Introduction to Collider Physics (I)

Qing-Hong Cao

Peking University

参考文献: 1) Tao Han, hep-ph/0508097 2) John Illipoulos, arXiv: 1305.6779

- We live in a cold and empty universe: only the stable relics and leftovers of the Big Bang remain. The unstable particles have decayed away with time, and the symmetries have been broken as the universe has cooled.
- But every kind of particle that ever existed is still there, in the equations that describe the particles and forces of the universe.
 The vacuum "knows" about all of them.
- We can use accelerators to make the equations come alive, by pumping sufficient energy into the vacuum to create the particles and uncover the symmetries that existed in the earliest universe.

曹米子和玻色子

不相容原理

玻色子: 不遵守**Pauli**不相容原理 自旋为整数

Enrico Fermi Satyendra N. Bose

物质场粒子: 轻子

- 不参与强相互作用
- 整数或零电荷
- 味:

v。"Electron 中微子" (1956)泡利以之解释Beta衰变中能动量不守恒 (1930) v_u "Muon 中微子" (1962)v_τ "Tau 中微子" 2000)

物质场粒子: 夸克

- 参与强相互作用
- 带分数电荷

 $Q = \begin{cases} \frac{2}{3} \\ -\frac{1}{3} \\ -\frac{1}{3} \end{cases} \times \text{Proton charge}$

 质子和中子的组成成分 (udd) (uud)

 $\begin{pmatrix} u \\ d \end{pmatrix}$ "up" "down"

U

d

S

• 味:

- "up" "down" "strange"
- c "charmed" b "bottom"
- t "top"

第一次实验证据:

Stanford Linear Accelerator Center (Giant Electron Microscope)

(1974) (1977) "Beauty" 1995 "Truth" @ Fermilab (Tevatron)

标准模型的物质场

■ 费米子 (自旋1/2)

 标量场 (自旋为0)
 希格斯玻色子: 唯一知道不同代的粒子间不同之处的粒子 (希格斯机制 —— 对称性自发破缺)

相互作用(通过交换自旋为I的规范玻色子)

电磁相互作用 (QED) 光子 (无质量)

强相互作用 (QCD) 胶子 (无质量) (1979)

弱相互作用 $W^{\pm} 和 Z$ 规范玻色子 (1983) (有质量 $M_W = 80.4 \text{ GeV}$ $M_Z = 91.187 \text{ GeV}$ 1 GeV = 10⁹ eV

粒子物理的标准模型

新"元素"周期表

能量和空间尺度

加速器: 强力的"显微镜" 高能加速的粒子束,帮助我们看清细微的结构 $F_{
m c} \sim$ \mathcal{X} 低能量粒子束 高能量粒子束

卢瑟福散射实验

散射截面

粒子束和靶或另一粒子束之间相互作用的有效面积

散射截面(の)

• 量纲: $[\sigma] = m^2$

$$1$$
barn = 10^{-24} (cm)² = $10^{-28}m^2 = 100$ (fm)²

$$1mb = 10^{-3}b$$
$$1\mu b = 10^{-6}b$$
$$1nb = 10^{-9}b$$
$$1pb = 10^{-12}b$$
$$1fb = 10^{-15}b$$

低能光子-非相对论性(近乎静止)电子之间散射

经典物理反射和衍射

$$\sigma_{\text{Tot}}^{\text{classic}} = 2\pi r_e^2$$
 r_e 电子经典半径

$$\frac{e^2}{r_e} = m_e c^2 \Longrightarrow r_e = \frac{e^2}{m_e c^2} \sim \frac{1/137}{0.511 \text{MeV}} \sim 2.8 \text{fm}$$

量子力学计算给出

$$\sigma_{\rm Tot} = \frac{8}{3}\pi r_e^2 = 67 ({\rm fm})^2 = 0.67 {\rm barn}$$

14TeV大型强子对撞机 $\sigma(pp)_{total} \sim 110mb$

1.96TeV Tevatron

 $\sigma(p\bar{p})_{\rm total} \sim 60 {\rm mb}$

亮度 (luminosity)

 $n_{1,2}$: particle in each bunch in beam 1,2

- *beam* crossing frequency
- Σ : transverse profile of the bream

 $1 \text{cm}^{-2} \text{s}^{-1} = 10^{-33} \text{nb}^{-1} \text{s}^{-1}$ 积分亮度: $10^{33} \text{cm}^{-2} \text{s}^{-1} = 1 \text{nb}^{-1} \text{s}^{-1} = 10 \text{fb}^{-1}/\text{year}$

Past, current and Further collider

Name	Type	$\sqrt{s} \; (\text{GeV})$	$L_{\rm int} \ ({\rm pb}^{-1})$	Years of	Detectors	Location
				operation		
LEP	e^+e^-	91.2 (LEP-1)	$\approx 200 \; (\text{LEP-1})$	1989-95 (LEP-1)	ALEPH, OPAL,	CERN
		130-209 (LEP-2)	$\approx 600 \; (\text{LEP-2})$	1996-2000 (LEP-2)	DELPHI, L3	
SLC	e^+e^-	91.2	20	1992-98	SLD	SLAC
HERA	$e^{\pm}p$	320	500	1992-2007	ZEUS, H1	DESY
Tevatron	$par{p}$	1800 (Run-I)	160 (Run-I)	1987-96 (Run-I)	CDF, DØ	FNAL
		1960 (Run-II)	6 K (Run-II, 06/09)	2000-??? (Run-II)		
LHC	pp	14000	10 K/yr ("low-L")	2010? - 2013?	ATLAS, CMS	CERN
			100 K/yr ("high-L")	2013?? - 2016???		
ILC	e^+e^-	500-1000	1 M???	???	???	???

二战之后高能物理才成为一门公认的学科 (富人的游戏)

重利日

我们只能加速稳定粒子: $e^{\pm}, p, \bar{p}, \gamma$

正负电子对撞机

优势:

- 1) 实验室系和质心系相同 —>可以充分利用能量
- 2)入射粒子束的性质已知 —>运动学性质确定
- 3) 背景干净
- 4) 有可能使用极化入射粒子 —> 探测相互作用的手征性

劣势:

1) 圆型对撞机辐射严重

—> 直线加速 (昂贵)

2) 积分亮度不高

Proton: Bag of quarks and gluons (partons)

Rare Events, such as Higgs production, are difficult to find!

Need good detectors, triggers, readout to reconstruct the mess into a piece of physics.

大型强子对撞机 质心系能量14TeV

LHC ring: 27 km circumference

大型强子对撞机 质心系能量14TeV

LHC ring: 27 km circumference

CMS: 长21米,高15米,宽15米,12.5千吨

ATLAS: 长46米,高25米,宽25米,7千吨

What we "see" as particles in the detector: (a few meters)

For a relativistic particle, the travel distance:

$$d = (\beta c \ \tau) \gamma \approx (300 \ \mu m) (\frac{\tau}{10^{-12} \ s}) \ \gamma$$

• stable particles directly "seen":

$$p,~ar{p},~e^{\pm},~\gamma$$

- quasi-stable particles of a life-time $\tau \ge 10^{-10}$ s also directly "seen": $n, \Lambda, K_L^0, ..., \ \mu^{\pm}, \ \pi^{\pm}, K^{\pm}...$
- a life-time $\tau \sim 10^{-12}$ s may display a secondary decay vertex, "vertex-tagged particles":

$$B^{0,\pm}, D^{0,\pm}, \tau^{\pm}...$$

- short-lived not "directly seen", but "reconstructable": $\pi^0,\ \rho^{0,\pm}...\ ,\ Z,W^\pm,t,H...$
- missing particles are weakly-interacting and neutral:

 $\nu, \ \tilde{\chi}^0, G_{KK}...$

Tao Han, TASI

† For stable and quasi-stable particles of a life-time $\tau > 10^{-10} - 10^{-12}$ s, they show up as

Theorists should know:

For charged tracks : $\Delta p/p \propto p$, typical resolution : $\sim p/(10^4 \text{ GeV})$. For calorimetry : $\Delta E/E \propto \frac{1}{\sqrt{E}}$, typical resolution : $\sim (5 - 80\%)/\sqrt{E/\text{GeV}}$.

p(GeV) = 0.3QB(Tesla)R(m) Tao Han, TASI

† For short-lived particles: $\tau < 10^{-12}$ s or so,

make use of final state kinematics to reconstruct the resonance.

† For missing particles:

make use of energy-momentum conservation to deduce their existence.

$$p_1^i + p_2^i = \sum_{f}^{obs.} p_f + p_{miss}.$$

But in hadron collisions, the longitudinal momenta unkown, thus transverse direction only:

$$0 = \sum_{f}^{obs.} \vec{p}_{f} T + \vec{p}_{miss} T.$$

often called "missing p_T " (p_T) or "missing E_T " (E_T).

Tao Han, TASI

Theoretical Calculation

How does SM predict ... ?

- In Quantum Mechanics
 - Schrodinger Equation:

$$i\frac{\partial\Psi}{\partial t} = H\Psi$$

- 1. Figure out what H is.
- 2. Insert H in S.E.
- 3. Calculate Predictions

 $d\sigma$ is invariant under boost along beam line

After integrating out
$$d^3p_2$$

$$-\vec{p_2}$$

$$d\sigma_{\rm cm} = \frac{1}{2s} \frac{p_1^2 dp_1 d\Omega}{(2\pi)^3} \frac{1}{2E_1} \frac{1}{2E_2} (2\pi) \delta(E_{\rm cm} - E_1 - E_2) |\mathcal{M}|^2$$

$$E_1 = \sqrt{p_1^2 + m_1^2} \quad E_2 = \sqrt{p_2^2 + m_2^2}$$

$$\frac{d\sigma}{d\cos\theta} = \begin{cases} \frac{1}{16\pi} \frac{|\mathbf{p}_1|}{s^{3/2}} & \text{if } \sqrt{s} > m_1 + m_2 \\ 0 & \text{otherwise,} \end{cases}$$

$$|\mathbf{p}_1| = \frac{1}{2} \sqrt{\frac{(s - m_1^2 - m_2^2)^2 - 4m_1^2 m_2^2}{s}}$$

$$\frac{d\sigma}{d\cos\theta} = \frac{1}{32\pi s} \sqrt{1 - \frac{4m^2}{s}} |\overline{\mathcal{M}}|^2 \quad \text{if } m_1 = m_2 = m.$$

One could calculate the amplitude square using automation package!

But I am going to do it in a old fashion

Resonance

Mass, Width (lifetime), isospin, Parity, ...

resonance in elastic scattering

$$a + b \to R \to a' + b'$$

$$\psi(t) = \psi(0)e^{-i\omega_R t}e^{-\frac{t}{2\tau}} = \psi(0)e^{-\frac{iE_R}{\hbar}t}e^{-\frac{\Gamma}{2\hbar}t}$$
$$\omega_R = E_R/\hbar \quad \tau = \hbar/\Gamma$$

Probability of finding the particle at a time t is

$$I(t) = \psi^* \psi = \psi(0)^2 e^{-t/\tau} = I(0) e^{-t/\tau}$$

The Fourier transform of $\psi(t)$

$$\chi(E) = \int \psi(t) e^{iEt} dt = \psi(0) \int e^{-t[(\Gamma/2) + iE_R - iE]} dt =$$

 $= \frac{K}{(E_R - E) - i\Gamma/2}.$ K: normalization factor

Elastic Scattering $a + b \rightarrow R \rightarrow a' + b'$

$$\sigma(E) = \sigma_0 \chi^*(E) \chi(E) = \sigma_0 \frac{K^2}{[(E_R - E)^2 + \Gamma^2/4]}$$

Prob. of finding particle in Energy E

$$1 = \chi^*(E_R)\chi(E_R) = 4K^2/\Gamma^2 \longrightarrow K^2 = \Gamma^2/4$$

$$\sigma_0 = \pi(2\lambda)^2 = 4\pi\lambda^2$$

$$\sigma_{el}(E;J) = 4\pi\lambda^2 \frac{(2J+1)}{(2s_a+1)(2s_b+1)} \left[\frac{\Gamma^2/4}{(E_R-E)^2 + \Gamma^2/4} \right].$$

Inelastic scattering $a + b \rightarrow R \rightarrow c + d$

$$\sigma = 4\pi\lambda^2 \frac{(2J+1)}{(2s_a+1)(2s_b+1)} \frac{\Gamma_{ab}\Gamma_{cd}/4}{(E-E_R)^2 + \Gamma^2/4}$$

 $\lambda = \hbar/p$ is the de Broglie wavelength of particle a,b in the c.m. frame

$$\Gamma_{ab} = \Gamma(R \to a + b)$$

$$\Gamma_{cd} = \Gamma(R \to c + d)$$

$$\Gamma = \Gamma_{\text{Total}} = \sum_{i} \Gamma_{i}$$

Drell-Yan W-boson production $u\bar{d} \rightarrow W^+ \rightarrow e^+\nu$

$$\sigma(u\overline{d} \to W^+ \to e^+\nu_e) = \frac{1}{N_c} \frac{4\pi\lambda^2 \Gamma_{u\overline{d}} \Gamma_{e\nu}/4}{(2s_d+1)(2s_u+1)\left[(E-M_W)^2 + \Gamma^2/4\right]} \frac{2J+1}{3}$$

At the energy $E = M_W$

$$\sigma_{max}(u\bar{d} \to W^+ \to e^+\nu) = \frac{4\pi\Gamma_{u\bar{d}}\Gamma_{e\nu}}{3M_W^2\Gamma^2} = \frac{4\pi}{81M_W^2} \simeq 9.4\text{nb}$$

W-boson Decay

Hadronic mode

$$\begin{array}{c} W^+ \\ & &$$

 $Br \sim \frac{6}{9} \qquad \text{hard to detect,} \\ \text{due to huge QCD backgrounds} \\ (\underline{u \ u \ u \ c \ c \ c}) \\ (\underline{d \ d \ d \ s \ s \ s}) \end{cases}$

Leptonic mode

unknown
$$p_z^{\nu}$$
 cannot reconstruct invariant mass $m_W = \sqrt{(p_e + p_{\nu})^2}$

Narrow width approximation

$$\sigma_{max}(u\bar{d} \to W^+ e^+ \nu + e) = \frac{4\pi\Gamma_{u\bar{d}}\Gamma_{e\nu}}{3M_W^2\Gamma^2} = \frac{4\pi\Gamma_{u\bar{d}}}{3M_W^2\Gamma}\frac{\Gamma_{e\nu}}{\Gamma}$$

$$=\frac{4\pi\Gamma_{u\bar{d}}}{3M_W^2\Gamma}\otimes\operatorname{Br}(W\to e\nu)$$

W-boson W-boson production decay

Key of New Physics Discovery

- 大的羫截面
 - *新物理粒的质望轻 (部分功率函数随际增加迅速下降)
 - * QCD> Weak > EM ds ~ 10 dw ~ 1/30. dem ~ 1/28 (新粒:最好花有色荷) * 曲产过程转起了学生 (相空间压低)
 - 一般而言。每增加一个粒子,无影明化的 相空间要减少两个数量的
 - 2-> 1 x 2-> 2 (Went) $2 \rightarrow n (QG)$

(133)

• 易于探测的实验信号 *带电轻子(e.r) *大铁的核向动量(年) (客易探测但不能提供新射 程的有用信息) *重味的喷注 (低探测效率)

密宽度近似 (NWA)

Narrow width approximation

Production $\Gamma/M \ll 1$ Decay

$$Q_{prod} = M$$
 $au_{decay} = 1/\Gamma$
 $au_{prod} = 1/M$

$$\frac{\Gamma}{M} = \frac{1/M}{1/\Gamma} = \frac{\tau_{prod}}{\tau_{decay}} \ll 1$$

W-boson production at

Parton distribution Functions

 $xf_{q/P}(x_i, Q)$

Momentum fraction

Differential Cross Section

* sensitive to spin-correlation

* useful to suppress background

Transverse momentum of the charged lepton (p_T^e)

In (ud) c.m. system,

Transverse momentum of the charged lepton (p_T^e)

In (ud) c.m. system,

Jacobin factor

Transverse mass of the W-boson (M_{T}^{W})

Definition:

$$m_T^2(\ell,\nu) = 2 p_T^\ell p_T^\nu (1 - \cos \phi_{\ell\nu})$$
from overall p_T imbalance

$$\implies \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}m_T^2} \sim \frac{1}{\sqrt{1 - m_T^2/\hat{s}}}$$

unaffected by longitudinal boosts of $\ell \nu$ system

 \square not sensitive to q_T^W

tail knows about Γ_W (direct measurement)

sensitive region for measuring $M_W: M_T \sim 60 - 100 \text{GeV}$ $\Gamma_W M_T > 100 \text{ GeV}$

Transverse mass of the W-boson (M_T^W)

Definition: ۲

$$m_T^2(\ell,\nu) = 2 p_T^\ell p_T^\nu (1 - \cos \phi_{\ell\nu})$$
from overall p_T imbalance

HOIII OVELAIL P1 IIIIUAIAIICE

$$\implies \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}m_T^2} \sim \frac{1}{\sqrt{1 - m_T^2/\hat{s}}}$$

unaffected by longitudinal boosts of $\ell \nu$ system 13

 \square not sensitive to q_T^W

tail knows about Γ_W (direct measurement)

sensitive region: $M_W : M_T \sim 60 - 100 \,{\rm GeV}$ Γ_W : M_T > 100 GeV

Electroweak theory tests at tree level

Qing-Hong Cao

Colloquium @ IHEP o

65/49

Fundamental Forces of Nature

The Story of Gauge Fields

Fundamenta Forces of Nature

The Story of Gauge Fields

大自然的基本力

上海世纪已版集团

Kerson Henry