for type III. Type I has been done for *effective case*.
- There are a variety of models beyond conventional seesaws, some of
- Neutrino phys at lepton colliders has been less intensively studied

- Great progress in measurements on neutrino parameters, including the oscillation data, cosmological observations, and other low-energy experiments, is very helpful for us to do realistic collider phenomenology.
- Conventional seesaw models have been fully studied in the literature except for type III. Type I has been done for effective case.
- There are a variety of models beyond conventional seesaws, some of which have been studied and some are being considered. An open but challenging task is how to distinguish them at colliders.
- Neutrino phys at lepton colliders has been less intensively studied because of limited achievable energy for heavy particles, while study at very high energy colliders has just started.

- Great progress in measurements on neutrino parameters, including the oscillation data, cosmological observations, and other low-energy experiments, is very helpful for us to do realistic collider phenomenology.
- Conventional seesaw models have been fully studied in the literature except for type III. Type I has been done for *effective case*.
- There are a variety of models beyond conventional seesaws, some of which have been studied and some are being considered. An open but challenging task is how to distinguish them at colliders.
- Neutrino phys at lepton colliders has been less intensively studied because of limited achievable energy for heavy particles, while study at very high energy colliders has just started.

Backup: Simulation on type I seesaw at ILC

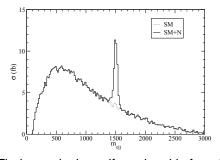

 $e^+e^- \rightarrow N\nu \rightarrow \ell W\nu$ at ILC Aguila et. al., PLB613, 2005



s-channel is suppressed compared to the first two

■ Kinematial distributions of m_{ejj} (left) and m_{ev} (right) for $V_{eN} = 0.073$, $V_{\mu N} = V_{\tau N} = 0$, and $m_N = 300$ GeV.

■ Cross sections (in fb) for $e^+e^- \rightarrow e^\mp W^\pm v$


	No cuts	m_{ejj}	$m_{e\nu}$	$m_{ejj}, m_{e\nu}$
SM	2253	89.1	1387	53.6
SM + N	2339	173.7	1489	130.8

before and after the kinematial cuts:

290 GeV $\leq m_{ejj} \leq$ 310 GeV, $m_{ev} \leq$ 40 GeV or $m_{ev} \geq$ 110 GeV.

Backup: Simulation on type I seesaw at CLIC

■ Kinematial distributions for $e^+e^- \rightarrow e^\mp W^\pm v$ of m_{ejj} with $V_{eN}=0.05,\ V_{\mu N}=V_{\tau N}=0,$ and $m_N=1500~{\rm GeV}.$ Aguila et. al., JHEP0505, 2005

	No cut	With cut	
SM	516	14.6	
SM + N	548	39.4	

Cross sections (in fb) before and after the kinematial cut:

1460 GeV
$$\leq m_{ejj} \leq$$
 1540 GeV.

- Their conclusions: if no signal is found at ILC or CLIC:
 - ILC: $V_{eN} \le 0.007$ for $m_N = 200 400$ GeV.
 - CLIC: $V_{eN} \le 0.002 0.006$ for $m_N = 1 2$ TeV.

<ロ > < 個 > < 種 > < 差 > < 差 > 差 釣 へ ♡

Backup: Distinguish 3 conventional seesaws at LHC

Luminosity for discovery in each model Aguila et. al., NPB813, 2009

	Seesaw I	Seesaw II	Seesaw III
	$m_N=100~{ m GeV}$	$m_{\Delta} = 300 \text{ GeV}$	$m_{\Sigma} = 300 \text{ GeV}$
Six leptons	=	=	×
Five leptons	=	=	$28 \; {\rm fb^{-1}}$
$\ell^{\pm}\ell^{\pm}\ell^{\pm}\ell^{\mp}$	-	-	15 fb ⁻¹
			m_E rec
l+l+l-l-	-	$19~/~2.8~{ m fb^{-1}}$	$7 \; { m fb^{-1}}$
		$m_{\Delta^{++}}$ rec	m_E rec
$\ell^{\pm}\ell^{\pm}\ell^{\pm}$	-	-	$30 \; {\rm fb^{-1}}$
$\ell^{\pm}\ell^{\pm}\ell^{\mp}$	$< 180 \; {\rm fb^{-1}}$	$3.6 \ / \ 0.9 \ \mathrm{fb^{-1}}$	$2.5 \; {\rm fb^{-1}}$
		$m_{\Delta^{++}}$ rec	m_N rec
$\ell^{\pm}\ell^{\pm}$	$< 180 \text{ fb}^{-1}$	$17.4 / 4.4 \; \mathrm{fb^{-1}}$	$1.7 \; { m fb^{-1}}$
t t	m_N rec	$m_{\Delta^{++}}$ rec	m_{Σ} rec
$\ell^+\ell^-$	×	$15 / 27 \; \mathrm{fb^{-1}}$	$80 \; {\rm fb^{-1}}$
e e		m_{Δ} rec	m_{Σ} rec
ℓ^{\pm}	×	×	() (X) (X) (X) (X)

Nankai Univ