Detector & Reconstruction A first glance

Manqi

Outline

- Introduction
- "Stable" particles at detector scale
- Particle detections
- PFA: Tracking, Clustering, etc
- Key problems for the future
- Summary

A physics event at e⁺e⁻ collider

Detector: take a snapshot & understand the snapshot

- Detector: sensor, structure/support, absorbers & DAQs...
- Direct probe: from final state particles
 - Self: Particle lives/travels longer enough to hit the sensitive volume;
 - Daughter: Particle decayed, but its daughters reaches sensitive volume;
- Indirect: from kinematic constrains
 - i.e: recoil mass method, measurement of missing energy/momentum

Stable particles: composited

 π^{\pm}

- Nucleon:
 - Proton & Neutron
- Mesons:
 - Charged Pion, Kaon, etc
- Hadrons:
 - Lambda, Delta, etc
- Nuclei: D, He, etc

http://pdg.lbl.gov/2013/tables/contents_tables.html

 $I^{G}(J^{P}) = 1^{-}(0^{-})$ Mass $m = 139.57018 \pm 0.00035$ MeV (S = 1.2) Mean life $\tau = (2.6033 \pm 0.0005) \times 10^{-8}$ s (S = 1.2) $c\tau = 7.8045$ m $\pi^{\pm} \rightarrow \ell^{\pm} \nu \gamma$ form factors [a] $F_{V} = 0.0254 \pm 0.0017$ $F_{A} = 0.0119 \pm 0.0001$ F_{V} slope parameter $a = 0.10 \pm 0.06$ $R = 0.059^{+0.009}_{-0.008}$

Traveling length = $\gamma\beta\tau \sim \gamma c\tau$

- Homework: tag the "stable" particles in the PDG...
 - 1st : ст > 1 ст
 - 2^{nd} : 1cm > ct > 1 μ m

– If composited, understand its composition ^{22/08/2014} istep@IHEP

Color confinement: quark/gluon jet

A typical light jet (u, d, s g):

~60% energy in Charged Hadron (Mainly pion, kaon)

~30% energy in Photons (from pion0)

~10% in neutral hadrons

Possible to generate neutrinos & leptons...

SM particles that can be reconstructed from its daughter

- Quarks (except top) & Gluons: Jets
- Top quark
 - W & b, then cascade
- W & Z
 - 30% leptonic decay
 - 70% decay to quarks: jets
- Tau
 - 35% leptonic decay
 - 50% 1-prong hadron
 - 15% 3-prong, else

 Higgs 	Mode	$b\overline{b}$	$c\overline{c}$	gg	WW*	$\mu^+\mu^-$	$\tau^+\tau^-$	ZZ^*	$\gamma\gamma$	$\mathrm{Z}\gamma$
	BR $(\%)$	57.8	2.7	8.6	21.6	0.02	6.4	2.7	0.23	0.16
22/08/2014	iSTEP@IHEP									

New Physics Particles

Decay into SM particles and/or invisible particles

A detector/camera that can reproduce the Feynman diagram at the IP

- Tag final state particles and precisely measure their 4 momentum
 - Hadrons (pion, kaon, ...), leptons(e, muon) and photons
- Distinguish different, unstable SM particles: tau, W, Z, Higgs, top; different flavor(s) of jets (uds, g, c, b)
- Precisely measure the total 4 momentum ~ missing energy/momentum

Particle Detection

Particle detection: though Particle-Matter interaction

- Charged Particle: ionization
 - Tracking at Tracker
- Neutral Particle: Energy deposition/absorption at Calorimeter
 - Electromagnetic interaction: Ecal
 - Hadronic interaction: Hcal
 - Ionization is also one of the important ways that shower deposit energy in Calorimeter
- Advanced: Jet Tagging & Identification: Jet Clustering and Flavor tagging

– Combination of Track informations...

Ionization

- Characteristic: dE/dx number of ionizations per unit length
- MIPs: Minimal Ionization Particle, basic unit to record the energy deposition in a sensitive volume

Tracker

- Charged particles create tracker hits from ionization;
- Tracker hits are recorded, and fitted into tracks;
- The Pt information is represented by the curvature of the track;
- The impact parameters can also be reconstructed
- Less material, high precision & high readout speed

ElectroMagnetic interaction

- Particles: electron, positron and photon (thus pi0)
- Physics processes:
 - Pair production
 - Bremsstrahlung
- Characteristic:
 - Radiation length (X0)
 - Moliere radius

iSTEP@IHEP

Hadronic interaction

- Hadrons & Mesons
- Nuclear interactions:
 - nuclear breakups,
 - bremsstrahlung with pion
 - Isospin exchange...
- Much complicated than EM shower: in fact, hadronic shower can contain EM sub-showers
- Characteristic:
 - Interaction length (~ 20 cm for iron)

Calorimeter

- Particles should exhaust its energy in Calorimeter system + detector price ~ size;
- Compact, Dense Calorimeter System;
- Separate different particles high granularity;
- Precisely reconstruct particle energy: sampling or crystal;

A closer look at the detector

Reference detector for CEPC: ILD

Scale: half_Z: 12.5/6.62 meter, radius 7.24 meter Sub detectors: VTX, SIT, FTD, TPC, SET/ETD(optional), Ecal, Hcal, Coil, Muon -724 724 X -1250 22 22/08/2014 iSTEP@IHEP

Vertex detector

Inner most layer Radius: ~15 mm Spatial resolution: ~ 5 μm

ILD Detector: dismount Yoke, Coil and partial of the Calo

iSTEP@IHEP

Silicon Tracking at ILD

 Massive usage of silicon pixel/strips in the tracking system & VTX: ensures good accuracy in Impact parameter & momentum measurement

iSTEP@IHEP

ILD Main Tracker: TPC

Figure III-2.11. Left: Drawing of the proposed end-plate for the TPC. In the insert a backframe which is supporting the actual readout module, is shown. Right: Conceptual sketch of the TPC system showing the main parts of the TPC (not to scale).

PFA Oriented Calorimeter

Development of micro electronics: ultra-high granularity! #channels, 10⁴-10⁵ (CMS) → 10⁸ channels (I/LC calorimeters) Imaging calorimeter in 8-D (or even 5-D) in/a high DAQ rate... Role of calorimeter Measure the incident energy

Identify and measure each incident particles with sufficient energy

10cm

DRUID, RunNum = 0, EventNum = 23

20 GeV Klong reconstructed @ ILD Calo

Calorimeter R&D for ILD

Ultra high granularity ~ 1 channel cm⁻³. 3d, 4d or 5d image...

22/08/2014

iSTEP@IHEP

Our goal: A detector/camera that can reproduce the Feynman diagram at the IP

iSTEP@IHEP

Therefore

- The ultimate goal for detector is
 - Tag Every final state particles, identify them and precisely measure their energy momentum and positions
 - A.K.A, Particle Flow Algorithm (Principle)
- With the development of Electronics: PFA serves as the compass for detector design/reconstruction algorithm development
- A PFA oriented detector:
 - Separate the energy deposition of each final state particle
 - Follow each one of them, and reconstruct them in the most suited sub-detectors
 - i.e, charged particle at tracker;
 - Photons at ECAL
 - Neutral hadrons at HCAL

PFA @ ALEPH

The ALEPH Detector

Measured resolution twice as large:
E_{tot} = 90.5 ± 6.2 GeV
But remember with calorimeters only:
E_{tot} = 12 ± 13 GeV iSTEP@IHEP

22/08/2014

Particle-Flow performance in CMS (4)

Physics objects from the global event description with particles

Patrick Janot

Particle Flow Event Reconstruction 5-Feb-2011

PFA Performance at CMS

PFA @ ILC

- LC detector: precisely identify and measure much state particles (visible)
 - Calorimeter: jet energy, PID
- Available:
 - Pflow, SiD-IowaPFA, Trackwise Clustering...
 - **PandoraPFA**: achieves the Benchmark requirement: $\delta E/E \sim 3\%$
 - Arbor

Tracking: tracker hits \rightarrow tracks

Tracking detectors

Detector	Point Resolution				
VTX	$\sigma_{r\phi,z}$	=	$2.8\mu m$ (layer 1)		
	$\sigma_{r\phi,z}$	=	$6.0\mu m$ (layer 2)		
	$\sigma_{r\phi,z}$	=	$4.0\mu m (layers 3-6)$		
SIT	σ_{α_z}	=	$7.0\mu m$		
	α_z	=	$\pm 7.0^{\circ}$ (angle with z-axis)		
SET	σ_{α_z}	=	7.0µm		
	α_z	=	$\pm 7.0^{\circ}$ (angle with z-axis)		
FTD	σ_r	=	3.0µm		
Pixel	$\sigma_{r_{\perp}}$	=	$3.0\mu m$		
FTD	σ_{α_r}	=	7.0µm		
Strip	α_r	=	$\pm 5.0^{\circ}$ (angle with radial direction)		
TPC	$\sigma_{r\phi}^2$	=	$(50^2 + 900^2 \sin^2 \phi + ((25^2/22) \times (4T/B)^2 \sin \theta) (z/cm)) \mu m^2$		
	$\sigma_z^{2^{\gamma}}$	=	$(400^2 + 80^2 \times (z/cm)) \mu m^2$		
	where	$e \phi$ ar	and θ are the azimuthal and polar angle of the track direction		

KalTest

Helical track model:

Recently development:
 non-uniform B field

Track equation:

$$\begin{cases} x = x_0 + d_{\rho} \cos \phi_0 + \frac{\alpha}{\kappa} (\cos \phi_0 - \cos(\phi_0 + \phi)) \\ y = y_0 + d_{\rho} \sin \phi_0 + \frac{\alpha}{\kappa} (\sin \phi_0 - \sin(\phi_0 + \phi)) \\ z = z_0 + d_z - \frac{\alpha}{\kappa} \tan \lambda \cdot \phi \end{cases}$$

- State vector: $\boldsymbol{a}_{k} = \left(d_{\rho}, \phi_{0}, \kappa, d_{z}, \tan \lambda \right)^{\mathrm{T}}.$
- Kalman filter: prediction + filtering
 - KalTest was put into ILCSoft svn repository in 2010, since then this package was used in both physics simulation (MarinReco) and large prototype TPC study (MarlinTPC).

Tracking performance

Clustering Calorimeter hits \rightarrow clusters

Tree Topology

Except some branches might be invisible

20 GeV Klong reconstructed @ ILD Calo Curves indicating expected particle trajectories (from MC-truth)

DRUID, RunNum = 0, EventNum = 23

2

Algorithm: hits→connector set

- Preparation: hits cleaning, pre-clustering, etc
- Create connector set between hits
 - Create all possible connectors (according to geometry constrains)
 - Clean: keep at most one connector end at a given hit
 - Iterate: change geometry constrain, add new connectors, and clean

Algorithm: connector \rightarrow branch

- Tag the unique branch set from connectors
 - Create all the possible branches (from leaves to seed)
 - Loop the branches with length order, flag hit, end the branch at the flagged hits iSTEP@IHEP

22/08/2014

ullet

iSTEP@IHEP

Validation: Arbor Branch Length (ABL) Vs MC Truth

Arbor: successfully tag sub-shower structure

Samples: Particle gun event at ILD HCAL (readout granularity 1cm² & layer thickness 2.65cm) Length:

Charged MCParticle: spatial distance between generation/end points Arbor branch: sum of distance between neighbouring cells

ABL @ different energy

Separation: multiple muon

Separation: overlay showers

Test beam data

Matching: tracks + clusters \rightarrow reco-particles

Reconstruction with Arbor

Jet: qq event

Identification & Measurement

Different particles act differently...

	EM	Had	MIP	Fragments	Noise
Charged	Electron & Positron	Pion, kaon, etc	Muons, etc		
Neutral	Photon	Neutron, Neutral Kaon, etc	Highly un- likely		

In Real data: Noise & Fragments...

Iterations

Jet Clustering & Flavor tagging: final state particles → jets with tagged flavor

Grouping final state particles into Jets

Flavor tagging

22/08/2014

iSTEP@IHEP

Once Reconstructed: Portal to the analysis...

Some challenges for the future

- For electron positron machine:
 - Balance between different performance requirements & cost
 - Tuning & optimization
- For proton-proton machine:
 - Feasibility at
 - high pile-up
 - high occupancy
 - extremely noisy environments
 - Tagging & Identification of highly-boosted objects
- Iteration with detector design & optimization

CMS Experiment at LHC, CERN Data recorded: Thu Jan 1 01:00:00 1970 CEST Run/Event: 1 / 1 Lumi section: 1

CMS Experiment at LHC, CERN Data recorded: Thu Jan 1 01:00:00 1970 CEST Run/Event: 1 / 451 Lumi section: 4

14 TeV CMS End Cap, 140 Pile up ~ 70 TeV energy deposition

Summary

- Reconstruction: indispensable bridge between Detector signal & Physics analysis
- Detector design/Reconstruction algorithm development are based on basic particle-matter interactions, including ionization, electromagnetic shower & hadronic shower
- Particle Flow Principle: pointing to the ultimate goal of reconstruction: measure each final state particle to the best precision
 - Emphasize on the separation, tagging, identification
 - Eventually leads to much better measuremnts
- Future: Lots of challenges, and fun

Pillars of reconstruction

- Tracks: made from tracker hits, though tracking
- Clusters: made from calorimeter hits, though clustering
- PFA: Taking Tracks & Clusters as input, match clusters and tracks, identify the nature of those signals by pattern recognition, and output the reconstructed particles