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Why collider?

C.-P. Yuan (MSU) Electroweak Precision Measurements at Hadron Collider

Why accelerator?

We live in a cold and empty universe: only the stable relics and 
leftovers of the Big Bang remain.  The unstable particles have decayed 
away with time, and the symmetries have been broken as the universe 
has cooled. 

But every kind of particle that ever existed is still there, in the 
equations that describe the particles and forces of the universe.  

     The vacuum “knows” about all of them.

We can use accelerators to make the equations come alive, by 
pumping sufficient energy into the vacuum to create the particles and 
uncover the symmetries that existed in the earliest universe. 

Introduction
Collider physics
W-boson physics
Z-boson  physics

Why do we need accelerator?
Past, present and future
Tevatron: Proton Anti-Proton machine
Detector: what to measure
Hadron variables





费⽶米⼦子和玻⾊色⼦子
费⽶米⼦子：	


   遵守Pauli不相容原理

玻⾊色⼦子：	


  不遵守Pauli不相容原理

⾃自旋为半整数 ⾃自旋为整数
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Bosons"&"Fermions"
!  Bosons:"Named"after"Satyendra"N."Bose""

!  ‘Bosons’"have"integer"spin"values,"S=0,1,2"
!  Photons"lclump"together"into"the"same"
state"–"‘they"give"up"their"individuality’"

!  All"fields"involve"particles"(‘field"quanta’)"
!  For"all"forces,"these"particles"are"bosons"

!  Force"carriers"

!  Fermions:"Named"after"Enrico"Fermi""
!  ‘Fermions’"have"halfVinteger"spin,"S=1/2,3/2"

!  Electrons"have"to"be"in"different"states"–"
‘they"keep"their"individuality’"

!  Atoms"are"built"with"fermions"
!  Structure"formation"

6"
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物质场粒⼦子：轻⼦子
•  不参与强相互作⽤用
•  整数或零电荷
•  味:

“电⼦子”              (1897)       在原⼦子中
“Muon”             (1937)      在宇宙射线中⾸首次观测到

“Tau”                 (1975)      在SLAC观测到                                     

“Electron 中微⼦子”          (1956)

“Muon 中微⼦子”              (1962)

“Tau 中微⼦子”                 (2000)

mµ

( 206 me )

( Stanford Linear Accelerator Center)

泡利以之解释Beta衰变中能动量不守恒 (1930)



物质场粒⼦子：夸克
•  参与强相互作⽤用
•  带分数电荷

•  质⼦子和中⼦子的组成成分
(udd) (uud)

u          “up” 
d          “down”( )   第⼀一次实验证据:

Stanford Linear Accelerator Center	


        (Giant Electron Microscope)•  味:

u         “up”	


d         “down”	


s         “strange”	


c         “charmed”                            (1974)	


b         “bottom”                              (1977)            “Beauty”	


t          “top”                                     1995             “Truth”	


                                                         @ Fermilab (Tevatron)



标准模型的物质场

7§  标量场 (⾃自旋为0)	


        希格斯玻⾊色⼦子： 唯⼀一知道不同代的粒⼦子间不同之处的粒⼦子 	


                 ( 希格斯机制             对称性⾃自发破缺)

§  费⽶米⼦子 (⾃自旋1/2)

轻子

无强相 
互作用( )

夸克

3代



相互作⽤用传播⼦子
  相互作⽤用（通过交换⾃自旋为1的规范玻⾊色⼦子）

 电磁相互作⽤用 (QED)
光⼦子                  (⽆无质量)

 强相互作⽤用 (QCD)
胶⼦子                  (⽆无质量)                        (1979)

和     规范玻⾊色⼦子                             (1983)W±
 弱相互作⽤用

有质量( )



粒⼦子物理的标准模型
新“元素”周期表

e

⌫e ⌫µ ⌫⌧

µ ⌧

u

d

c

s

t

b

�

Z

W

g
h

轻⼦子

夸克
电磁

强

弱

希格斯粒⼦子

SU(3) x SU(2) x U(1) 
规范对称性⾃自旋1/2 ⾃自旋1

⾃自旋0



标准模型的两⼤大疑难
电弱对称性破缺起源  和  味对称性破缺起源
（W 和 Z 质量） （费⽶米⼦子质量）

1019102 103101100 101510�3

e⌫e
⌫µ
⌫⌧

µ ⌧

u
d s b

Z

W
h
t

普
朗
克
能
标

跷
跷
板
能
标

⼤大
统
⼀一
能
标

顶夸克或许是我们和新物理间的唯⼀一联系

TeV
新
物
理

(GeV)质⼦子 
质量

费⽶米 
能标

c

10�9

GeV = 109eV



能量和空间尺度
加速器： 强⼒力的“显微镜”	



⾼高能加速的粒⼦子束，帮助我们看清细微的结构

低能量粒⼦子束 ⾼高能量粒⼦子束

E ⇠ 1

x



卢瑟福散射实验
对撞实验鼻祖

⾦金箔
alpha粒⼦子

Detector
Outgoing	



Particles

原⼦子的⾏行星模型



卢瑟福散射实验
对撞实验鼻祖

靶⼦子	


（⾦金箔）⼊入射粒⼦子

探测器
出射粒⼦子



散射截⾯面

1 Barn = 10-24 cm2

粒⼦子束和靶或另⼀一粒⼦子束之间相互作⽤用的有效⾯面积



散射截⾯面（   ）
• 量纲：

�
[�] = m2

1barn = 10�24(cm)2 = 10�28m2 = 100(fm)2

1mb = 10�3b

1µb = 10�6b

1nb = 10�9b

1pb = 10�12b

1fb = 10�15b



汤姆逊散射
低能光⼦子-⾮非相对论性（近乎静⽌止）电⼦子之间散射

经典物理反射和衍射

�classic

Tot

= 2⇡r2e 电⼦子经典半径re

e2

re
= mec

2 =) re =
e2

mec2
⇠ 1/137

0.511MeV
⇠ 2.8fm

量⼦子⼒力学计算给出

�
Tot

=
8

3
⇡r2e = 67(fm)2 = 0.67barn



⾼高能对撞机
估算质⼦子-质⼦子对撞机

� ⇠ ⇡�2
p ⇠ ⇡

GeV2 =
⇡(fm)2

106(1/197)2
⇠ 10�3barn = mb

14TeV⼤大型强⼦子对撞机
�(pp)

total

⇠ 110mb

1.96TeV Tevatron

�(pp̄)
total

⇠ 60mb

LHC Event rates for various SM processes:

1034/cm2/s ⇒ 100 fb−1/yr.

Annual yield # of events = σ × Lint:

10B W±; 100M tt̄; 10M W+W−; 1M H0...

Great potential to open a new chapter of HEP!



事例数

Number of Event = � · L
实验学家

理论学家 加速器学家



亮度 (luminosity)
2. The luminosity:

. . . . . . . .

Colliding beam
n1 n2

t = 1/f

L ∝ fn1n2/a,

(a some beam transverse profile) in units of #particles/cm2/s

⇒ 1033 cm−2s −1 = 1 nb−1 s−1 ≈ 10 fb−1/year.

Current and future high-energy colliders:

Hadron
√

s L δE/E f #/bunch L
Colliders (TeV) (cm−2s−1) (MHz) (1010) (km)

Tevatron 1.96 2.1 × 1032 9 × 10−5 2.5 p: 27, p̄: 7.5 6.28

LHC (7) 14 (1032) 1034 0.01% 40 10.5 26.66

e+e−
√

s L δE/E f polar. L
Colliders (TeV) (cm−2s−1) (MHz) (km)

ILC 0.5−1 2.5 × 1034 0.1% 3 80,60% 14 − 33
CLIC 3−5 ∼ 1035 0.35% 1500 80,60% 33 − 53

L / fn1n2/⌃
# of particles passing each 

other per unit time through unit 
transverse area at the 

interaction point

: particle in each bunch in beam 1,2n1,2

f : beam crossing frequency
⌃ : transverse profile of the bream

[L] = cm�2s�1

1cm�2s�1 = 10�33nb�1s�1

积分亮度：1033cm�2s�1 = 1nb�1s�1 = 10fb�1/year

 瞬时亮度



Past, current and Further  collider
August 26, 2010 0:6 WSPC - Proceedings Trim Size: 9in x 6in tasi09˙ws˙v2
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L (together with Ecm) contains all the information about the accelerator needed to analyze the experiment.
Experimental collaborations carefully monitor and record L, as a function of time. The experimentally
measured value of the cross section is inferred from Eq. (3). This value can then be compared with the
theoretically expected cross section.

Table 1. Recent and future energy-frontier particle colliders. (Parameters listed for the LHC and the ILC are design
values.)

Name Type
√
s (GeV) Lint (pb−1) Years of Detectors Location

operation

LEP e+e− 91.2 (LEP-1) ≈ 200 (LEP-1) 1989-95 (LEP-1) ALEPH, OPAL, CERN

130-209 (LEP-2) ≈ 600 (LEP-2) 1996-2000 (LEP-2) DELPHI, L3

SLC e+e− 91.2 20 1992-98 SLD SLAC

HERA e±p 320 500 1992-2007 ZEUS, H1 DESY

Tevatron pp̄ 1800 (Run-I) 160 (Run-I) 1987-96 (Run-I) CDF, DØ FNAL

1960 (Run-II) 6 K (Run-II, 06/09) 2000-??? (Run-II)

LHC pp 14000 10 K/yr (”low-L”) 2010? - 2013? ATLAS, CMS CERN

100 K/yr (”high-L”) 2013?? - 2016???

ILC e+e− 500-1000 1 M??? ??? ??? ???

Throughout the lectures, we will contrast theoretical predictions with data from recent and ongoing
experiments at energy-frontier colliders. Table 1 shows the basic parameters of these colliders, along with
the upcoming LHC and the proposed next-generation electron-positron collider, the International Linear
Collider (ILC).c It is important to keep in mind that, for hadron colliders, the listed center-of-mass energy
corresponds to the colliding (anti)protons. Since high-energy processes are initiated by partons, which only
carry a fraction of the proton momentum, the energy scales that can be probed at a hadron collider are
substantially lower than this energy, typically by factors of 3−10 depending on the process. Electron-positron
colliders, on the other hand, are able to explore many reactions at energy scales extending all the way to
their nominal

√
s. The luminosity values shown in the table are the integrated luminosities, Lint =

∫

Ldt over
the lifetime of the experiment. The table also lists the detectors at each collider. Detector names coincide
with the names of collaborations of physicists operating them, and are frequently used to refer to the data
published by these collaborations.

Computing and interpreting cross sections will be our main focus. It is clear from its definition, Eq. (2),
that the cross section has cgs units of cm2. A unit typically used in experimental nuclear and particle
physics is 1 barn = 10−24 cm2. In “theory units”, c = ! = 1, the natural unit for cross section is GeV−2; the
conversion factor is

1 bn = 2568 GeV−2 ,

1 GeV−2 = 3.894 · 10−4 bn. (5)

To get a very rough estimate of cross sections expected in particle physics experiments, we can use dimensional
analysis: away from thresholds and resonances, the only energy scale in a collision of two massless particles

is considering. In addition, the measured rate typically includes events that do not actually have the requested properties, but
are mis-identified due to detector imperfections. In these lectures, we will mostly not be concerned with such detector effects,
except for an occasional brief comment. An interested reader is referred to Eva Halkidakis’ lectures at this school.
cFor lack of time, I will not be able to discuss results from recent lower-energy, “luminosity-frontier” collider experiments, such
as CLEO, BaBar, and Belle.



加速器和对撞机
⼆二战之后⾼高能物理才成为⼀一⻔门公认的学科

（富⼈人的游戏）

能量上限由机器的环半径和磁场强度决定
‣上世纪50年代，半径~10-20⽶米（房⼦子中）	


‣上世纪60年代，半径~100⽶米   （地下）	


‣上世纪70年代，半径~1000⽶米 （地下）	


‣上世纪80年代，半径~4000⽶米 （地下）



对撞机年表

186 E L E M E N T A R Y  P A R T I C L E  P H Y S I C S

It is interesting to plot the bubble energy (the center of mass
energy) achieved at these machines against the year in which they
were constructed. Amazingly a straight line results if for the y-axis
a logarithmic scale is used. Normally, plots are linear, that is every
mark on the scale is a fixed amount above the previous mark.
Thus then the scale reads sequentially, 1, 2, 3, 4, etc. On a loga-
rithmic scale each mark is a fixed factor above the previous one,
the scale is then 1, 10, 100, 1000, etc. That is the same type of
scale that you can find on old-fashioned slide rules. That scale
applies in many cases, such as the development of the world popu-
lation. This accelerator plot is called a Livingston plot, after the
American machine builder. The plot (see figure below) does not
show all accelerators ever built but mainly the top achievers.

1950 1960 1970 1980 1990

Year

10

100 GeV

Center of mass
 (bubble) energy

2

3

4
5
6
7
8
9

20

30

40
50
60
70
80
90

1

Cosmotron

Dubna

CERN PS
AGS

Serpukhov

CERN SPS

FNAL
Tevatron

A similar plot can be made for machines with storage rings
(called colliders): proton–proton, proton–antiproton, electron–
positron, electron–proton and positron–proton colliders. Proton–

veltman-chap06.p65 06/30/2004, 12:26 PM186

187A C C E L E R A T O R S  A N D  S T O R A G E  R I N G S

proton and electron–proton or positron–proton colliders require
two intersecting rings, the particle–antiparticle colliders can do
with one ring in which both particles and antiparticles circulate in
opposite directions.

Many other machines followed after AdA (the machine made
by Touschek), with the largest one being LEP at CERN, design
energy 91 GeV per beam (a 182 GeV energy bubble). In the final
months of LEP’s existence, engineers in a splendid demonstration
of their prowess drove the LEP center of mass energy to 209 GeV.
In the figure below the Livingston plot for colliders is shown.
Again, not all existing or past machines have been included.

1960 1970 1980 1990 2000

Year

10

100

1000 GeV

Center of mass
 (bubble) energy

2

4
6
8

20

40
60
80

200

400
600
800

2000
3000

1
ACO

ADONE
SPEAR I

DORIS

SPEAR II

PETRA
PEP

LEP
LEP 2000

Electron–positron
colliders

ISR

CERN pp̄

FNAL pp̄

Proton
machines

ACO (see subject index for machine acronyms) is a machine
at Orsay, France. Like most electron-positron colliders it is a single
ring machine. ADONE is the successor to AdA, located in
Frascati, Italy. PEP, SPEAR I and its upgraded version SPEAR II
are at SLAC (Stanford Linear Accelerator Centre) at Stanford,
California.

veltman-chap06.p65 06/30/2004, 12:26 PM187

我们只能加速稳定粒⼦子：e±, p, p̄, �



 正负电⼦子对撞机
优势：

1）实验室系和质⼼心系相同 
     —>可以充分利⽤用能量 
2）⼊入射粒⼦子束的性质已知 
     —>运动学性质确定 
3）背景干净 
4）有可能使⽤用极化⼊入射粒⼦子 
  —> 探测相互作⽤用的⼿手征性

劣势：

1）圆型对撞机辐射严重 
!
!
!
      —> 直线加速 (昂贵) 
!
2）积分亮度不⾼高

�E ⇠ 1

R

✓
E

me

◆4



Proton-Antiproton Collisions

17Junjie Zhu2009-01-22

Proton - antiproton Collisions

u u

d

Proton

___________

Proton: Bag of quarks and gluons (partons)

强⼦子对撞机



(C). Hadron Colliders
LHC: the new high-energy frontier

“Hard” Scattering

proton

underlying event underlying event

outgoing parton

outgoing parton

initial-state
radiation

final-state
radiation

proton

Advantages

• Higher c.m. energy, thus higher energy threshold:√
S = 14 TeV: M2

new ∼ s = x1x2S ⇒ Mnew ∼ 0.2
√

S ∼ 3 TeV.

优势：
1）⾼高能量 
2）⾼高亮度 
3）过程丰富 
     qq/qg/gg/bb

劣势：
1）背景太⼤大 
2）⽆无法确定初态 
3）⽆无法确定质⼼心系能量 

强⼦子对撞机



你相信 
奇迹吗？

Rare Events, such as 
Higgs production, are 
difficult to find! 
!
Need good detectors, 
triggers, readout to 
reconstruct the mess 
into a piece of 
physics.
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21 

LHC"ring:"
27"km"circumference"

⼤大型强⼦子对撞机
质⼼心系能量14TeV
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LHC"ring:"
27"km"circumference"

CMS 

ALICE 

LHCb 

ATLAS 

⼤大型强⼦子对撞机
质⼼心系能量14TeV



CMS： ⻓长21⽶米，⾼高15⽶米，宽15⽶米，12.5千吨



ATLAS： ⻓长46⽶米，⾼高25⽶米，宽25⽶米，7千吨



探测器

(D). Particle Detection:

The detector complex:

Utilize the strong and electromagnetic interactions

between detector materials and produced particles.

hadronic calorimeter

E-CAL

tracking

vertex detector

muon chambers

beam

pipe

( in B field )



What we “see” as particles in the detector: (a few meters)

For a relativistic particle, the travel distance:

d = (βc τ)γ ≈ (300 µm)(
τ

10−12 s
) γ

• stable particles directly “seen”:

p, p̄, e±, γ

• quasi-stable particles of a life-time τ ≥ 10−10 s also directly “seen”:

n,Λ, K0
L, ..., µ±, π±, K±...

• a life-time τ ∼ 10−12 s may display a secondary decay vertex,

“vertex-tagged particles”:

B0,±, D0,±, τ±...

• short-lived not “directly seen”, but “reconstructable”:

π0, ρ0,±... , Z, W±, t, H...

• missing particles are weakly-interacting and neutral:

ν, χ̃0, GKK...

Tao Han, TASI



† For stable and quasi-stable particles of a life-time

τ ≥ 10−10 − 10−12 s, they show up as



Silicon 

Pixels 

c c c 

µ+


e+ 

γ, πo


K-, π-,p,… 

ν


Muon detectors 

Hadron calorimeter 

Crystal Electromagnetic  

calorimeter 

4 Tesla  

Solenoid 

All Silicon Strip 

Tracker 

Ko→ π+π-, …etc 

54"

54"



A closer look:

Theorists should know:

For charged tracks : ∆p/p ∝ p,

typical resolution : ∼ p/(104 GeV).

For calorimetry : ∆E/E ∝
1√
E

,

typical resolution : ∼ (5 − 80%)/
√

E/GeV.

p(GeV) = 0.3QB(Tesla)R(m) Tao Han, TASI



† For vertex-tagged particles τ ≈ 10−12 s,

heavy flavor tagging: the secondary vertex:

Typical resolution: d0 ∼ 30 − 50 µm or so

⇒ Better have two (non-collinear) charged tracks for a secondary vertex;

Or use the “impact parameter” w.r.t. the primary vertex.

For theorists: just multiply a “tagging efficiency” ϵb ∼ 40 − 60% or so.

† For vertex-tagged particles τ ≈ 10−12 s,

heavy flavor tagging: the secondary vertex:

Typical resolution: d0 ∼ 30 − 50 µm or so

⇒ Better have two (non-collinear) charged tracks for a secondary vertex;

Or use the “impact parameter” w.r.t. the primary vertex.

For theorists: just multiply a “tagging efficiency” ϵb ∼ 40 − 60% or so.

† For vertex-tagged particles τ ≈ 10−12 s,

heavy flavor tagging: the secondary vertex:

Typical resolution: d0 ∼ 30 − 50 µm or so

⇒ Better have two (non-collinear) charged tracks for a secondary vertex;

Or use the “impact parameter” w.r.t. the primary vertex.

For theorists: just multiply a “tagging efficiency” ϵb ∼ 40 − 60% or so.

Tao Han, TASI



† For short-lived particles: τ < 10−12 s or so,

make use of final state kinematics to reconstruct the resonance.

† For missing particles:

make use of energy-momentum conservation to deduce their existence.

pi
1 + pi

2 =
obs.
∑

f

pf+pmiss.

But in hadron collisions, the longitudinal momenta unkown,

thus transverse direction only:

0 =
obs.
∑

f

p⃗f T+p⃗miss T .

often called “missing pT” (p/T ) or “missing ET” (E/T).

Tao Han, TASI



Theoretical 
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How does SM predict … ?

� In Quantum Mechanics

Schrodinger Equation:

i H
t

w<
 <

w

1. Figure out what H is.

2. Insert H in S.E. 

3. Calculate Predictions

� In Relativistic Quantum Field Theory

SM gives the Interaction Lagrangian $

$

Feynman Rules
Feynman Diagrams

S-Matrix Elements

Predictions

` t b

W �

Vertex;
coupling
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is Ecm, and we should expect the (total) scattering cross section to behave roughly as

σ ∼
1

E2
cm

. (6)

A similar result (larger by π) is obtained by replacing the colliding particles with classical “billiard balls” of
radius equal to their Compton wavelength λ ∼ 1/E, and taking their geometric cross section as an estimate.
The geometric cross section also coincides with the upper bound on the total inelastic cross section (assuming
s-wave scattering) from unitarity considerations. The cross sections for specific processes are typically lower,
by an order of magnitude or more, than this bound: For example, the e+e− → Z cross section on resonance
(
√
s = MZ) is about 40 nb, compared to σgeom = π/M2

Z ≈ 2500 nb. The decrease of cross sections with
energy has an important implication for accelerator design: Colliders operating at higher center-of-mass
energies must also have higher luminosity, adding to the technical challenges of expanding the high-energy
frontier. This trend is clear in Table 1.

The “master formula” for evaluating the cross section and kinematic distributions for a 2 → N scattering
process is

dσ =
1

2s

(

N
∏

i=1

d3pi
(2π)3

1

2Ei

)

· (2π)4δ4(pA + pB −
∑

pi) · |M(pA, pB → {pi}|2 , (7)

where M is the invariant matrix element, a.k.a. scattering amplitude, and pi = (Ei,pi) are the 4-momenta
of the final-state particles. Note that M contains all information specific for the process under consideration
(such as coupling constant dependence, etc.), whereas all other ingredients are simply kinematic factors
common for any 2 → N process. While Eq. (7) is written in the center of mass frame of the colliding
particles, it is in fact invariant under boosts parallel to the collision axis. This feature will be important
when hadron collisions are considered. If the colliding beams are unpolarized, one needs to average the
quantity |M|2 over all possible initial-state polarizations. If the beams are polarized (this was the case at the
SLC, and may be implemented at the ILC), an appropriately weighted average should be computed instead.
In addition, if the final-state particles have spin, |M|2 should typically be summed over all possible spin
states, since no collider detector is capable of detecting spins of individual particles. (Exception occurs when
the final-state particles decay promptly, in which case the angular distribution of their decay products may
carry information about their polarization state.) The appropriately averaged and/or summed |scattering
amplitude|2 will be denoted by |M|

2
.

The number of independent kinematic variables in a 2 → N process is 3N − 4. In practice, the initial
state is always symmetric under rotation around the collision axis, and no physical observable can depend
on the overall azimuthal coordinate, leaving 3N − 5 physical variables. The simplest case, most commonly
encountered in practice, is 2 → 2 scattering. The only observable not constrained by energy and momentum
conservation is the scattering angle θ, which by convention is defined as the angle between the 3-momenta
of particles A and 1. The differential cross section is given by

dσ

d cos θ
=

{

1
16π

|p1|
s3/2

if
√
s > m1 +m2;

0 otherwise,
(8)

where

|p1| =
1

2

√

(s−m2
1 −m2

2)
2 − 4m2

1m
2
2

s
. (9)

In the most common case of equal masses in the final state, m1 = m2 = m, this formula further simplifies
(for

√
s > 2m) to

dσ

d cos θ
=

1

32πs

√

1−
4m2

s
|M|

2
. (10)

2 ! N : A+B ! 1 + 2 + · · ·+N

相空间
matrix element 
square

         is invariant, 
         is invariant under boost along beam line d�

|M|2
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148 7 Hadron Interactions at Low Energies and the Static Quark Model

In the considered hadronic resonance, ! ' 100 MeV, yielding to " '
0:66 !10!23 s. For a resonance of massm produced with kinetic energyE , the
lifetime is relativistically increased by a factor of # D E=m, and " D #"rest.

7.5 Breit–Wigner Equation for Resonances

Consider the collision between two hadrons: the incident particle corresponds to a
wave function with de Broglie length $̄, the second hadron is at rest in the laboratory
system. The energy of the incident particle can be varied. If, at some value of $̄ and
for a particular value of the relative angular momentum ` between the two hadrons,
the cross-section passes through a maximum, one can say that there is a hadronic
resonance. The resonance is characterized by

• Defined angular momentum J D ` (for spinless particles).
• Defined parity.
• Defined value of the isospin I .
• Defined mass, equal to the total energy in the center of mass at which there is the

resonance maximum.
• Defined lifetime, as determined by the width at half-maximum (! ) of the curve.

A resonance implies an increase of the formation probabilityW (4.28). Figure 7.5
shows a concentration of events in the energy region around 1,385 MeV. An
enhancement of the number of produced events, and consequently ofW , with a bell-
shaped distribution as that seen along the y-axis projection of the figure, involves
a similar increase in the production cross-section (% ' W ). In the following, we
shall derive the equation of the curve, called the Breit–Wigner (BW) equation. The
typical BW shape is plotted in Fig. 7.6. Note that the resonance energy ER, which
corresponds to the mass of the resonance, coincides with the peak of the function.
However, the width ! is defined as the difference in energy between the two points
where % D %max=2 (full width at half-maximum).

Fig. 7.6 Shape of the
Breit–Wigner equation. ! is
the width of the curve at the
ordinate point where
% D %max=2
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resonance in elastic scattering
a+ b ! R ! a0 + b0

7.5 Breit–Wigner Equation for Resonances 149

The shape of the BW curve can be obtained from the formalism of the amplitudes
and phases of matter waves. However, it is instructive to derive it from the general
property that the resonance is an unstable particle, with lifetime ! , and that time and
energy are variables correlated by the uncertainty principle. The energy dependence
of the amplitude of Fig. 7.6 is the Fourier transform of a wave function that describes
a survival probability decreasing exponentially over time, with lifetime ! .

Let us imagine the elastic formation process of a generic resonance R, which
decays with lifetime ! into the same initial particles. The presence of a interaction
process is demonstrated by the different directions and momenta of the particles in
the final state, that is,

aC b ! R! a0 C b0: (7.18)

The unstable resonance R is described by the free particle wave function (4.11)
multiplied by a real function describing its decay probability as a function of time,
that is,

 .t/ D  .0/e!i!Rt e! t
2! D  .0/e!

iER
„ t e!

"
2„ t ; (7.19)

where the relations !R D ER=„ and ! D „=" have been inserted in the last
equality. The probability of finding the particle at a time t is

I.t/ D  " D  .0/2e!t=! D I.0/e!t=! ; (7.20)

corresponding to the radioactive decay law (Sect. 4.5.2). The Fourier transform of
(7.19), in the natural unit system („ D c D 1), is

#.E/ D
Z
 .t/eiEt dt D  .0/

Z
e!t Œ." =2/CiER!iE$dt D

D K

.ER ! E/! i" =2
: (7.21)

The constant K must be determined with the normalization properties of wave
functions. Since the square of the wave function #.E/ represents the probability
of finding the particle in the energy state E, it must be proportional to the process
cross-section, that is,

%.E/ D %0#".E/#.E/ D %0
K2

Œ.ER !E/2 C " 2=4$
: (7.22)

Since Eq. 7.22 presents a maximum at E D ER, one can determineK as

1 D #".ER/#.ER/ D 4K2=" 2 !! K2 D " 2=4: (7.23)

The proportionality constant %0 must be related to the wavelength of the incident
particle, as mentioned at the beginning of the paragraph. From a dimension analysis,
one has %o ' &'̄2. Detailed calculations [P87] show that

%0 D &.2'̄/2 D 4&'̄2: (7.24)
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functions. Since the square of the wave function #.E/ represents the probability
of finding the particle in the energy state E, it must be proportional to the process
cross-section, that is,

%.E/ D %0#".E/#.E/ D %0
K2

Œ.ER !E/2 C " 2=4$
: (7.22)

Since Eq. 7.22 presents a maximum at E D ER, one can determineK as

1 D #".ER/#.ER/ D 4K2=" 2 !! K2 D " 2=4: (7.23)

The proportionality constant %0 must be related to the wavelength of the incident
particle, as mentioned at the beginning of the paragraph. From a dimension analysis,
one has %o ' &'̄2. Detailed calculations [P87] show that

%0 D &.2'̄/2 D 4&'̄2: (7.24)
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The shape of the BW curve can be obtained from the formalism of the amplitudes
and phases of matter waves. However, it is instructive to derive it from the general
property that the resonance is an unstable particle, with lifetime ! , and that time and
energy are variables correlated by the uncertainty principle. The energy dependence
of the amplitude of Fig. 7.6 is the Fourier transform of a wave function that describes
a survival probability decreasing exponentially over time, with lifetime ! .

Let us imagine the elastic formation process of a generic resonance R, which
decays with lifetime ! into the same initial particles. The presence of a interaction
process is demonstrated by the different directions and momenta of the particles in
the final state, that is,

aC b ! R! a0 C b0: (7.18)

The unstable resonance R is described by the free particle wave function (4.11)
multiplied by a real function describing its decay probability as a function of time,
that is,

 .t/ D  .0/e!i!Rt e! t
2! D  .0/e!

iER
„ t e!

"
2„ t ; (7.19)

where the relations !R D ER=„ and ! D „=" have been inserted in the last
equality. The probability of finding the particle at a time t is

I.t/ D  " D  .0/2e!t=! D I.0/e!t=! ; (7.20)

corresponding to the radioactive decay law (Sect. 4.5.2). The Fourier transform of
(7.19), in the natural unit system („ D c D 1), is

#.E/ D
Z
 .t/eiEt dt D  .0/

Z
e!t Œ." =2/CiER!iE$dt D

D K

.ER ! E/! i" =2
: (7.21)

The constant K must be determined with the normalization properties of wave
functions. Since the square of the wave function #.E/ represents the probability
of finding the particle in the energy state E, it must be proportional to the process
cross-section, that is,

%.E/ D %0#".E/#.E/ D %0
K2

Œ.ER !E/2 C " 2=4$
: (7.22)

Since Eq. 7.22 presents a maximum at E D ER, one can determineK as

1 D #".ER/#.ER/ D 4K2=" 2 !! K2 D " 2=4: (7.23)

The proportionality constant %0 must be related to the wavelength of the incident
particle, as mentioned at the beginning of the paragraph. From a dimension analysis,
one has %o ' &'̄2. Detailed calculations [P87] show that

%0 D &.2'̄/2 D 4&'̄2: (7.24)
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property that the resonance is an unstable particle, with lifetime ! , and that time and
energy are variables correlated by the uncertainty principle. The energy dependence
of the amplitude of Fig. 7.6 is the Fourier transform of a wave function that describes
a survival probability decreasing exponentially over time, with lifetime ! .

Let us imagine the elastic formation process of a generic resonance R, which
decays with lifetime ! into the same initial particles. The presence of a interaction
process is demonstrated by the different directions and momenta of the particles in
the final state, that is,

aC b ! R! a0 C b0: (7.18)

The unstable resonance R is described by the free particle wave function (4.11)
multiplied by a real function describing its decay probability as a function of time,
that is,

 .t/ D  .0/e!i!Rt e! t
2! D  .0/e!

iER
„ t e!

"
2„ t ; (7.19)

where the relations !R D ER=„ and ! D „=" have been inserted in the last
equality. The probability of finding the particle at a time t is

I.t/ D  " D  .0/2e!t=! D I.0/e!t=! ; (7.20)

corresponding to the radioactive decay law (Sect. 4.5.2). The Fourier transform of
(7.19), in the natural unit system („ D c D 1), is

#.E/ D
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 .t/eiEt dt D  .0/

Z
e!t Œ." =2/CiER!iE$dt D

D K

.ER ! E/! i" =2
: (7.21)

The constant K must be determined with the normalization properties of wave
functions. Since the square of the wave function #.E/ represents the probability
of finding the particle in the energy state E, it must be proportional to the process
cross-section, that is,

%.E/ D %0#".E/#.E/ D %0
K2

Œ.ER !E/2 C " 2=4$
: (7.22)

Since Eq. 7.22 presents a maximum at E D ER, one can determineK as

1 D #".ER/#.ER/ D 4K2=" 2 !! K2 D " 2=4: (7.23)

The proportionality constant %0 must be related to the wavelength of the incident
particle, as mentioned at the beginning of the paragraph. From a dimension analysis,
one has %o ' &'̄2. Detailed calculations [P87] show that

%0 D &.2'̄/2 D 4&'̄2: (7.24)
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The shape of the BW curve can be obtained from the formalism of the amplitudes
and phases of matter waves. However, it is instructive to derive it from the general
property that the resonance is an unstable particle, with lifetime ! , and that time and
energy are variables correlated by the uncertainty principle. The energy dependence
of the amplitude of Fig. 7.6 is the Fourier transform of a wave function that describes
a survival probability decreasing exponentially over time, with lifetime ! .

Let us imagine the elastic formation process of a generic resonance R, which
decays with lifetime ! into the same initial particles. The presence of a interaction
process is demonstrated by the different directions and momenta of the particles in
the final state, that is,

aC b ! R! a0 C b0: (7.18)

The unstable resonance R is described by the free particle wave function (4.11)
multiplied by a real function describing its decay probability as a function of time,
that is,
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iER
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where the relations !R D ER=„ and ! D „=" have been inserted in the last
equality. The probability of finding the particle at a time t is

I.t/ D  " D  .0/2e!t=! D I.0/e!t=! ; (7.20)

corresponding to the radioactive decay law (Sect. 4.5.2). The Fourier transform of
(7.19), in the natural unit system („ D c D 1), is
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: (7.21)

The constant K must be determined with the normalization properties of wave
functions. Since the square of the wave function #.E/ represents the probability
of finding the particle in the energy state E, it must be proportional to the process
cross-section, that is,

%.E/ D %0#".E/#.E/ D %0
K2

Œ.ER !E/2 C " 2=4$
: (7.22)

Since Eq. 7.22 presents a maximum at E D ER, one can determineK as

1 D #".ER/#.ER/ D 4K2=" 2 !! K2 D " 2=4: (7.23)

The proportionality constant %0 must be related to the wavelength of the incident
particle, as mentioned at the beginning of the paragraph. From a dimension analysis,
one has %o ' &'̄2. Detailed calculations [P87] show that

%0 D &.2'̄/2 D 4&'̄2: (7.24)
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The shape of the BW curve can be obtained from the formalism of the amplitudes
and phases of matter waves. However, it is instructive to derive it from the general
property that the resonance is an unstable particle, with lifetime ! , and that time and
energy are variables correlated by the uncertainty principle. The energy dependence
of the amplitude of Fig. 7.6 is the Fourier transform of a wave function that describes
a survival probability decreasing exponentially over time, with lifetime ! .

Let us imagine the elastic formation process of a generic resonance R, which
decays with lifetime ! into the same initial particles. The presence of a interaction
process is demonstrated by the different directions and momenta of the particles in
the final state, that is,

aC b ! R! a0 C b0: (7.18)

The unstable resonance R is described by the free particle wave function (4.11)
multiplied by a real function describing its decay probability as a function of time,
that is,
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where the relations !R D ER=„ and ! D „=" have been inserted in the last
equality. The probability of finding the particle at a time t is

I.t/ D  " D  .0/2e!t=! D I.0/e!t=! ; (7.20)

corresponding to the radioactive decay law (Sect. 4.5.2). The Fourier transform of
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The constant K must be determined with the normalization properties of wave
functions. Since the square of the wave function #.E/ represents the probability
of finding the particle in the energy state E, it must be proportional to the process
cross-section, that is,

%.E/ D %0#".E/#.E/ D %0
K2

Œ.ER !E/2 C " 2=4$
: (7.22)

Since Eq. 7.22 presents a maximum at E D ER, one can determineK as

1 D #".ER/#.ER/ D 4K2=" 2 !! K2 D " 2=4: (7.23)

The proportionality constant %0 must be related to the wavelength of the incident
particle, as mentioned at the beginning of the paragraph. From a dimension analysis,
one has %o ' &'̄2. Detailed calculations [P87] show that

%0 D &.2'̄/2 D 4&'̄2: (7.24)
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energy are variables correlated by the uncertainty principle. The energy dependence
of the amplitude of Fig. 7.6 is the Fourier transform of a wave function that describes
a survival probability decreasing exponentially over time, with lifetime ! .

Let us imagine the elastic formation process of a generic resonance R, which
decays with lifetime ! into the same initial particles. The presence of a interaction
process is demonstrated by the different directions and momenta of the particles in
the final state, that is,

aC b ! R! a0 C b0: (7.18)

The unstable resonance R is described by the free particle wave function (4.11)
multiplied by a real function describing its decay probability as a function of time,
that is,
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where the relations !R D ER=„ and ! D „=" have been inserted in the last
equality. The probability of finding the particle at a time t is

I.t/ D  " D  .0/2e!t=! D I.0/e!t=! ; (7.20)

corresponding to the radioactive decay law (Sect. 4.5.2). The Fourier transform of
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The constant K must be determined with the normalization properties of wave
functions. Since the square of the wave function #.E/ represents the probability
of finding the particle in the energy state E, it must be proportional to the process
cross-section, that is,
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K2

Œ.ER !E/2 C " 2=4$
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Since Eq. 7.22 presents a maximum at E D ER, one can determineK as

1 D #".ER/#.ER/ D 4K2=" 2 !! K2 D " 2=4: (7.23)

The proportionality constant %0 must be related to the wavelength of the incident
particle, as mentioned at the beginning of the paragraph. From a dimension analysis,
one has %o ' &'̄2. Detailed calculations [P87] show that
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150 7 Hadron Interactions at Low Energies and the Static Quark Model
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Fig. 7.7 Total cross-section !Cp as a function of the kinetic energy of the incident pion (the scale
indicated below the x-axis) in the region of the "CC.1; 232/ resonance. The maximum value of
the cross-section is consistent with the value 8!#̄2 predicted for an elastic resonance with spin 3/2.
The abscissa scale at the top refers to the c.m. energy, corresponding to the effective mass of the !
p system

Let us now consider the formation and decay of a resonance of total angular
momentum J by the collision of two particles a; b, with spin sa, sb . In this case, the
cross-section must be averaged over the number of spin states of the incoming par-
ticles and multiplied (Sect. 4.5) by a factor .2J C 1/. Taking this into account, from
Eqs. 7.23 and 7.24, the elastic cross-section (7.22) as a function energy becomes

$el .EIJ / D 4!#̄2
.2J C 1/

.2sa C 1/.2sb C 1/

!
% 2=4

.ER !E/2 C % 2=4

"
: (7.25)

This equation corresponds to the Breit–Wigner equation. The formula must be fur-
ther modified to describe the production of nonelastic resonances (see Sect. 9.3.2).

7.5.1 The!CC.1232/ Resonance

The total cross-section !Cp at low energy, see Figs. 7.1 and 7.7, shows a large peak
at the kinetic energy of the incident pion T!lab D 191MeV. This is equivalent to a
total energy in the c.m. system Ecm:
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Inelastic scattering
a+ b ! R ! c+ d
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�ab�cd/4

(E � ER)2 + �2/4

� = ~/p is the de Broglie wavelength of 
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Drell-Yan  W-boson production
ud̄ ! W+ ! e+⌫

8.15 Discovery of the W˙ and Z0 Vector Bosons 221
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u u– zp p–

u d
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e–JZ = 1
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a b

Fig. 8.21 Observation of the W ! vector boson at the CERN SppS collider in 1983. At a
fundamental level, the process is ud ! W ! ! e!!e . (a) pp collision with a u quark of the
antiproton that annihilates with a d quark of the proton producing a W ! boson almost at rest; (b)
the W ! vector boson decays in e!C !e

The resulting cross-sections were evaluated by integrating the cross-sections for the
elementary qq processes, each described by a Breit–Wigner formula, see Sect. 9.3.2.
For the production of a W C decaying into an eC!e pair, one has

"
!
ud ! W C ! eC!e

"
D 1

Nc

4#$̄2%ud%e!=4

.2sd C 1/.2su C 1/
#
.E !MW /2 C % 2=4

$ 2J C 1
3

(8.65)

where $̄ is the de Broglie wavelength in the c.m. of colliding quarks; %;%ud ;%e!
are the total and partial widths (for W ! ud;W ! e!), and sd D su D 1=2 are
the quark spins. Only states with defined helicity are involved: left-handed fermions
and right-handed antifermions. The spin multiplicity for the W is .2J C 1/=3 D
3=3 D 1. Nc is the color factor and 1=Nc D 1=3 is the probability that a quark of
the proton “matches” an antiquark of the antiproton. At the energy E D MW , there
is a maximum, that is,

"max
!
ud ! W C ! eC!e

"
D 4#%ud%e!

3M2
W %

2
D #

36M2
W

' 5:2 nb; (8.66)

using MW D .80:22˙ 0:26/GeV, a color factor of three for W ! ud; cs; tb and
one for W ! e!e, &!&, and '!' and %ud=% D 1=4;%e!=% D 1=12.

The cross-section for the processes (8.64c) involves the weak neutral current
which is (Chap. 11) about ten times smaller than the cross-sections of reactions
(8.64a, b). Both the W ˙; Z0 production and leptonic decays are rare processes,
at the level of 10!8–10!9 of the total number of events. The total proton-antiproton
cross-section is "t .pp/ ' 60 mb. These events (called minimum bias events) give
rise to final state hadrons with a low transverse momentum, Sect. 10.7. The W ˙

and Z0 leptonic decays are relatively easy to detect because the leptons have a
high transverse momentum, pt " MW =2 ' 40 GeV/c, without any appreciable
background from minimum bias events.

The W vector bosons couple with fermions/antifermions having spin antiparal-
lel/parallel to the momentum direction (e.g., left-handed electrons, e!L , or
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Parton distribution Functions
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Fig. 14. MSTW-2008 pdf’s at Q2 = 10 GeV2 and 104 GeV2. The width of the lines indicates the error bars. From Ref.8

that, as Q is increased, new partons are added that come from collinear splittings of the original partons.
Since splitting always lowers x, this increases density at low x and suppresses it at high x. This effect can be
clearly seen in Fig. 14. Since splitting amplitudes are proportional to the QCD coupling constant evaluated
at the scale Q, the speed of the evolution decreases with Q due to asymptotic freedom of QCD.

3.2. Electroweak Gauge Boson Production

As an example of a hadron collider process, let us consider production of a single Z boson. We will first
compute the total production cross section of the Z at the Tevatron and the LHC, and then proceed to
discuss its kinematic distributions.

3.2.1. Cross Section

At leading (tree) level in perturbation theory, the Z can only be produced in qq̄ collisions, with cross section

σ(qq̄ → Z) =
4π2

3

Γ(Z → qq̄)

MZ
δ(ŝ−M2

Z) , (71)

where Γ(Z → qq̄) = ΓZ · Br (Z → qq̄) is the partial decay width of the Z in the qq̄ channel. At the hadron
level, this yields

σ(pp → Z +X) =
4π2

3

ΓZ

MZ

∫ 1

0
dx1

∫ 1

0
dx2

∑

q

2fq(x1, Q)fq̄(x2, Q) Br (Z → qq̄) δ(x1x2s−M2
Z) . (72)

The same formula applies to pp̄ collisions, with the substitution

2fq(x1, Q)fq̄(x2, Q) −→ fq(x1, Q)fq(x2, Q) + fq̄(x1, Q)fq̄(x2, Q) . (73)
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The incoming parton momenta x1 and x2 are unknown, and usually the beam 
particle remnants escape down the beam pipe

                 Longitudinal motion of the centre of mass cannot be reconstructed

Focus on transverse variables (invariant under boost along z-axis)
         Transverse Energy ET = E sin θ  (= pT ,  if mass = 0)

and longitudinally boost-additive quantities (along z-axis) 
         Pseudorapidity  η = – log (tan θ/2)  (= rapidity y,  if mass = 0)
                             η(lab) = η∗ + η(cm) 
         Particle production typically scales per unit rapidity

Hadron Collider Variables
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Z-pole

Electroweak theory tests: tree level
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Electroweak theory tests at tree level
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