Introduction to
 Collider Physics（I）

Qing－Hong Cao
Peking University

参考文献：
1）Tao Han，hep－ph／0508097
2）John Illipoulos，arXiv： 1305.6779

Why collider?

- We live in a cold and empty universe: only the stable relics and leftovers of the Big Bang remain. The unstable particles have decayed away with time, and the symmetries have been broken as the universe has cooled.
- But every kind of particle that ever existed is still there, in the equations that describe the particles and forces of the universe. The vacuum "knows" about all of them.
- We can use accelerators to make the equations come alive, by pumping sufficient energy into the vacuum to create the particles and uncover the symmetries that existed in the earliest universe.

History of the Universe

费米子和玻色子

费米子：
遵守Pauli不相容原理
自旋为半整数

玻色子：
不遵守Pauli不相容原理
自旋为整数

Enrico
Fermi

Satyendra N．Bose

物质场粒子：轻子

- 不参与强相互作用
- 整数或零电荷
- 味：

e^{-}	＂电子＂	(1897)	在原子中
μ^{-}	＂Muon＂	(1937)	在宇宙射线中首次观测到
	$\left(206 m_{e}\right)$	(1975)	在SLAC观测到
τ^{-}	＂Tau＂	$\left(17 m_{\mu}\right)$	
	（Stanford Linear Accelerator Center）		

v_{e}＂Electron 中微子＂（I956）泡利以之解释Beta衰变中能动量不守恒（1930）
v_{μ}＂Muon 中微子＂
（1962）
ν_{τ}＂Tau 中微子＂

物质场粒子：夸克

- 参与强相互作用
- 带分数电荷

$$
Q=\left\{\begin{array}{c}
2 / 3 \\
-1 / 3
\end{array}\right\} \times \text { Proton charge }
$$

－质子和中子的组成成分 （udd）（uud）

$$
\binom{u}{d} \quad \begin{gathered}
\text { "up" } \\
\text { "down" }
\end{gathered}
$$

－味：

u	＂up＂
d	＂down＂
s	＂strange＂
c	＂charmed＂
b	＂bottom＂
t	＂top＂

第一次实验证据：
Stanford Linear Accelerator Center （Giant Electron Microscope）
（1974）
（1977）＂Beauty＂
1995 ＂Truth＂
＠Fermilab（Tevatron）

标准模型的物质场

－费米子（自旋 $1 / 2$ ）

轻子 （互筰相）

e_{R}^{-}

$$
\begin{array}{cccc}
\binom{u}{d}_{L} & \binom{u}{d}_{L} & \binom{u}{d}_{L} & \binom{c}{s}_{L}
\end{array} \begin{aligned}
& \binom{c}{s}_{L}
\end{aligned}\binom{c}{s}_{L} \quad\left(\begin{array}{l}
t \\
u_{R}
\end{array} u_{R} \quad u_{R} \quad\binom{t}{b}_{L}\binom{t}{b}_{L}\right)
$$

－标量场（自旋为 0 ）
希格斯坡色子：唯一知道不同代的粒子间不同之处的粒子
（希格斯机制——对称性自发破缺）

相互作用传播子

相互作用（通过交换自旋为 1 的规范玻色子）
电磁相互作用（QED）
光子 (无质量)

强相互作用（QCD）
胶子
（无质量）
（1979）

弱相互作用
$W^{ \pm}$和 Z 规范玻色子
$\left(\begin{array}{ll}\left.\text { 有质量 } \begin{array}{l}M_{W}=80.4 \mathrm{GeV} \\ \\ M_{Z}=91.187 \mathrm{GeV}\end{array} \quad 1 \mathrm{GeV}=10^{\circ} \mathrm{eV}\right)\end{array}\right.$

粒子物理的标准模型

新＂元素＂周期表

标准模型的两大疑难

电弱对称性破缺起源 和 味对称性破缺起源 （ W 和 Z 质量）
（费米子质量）
跷 大普

顶夸克或许是我们和新物理间的唯一联系

能量和空间尺度

加速器：强力的＂显微镜＂

高能加速的粒子束，帮助我们看清细微的结构

低能量粒子束

高能量粒子束

年瑟福敬实猃

对撞实验鼻祖

Rutherford＇s Gold Foil Experiment

Interpretation

卢瑟福散射实验

对撞实验鼻祖

散射截面

粒子束和靶或另一粒子束之间相互作用的有效面积

散射截面（ σ ）

－量纲：$[\sigma]=m^{2}$

$$
1 \text { barn }=10^{-24}(\mathrm{~cm})^{2}=10^{-28} \mathrm{~m}^{2}=100(\mathrm{fm})^{2}
$$

$$
\begin{aligned}
1 \mathrm{mb} & =10^{-3} \mathrm{~b} \\
1 \mu \mathrm{~b} & =10^{-6} \mathrm{~b} \\
1 \mathrm{nb} & =10^{-9} \mathrm{~b} \\
1 \mathrm{pb} & =10^{-12} \mathrm{~b} \\
1 \mathrm{fb} & =10^{-15} \mathrm{~b}
\end{aligned}
$$

汤姆逊散射

低能光子－非相对论性（近乎静止）电子之间散射

经典物理反射和衍射

$$
\begin{gathered}
\sigma_{\mathrm{Tot}}^{\text {classic }}=2 \pi r_{e}^{2} \quad r_{e} \text { 电子经典半径 } \\
\frac{e^{2}}{r_{e}}=m_{e} c^{2} \Longrightarrow r_{e}=\frac{e^{2}}{m_{e} c^{2}} \sim \frac{1 / 137}{0.511 \mathrm{MeV}} \sim 2.8 \mathrm{fm}
\end{gathered}
$$

量子力学计算给出

$$
\sigma_{\mathrm{Tot}}=\frac{8}{3} \pi r_{e}^{2}=67(\mathrm{fm})^{2}=0.67 \mathrm{barn}
$$

高能对撞机

估算质子－质子对撞机

$$
\sigma \sim \pi \lambda_{p}^{2} \sim \frac{\pi}{\mathrm{GeV}^{2}}=\frac{\pi(\mathrm{fm})^{2}}{10^{6}(1 / 197)^{2}} \sim 10^{-3} \text { barn }=\mathrm{mb}
$$

14 TeV 大型强子对撞机
$\sigma(p p)_{\text {total }} \sim 110 \mathrm{mb}$

1．96TeV Tevatron
$\sigma(p \bar{p})_{\text {total }} \sim 60 \mathrm{mb}$

事例数

Number of Event $=\sigma \cdot \mathcal{L}$

实验学家

理论学家
加速器学家

亮度（luminosity）

Colliding beam

瞬时亮度

$$
\begin{gathered}
\mathcal{L} \propto f n_{1} n_{2} / \Sigma \\
{[\mathcal{L}]=\mathrm{cm}^{-2} \mathrm{~s}^{-1}}
\end{gathered}
$$

\＃of particles passing each other per unit time through unit transverse area at the interaction point
$n_{1,2}$ ：particle in each bunch in beam 1，2
f ：beam crossing frequency
Σ ：transverse profile of the bream
$1 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}=10^{-33} \mathrm{nb}^{-1} \mathrm{~s}^{-1}$
积分亮度： $10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}=1 \mathrm{nb}^{-1} \mathrm{~s}^{-1}=10 \mathrm{fb}^{-1} /$ year

Past, current and Further collider

Name	Type	$\sqrt{s}(\mathrm{GeV})$	$L_{\text {int }}\left(\mathrm{pb}^{-1}\right)$	Years of operation	Detectors	Location
LEP	$e^{+} e^{-}$	$\begin{gathered} \hline 91.2 \text { (LEP-1) } \\ 130-209 \text { (LEP-2) } \end{gathered}$	$\begin{aligned} & \approx 200(\text { LEP-1) } \\ & \approx 600(\text { LEP-2 }) \end{aligned}$	$\begin{gathered} \text { 1989-95 (LEP-1) } \\ \text { 1996-2000 (LEP-2) } \end{gathered}$	ALEPH, OPAL, DELPHI, L3	CERN
SLC	$e^{+} e^{-}$	91.2	20	1992-98	SLD	SLAC
HERA	$e^{ \pm} p$	320	500	1992-2007	ZEUS, H1	DESY
Tevatron	$p \bar{p}$	1800 (Run-I)	160 (Run-I)	1987-96 (Run-I)	CDF, DØ	FNAL
		1960 (Run-II)	6 K (Run-II, 06/09)	2000-??? (Run-II)		
LHC	$p p$	14000	$10 \mathrm{~K} / \mathrm{yr}$ ("low-L")	2010? - 2013?	ATLAS, CMS	CERN
			$100 \mathrm{~K} / \mathrm{yr}$ ("high-L")	2013?? - 2016???		
ILC	$e^{+} e^{-}$	500-1000	1 M ???	???	???	???

加速器和对撞机

二战之后高能物理才成为一门公认的学科
（富人的游戏）

能量上限由机器的环半径和磁场强度决定

- 上世纪50年代，半径～10－20米（房子中）
- 上世纪60年代，半径～100米（地下）

－上世经 80 年代：径～4000果

对撞机年表

我们只能加速稳定粒子：$e^{ \pm}, p, \bar{p}, \gamma$

正负电子对撞机

优势：
1）实验室系和质心系相同 \longrightarrow 可以充分利用能量
2）入射粒子束的性质已知 —＞运动学性质确定
3）背景干净
4）有可能使用极化入射粒子 $—$ 探测相互作用的手征性 2）积分亮度不高

劣势：
1）圆型对撞机辐射严重

$$
\Delta E \sim \frac{1}{R}\left(\frac{E}{m_{e}}\right)^{4}
$$

\rightarrow 直线加速（昂贵）

强子对撞机

Proton：Bag of quarks and gluons（partons）

优势：
1）高能量
2）高亮度
3）过程丰富 qq／qg／gg／bb

少势：
1）背景太大
2）无法确定初态
3）无法确定质心系能量

$$
\begin{aligned}
& \text { 你相信 } \\
& \text { 奇迹吗? }
\end{aligned}
$$

Rare Events，such as Higgs production，are difficult to find！

Need good detectors， triggers，readout to reconstruct the mess into a piece of physics．

大型强子对撞机质心系能量 14 TeV

大型强子对撞机质心系能量 14 TeV

CMS：长2I米，高15米，宽15米，12．5千吨

ATLAS：长46米，高25米，宽25米，7千吨

探测器

What we "see" as particles in the detector: (a few meters)
For a relativistic particle, the travel distance:

$$
d=(\beta c \tau) \gamma \approx(300 \mu m)\left(\frac{\tau}{10^{-12 s}}\right) \gamma
$$

- stable particles directly "seen":

$$
p, \bar{p}, e^{ \pm}, \gamma
$$

- quasi-stable particles of a life-time $\tau \geq 10^{-10} \mathrm{~s}$ also directly "seen":

$$
n, \wedge, K_{L}^{0}, \ldots, \mu^{ \pm}, \pi^{ \pm}, K^{ \pm} \ldots
$$

- a life-time $\tau \sim 10^{-12}$ s may display a secondary decay vertex, "vertex-tagged particles":

$$
B^{0, \pm}, D^{0, \pm}, \tau^{ \pm} \ldots
$$

- short-lived not "directly seen", but "reconstructable":

$$
\pi^{0}, \rho^{0, \pm} \ldots, \quad Z, W^{ \pm}, t, H \ldots
$$

- missing particles are weakly-interacting and neutral:

$$
\nu, \tilde{\chi}^{0}, G_{K K} \ldots
$$

\dagger For stable and quasi-stable particles of a life-time

$$
\tau \geq 10^{-10}-10^{-12} \mathrm{~s}, \text { they show up as }
$$

Tracking Electromagnetic Hadron chamber calorimeter calorimeter

Muon chamber

Innermost Layer...
...Outermost Layer

A closer look:

Theorists should know:
For charged tracks: $\Delta p / p \propto p$,

$$
\text { typical resolution: } \sim p /\left(10^{4} \mathrm{GeV}\right)
$$

For calorimetry : $\quad \Delta E / E \propto \frac{1}{\sqrt{E}}$,
typical resolution: $\quad \sim(5-80 \%) / \sqrt{E / G e V}$.

$$
p(\mathrm{GeV})=0.3 Q B(\text { Tesla }) R(\mathrm{~m}) \quad \text { Tao Han, TASI }
$$

\dagger For vertex-tagged particles $\tau \approx 10^{-12} \mathrm{~s}$, heavy flavor tagging: the secondary vertex:


```
\dagger For short-lived particles: }\tau<1\mp@subsup{0}{}{-12}\textrm{s}\mathrm{ or so,
``` make use of final state kinematics to reconstruct the resonance.

\section*{\(\dagger\) For missing particles:}
make use of energy-momentum conservation to deduce their existence.
\[
p_{1}^{i}+p_{2}^{i}=\sum_{f}^{o b s} p_{f}+p_{m i s s}
\]

But in hadron collisions, the longitudinal momenta unkown, thus transverse direction only:
\[
0=\sum_{f}^{o b s} \vec{p}_{f} T+\vec{p}_{m i s s} T
\]
often called "missing \(p_{T}\) " \(\left(p_{T}\right)\) or "missing \(E_{T}\) " \(\left(\mathscr{H}_{T}\right)\).

\section*{Theoretical Calculation}

\section*{How does SM predict ...?}
- In Quantum Mechanics

Schrodinger Equation:
\[
i \frac{\partial \Psi}{\partial t}=H \Psi
\]
1. Figure out what H is.
2. Insert H in S.E.
3. Calculate Predictions
- In Relativistic Quantum Field Theory

SM gives the Interaction Lagrangian \(\mathcal{L}\)
\(\mathcal{L}\)
\(\sqrt{n}\)

Predictions

\section*{Master Formula}
\[
2 \rightarrow N: \quad A+B \rightarrow 1+2+\cdots+N
\]
\[
d \sigma=\frac{1}{2 s} \underbrace{\left(\prod_{i=1}^{N} \frac{d^{3} p_{i}}{(2 \pi)^{3}} \frac{1}{2 E_{i}}\right) \cdot(2 \pi)^{4} \delta^{4}\left(p_{A}+p_{B}-\sum p_{i}\right)}_{\text {相空间 }} \cdot \begin{aligned}
& \mid \mathcal{M}\left(p_{A},\left.p_{B} \rightarrow\left\{p_{i}\right\}\right|^{2}\right. \\
& \text { matrix element } \\
& \text { square }
\end{aligned}
\]
\(|\mathcal{M}|^{2}\) is invariant，
\(d \sigma\) is invariant under boost along beam line

\section*{2 to 2 process}

After integrating out \(d^{3} p_{2}\)
\[
\begin{gathered}
d \sigma_{\mathrm{cm}}=\frac{1}{2 s} \frac{p_{1}^{2} d p_{1} d \Omega}{(2 \pi)^{3}} \frac{1}{2 E_{1}} \frac{1}{2 E_{2}}(2 \pi) \delta\left(E_{\mathrm{cm}}-E_{1}-E_{2}\right)|\mathcal{M}|^{2} \\
E_{1}=\sqrt{p_{1}^{2}+m_{1}^{2}} \quad E_{2}=\sqrt{p_{2}^{2}+m_{2}^{2}} \\
\frac{d \sigma}{d \cos \theta}= \begin{cases}\frac{1}{16 \pi} \frac{\left|\mathbf{p}_{1}\right|}{s^{3 / 2}} & \text { if } \sqrt{s}>m_{1}+m_{2} \\
0 & \text { otherwise },\end{cases} \\
\left|\mathbf{p}_{1}\right|=\frac{1}{2} \sqrt{\frac{\left(s-m_{1}^{2}-m_{2}^{2}\right)^{2}-4 m_{1}^{2} m_{2}^{2}}{s}} \\
\left.\frac{d \sigma}{d \cos \theta}=\frac{1}{32 \pi s} \sqrt{1-\frac{4 m^{2}}{s}} \right\rvert\, \overline{\mathcal{M}}^{2} \quad \text { if } m_{1}=m_{2}=m .
\end{gathered}
\]

One could calculate the amplitude square using automation package!

But I am going to do it in a old fashion

\section*{Resonance}

Mass, Width (lifetime), isospin, Parity, ...

ER: Resonance mass

\title{
resonance in elastic scattering
}
\[
\begin{aligned}
a+b \rightarrow R & \rightarrow a^{\prime}+b^{\prime} \\
\psi(t)=\psi(0) e^{-i \omega_{R} t} e^{-\frac{t}{2 \tau}} & =\psi(0) e^{-\frac{i \epsilon_{R}}{\hbar} t} e^{-\frac{\Gamma}{2 \hbar} t} \\
\omega_{R} & =E_{R} / \hbar \quad \tau=\hbar / \Gamma
\end{aligned}
\]

Probability of finding the particle at a time t is
\[
I(t)=\psi^{*} \psi=\psi(0)^{2} e^{-t / \tau}=I(0) e^{-t / \tau}
\]

The Fourier transform of \(\psi(t)\)
\[
\begin{aligned}
\chi(E)=\int \psi(t) e^{i E t} d t & =\psi(0) \int e^{-t\left[(\Gamma / 2)+i E_{R}-i E\right]} d t= \\
& =\frac{K}{\left(E_{R}-E\right)-i \Gamma / 2} . \quad \begin{array}{c}
\text { K: normalization } \\
\text { factor }
\end{array}
\end{aligned}
\]

\section*{Elastic Scattering}
\[
a+b \rightarrow R \rightarrow a^{\prime}+b^{\prime}
\]
\[
\sigma(E)=\sigma_{0} \chi^{*}(E) \chi(E)=\sigma_{0} \frac{K^{2}}{\left[\left(E_{R}-E\right)^{2}+\Gamma^{2} / 4\right]}
\]

Prob. of finding particle in Energy E
\[
\begin{aligned}
& 1=\chi^{*}\left(E_{R}\right) \chi\left(E_{R}\right)=4 K^{2} / \Gamma^{2} \quad \longrightarrow \quad K^{2}=\Gamma^{2} / 4 \\
& \sigma_{0}=\pi(2 \pi)^{2}=4 \pi \pi^{2}
\end{aligned}
\]
\[
\sigma_{e l}(E ; J)=4 \pi \lambda^{2} \frac{(2 J+1)}{\left(2 s_{a}+1\right)\left(2 s_{b}+1\right)}\left[\frac{\Gamma^{2} / 4}{\left(E_{R}-E\right)^{2}+\Gamma^{2} / 4}\right] .
\]

\section*{Inelastic scattering}
\[
a+b \rightarrow R \rightarrow c+d
\]
\[
\sigma=4 \pi \lambda^{2} \frac{(2 J+1)}{\left(2 s_{a}+1\right)\left(2 s_{b}+1\right)} \frac{\Gamma_{a b} \Gamma_{c d} / 4}{\left(E-E_{R}\right)^{2}+\Gamma^{2} / 4}
\]
\(\lambda=\hbar / p\) is the de Broglie wavelength of particle \(a, b\) in the \(c . m\). frame
\[
\begin{aligned}
\Gamma_{a b} & =\Gamma(R \rightarrow a+b) \\
\Gamma_{c d} & =\Gamma(R \rightarrow c+d) \\
\Gamma & =\Gamma_{\text {Total }}=\sum_{i} \Gamma_{i}
\end{aligned}
\]

\section*{Drell-Yan W-boson production}
\[
u \bar{d} \rightarrow W^{+} \rightarrow e^{+} \nu
\]
\[
\sigma\left(u \bar{d} \rightarrow W^{+} \rightarrow e^{+} \nu_{e}\right)=\frac{1}{N_{c}} \frac{4 \pi \lambda^{2} \Gamma_{u \bar{d}} \Gamma_{e v} / 4}{\left(2 s_{d}+1\right)\left(2 s_{u}+1\right)\left[\left(E-M_{W}\right)^{2}+\Gamma^{2} / 4\right]} \frac{2 J+1}{3}
\]

At the energy \(E=M_{W}\)
\[
\sigma_{\max }\left(u \bar{d} \rightarrow W^{+} \rightarrow e^{+} \nu\right)=\frac{4 \pi \Gamma_{u \bar{d}} \Gamma_{e \nu}}{3 M_{W}^{2} \Gamma^{2}}=\frac{4 \pi}{81 M_{W}^{2}} \simeq 9.4 \mathrm{nb}
\]

\section*{W-boson Decay}
- Hadronic mode

\[
\binom{u u u c c c}{\bar{d} \bar{d} \bar{d} \bar{s} \bar{s} \bar{s}}
\]
- Leptonic mode

\[
\begin{array}{cl}
B r \sim \frac{3}{9} & \text { easy to identify, } \\
\left(\begin{array}{cc}
e^{+} & \mu^{+} \\
\nu_{e} & \nu_{\mu} \\
\nu_{\tau}
\end{array}\right) &
\end{array}
\]

unknown \(p_{z}^{v} \longrightarrow\) cannot reconstruct invariant mass \(m_{w}=\sqrt{\left(p_{e}+p_{v}\right)^{2}}\)

\section*{Narrow width approximation}
\[
\begin{aligned}
\sigma_{\max }\left(u \bar{d} \rightarrow W^{+} e^{+} \nu+e\right) & =\frac{4 \pi \Gamma_{u \bar{d}} \Gamma_{e \nu}}{3 M_{W}^{2} \Gamma^{2}}=\frac{4 \pi \Gamma_{u \bar{d}}}{3 M_{W}^{2} \Gamma} \frac{\Gamma_{e \nu}}{\Gamma} \\
& =\frac{4 \pi \Gamma_{u \bar{d}}}{3 M_{W}^{2} \Gamma} \otimes \operatorname{Br}(W \rightarrow e \nu) \\
\text { W-boson } & \text { W-boson } \\
\text { production } & \text { decay }
\end{aligned}
\]

Key of New Physies Discovery
－大的产生截面
＊新物理粽地质星要轻
（部分肦布出数随泣增加还速阵降）
＊\(Q C D>\) Weak \(>E M\)
\(\alpha_{s} \sim \frac{1}{10} \quad \alpha_{w} \sim \frac{1}{30} \cdot \alpha_{\mathrm{em}} \sim \frac{1}{128}\)
（新粑缉婂帝有色荷）
＊产生过程㛢䊉子要少 （相空间压低）
一般而言，每增吅一个精子，元星细化的
相客间要减少两个数星级
\[
\begin{aligned}
& 2 \rightarrow 1 \text { 或 } 2 \rightarrow 2 \text { (wenk) } \\
& 2 \rightarrow n_{(Q \geqslant 3)}(Q)
\end{aligned}
\]
－易于探测的实验信号
＊带电轻子 \(\left(e^{-}, \mu^{-}\right)\)
＊大会失的検向动量（本T）
（容易探测但不能提供新洴
程的有用信息）
＊重味的喷注
（低探测效率）

窄宽度近似（NWA）
以顶夸克产生和衰变为例
在 \(\Gamma_{t} \ll m_{t}\) 时可取极限 \(\Gamma_{t} \rightarrow 0\)

\[
\int d p_{t}^{2} \frac{1}{\left(p_{t}^{2}-m_{t}^{2}\right)^{2}+m_{t}^{2} \Gamma_{t}^{2}}=\frac{\pi}{m_{t} \Gamma_{t}}
\]

敢射振幅模方可近似为
\[
|m|^{2}=\left|m_{\text {decay }}\left(\cdots, p_{t}\right)\right|^{2} \frac{\pi}{m_{t} \Gamma_{t}} \delta\left(p_{t}^{2}-m_{t}^{2}\right)\left|m_{\text {prod }}\left(\cdots, p_{t}\right)\right|^{2}
\]

相空间近似为
\[
\begin{aligned}
& \text { 空间近似为 } \\
& \left.d \Phi_{4}=d \Phi_{2} \frac{1}{2 \pi} d p_{t}^{2} d \Phi_{3}\left(t \rightarrow b e^{+} v\right)\right) .
\end{aligned}
\]

所以
\[
\begin{aligned}
\sigma\left(q \dot{\varepsilon} \rightarrow t \bar{b} \rightarrow \bar{b} b l^{t} t\right) & =\int|m|^{2} d \Phi_{4} \xrightarrow{\Gamma_{t} \rightarrow 0} \quad \int\left|m_{p r o d}\left(\cdots p_{t}\right)\right|^{2} d \Phi_{2} d P_{t}^{2} \delta\left(P_{t}^{2}-m_{i}\right. \\
& \times \int \frac{1}{2 m t \Gamma_{t}}\left|m_{\text {decay }}\right|^{2} d \Phi_{3} \\
& =\sigma_{p r o d}(g \bar{q} \rightarrow t b) \times \underbrace{\frac{1}{\Gamma_{t}} \times \Gamma\left(t \rightarrow b l^{+} v\right)}_{B_{r}\left(t \rightarrow b l^{+} v\right)}
\end{aligned}
\]

\section*{Narrow width approximation}

Production \(\quad \Gamma / M \ll 1 \quad\) Decay
\[
\begin{aligned}
Q_{\text {prod }} & =M \\
\tau_{\text {prod }} & =1 / M
\end{aligned} \quad \tau_{\text {decay }}=1 / \Gamma
\]
\[
\frac{\Gamma}{M}=\frac{1 / M}{1 / \Gamma}=\frac{\tau_{\text {prod }}}{\tau_{\text {decay }}} \ll 1
\]

\section*{W-boson production at Hadron collider}

\section*{Parton distribution Functions}

Momentum fraction

\section*{Structure of the collision event}

\section*{Structure of the collision event}
2. Hard
scattering
(perturbative)

\section*{Structure of the collision event}

3. Final-state radiation (perturbative+ nomperturbative showering)

\section*{Differential Cross Section}
* sensitive to spin-correlation
* useful to suppress background

曲率 \(\frac{1}{R} \sim \frac{0.3 Q B}{p}\)

Large pT and central region
\[
\eta=0\left(=90^{\circ}\right)
\]

\section*{Transverse momentum of the charged lepton \(\left(p_{T}^{e}\right)\)}
- In (ud) c.m. system,

\section*{Transverse momentum of the charged lepton \(\left(p_{T}^{e}\right)\)}
- In (ud) c.m. system,

Jacobin factor
\[
\begin{aligned}
& \frac{\mathrm{d} \cos \theta}{\mathrm{~d} \hat{p}_{T}^{2}}=-\frac{2}{\hat{s}} \frac{1}{\sqrt{1-\frac{4 \hat{p}_{T}^{2}}{\hat{s}}}} \\
& \Longrightarrow \frac{\mathrm{~d} \hat{\sigma}}{\mathrm{~d} \hat{p}_{T}^{2}} \sim \frac{\mathrm{~d} \hat{\sigma}}{\mathrm{~d} \cos \theta} \times \frac{1}{\sqrt{1-4 \hat{p}_{T}^{2} / \hat{s}}}
\end{aligned}
\]

\[
\begin{aligned}
& \text { sensitive region for measuring } \\
& M_{W}: p_{T}^{e} \sim 30-45 \mathrm{GeV} \\
& \Gamma_{W}: \text { not a good observable }
\end{aligned}
\]

\section*{Transverse mass of the W -boson \(\left(M_{T}^{W}\right)\)}
- Definition:
\[
\begin{array}{r}
m_{T}^{2}(\ell, \nu)=2 p_{T}^{\ell} p_{T}^{\nu}\left(1-\cos \phi_{\ell \nu}\right) \\
\downarrow \\
\text { from overall } p_{T} \text { imbalance } \\
\Longrightarrow \frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} m_{T}^{2}} \sim \frac{1}{\sqrt{1-m_{T}^{2} / \hat{s}}}
\end{array}
\]
[零 unaffected by longitudinal boosts of \(\ell \nu\) system
(2) not sensitive to \(q_{T}^{W}\)
[19 易 tail knows about \(\Gamma_{W}\) (direct measurement)

\[
\begin{aligned}
& \text { sensitive region for measuring } \\
& M_{W}: M_{T} \sim 60-100 \mathrm{GeV} \\
& \Gamma_{W} \quad M_{T}>100 \mathrm{GeV}
\end{aligned}
\]

\section*{Transverse mass of the W-boson \(\left(M_{T}^{W}\right)\)}
- Definition:
\[
\begin{array}{r}
m_{T}^{2}(\ell, \nu)=2 p_{T}^{\ell} p_{T}^{\nu}(1-\cos \phi \ell \nu) \\
\downarrow \\
\text { from overall } p_{T} \text { imbalance } \\
\Longrightarrow \\
\Longrightarrow \frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} m_{T}^{2}} \sim \frac{1}{\sqrt{1-m_{T}^{2} / \hat{s}}}
\end{array}
\]

[1옹 unaffected by longitudinal boosts of \(\ell \nu\) system
嘫 not sensitive to \(q_{T}^{W}\)
䟚 tail knows about \(\Gamma_{W}\) (direct measurement)

\section*{Electroweak theory tests at tree level}

\section*{Fundamental Forces of Nature}

The Stary of Gauge Fields

R］\(\cdots\)

\title{
Fundamenta Forces of Neture
}

The Story of Gauge Fiedds

大自然的基本力
```

